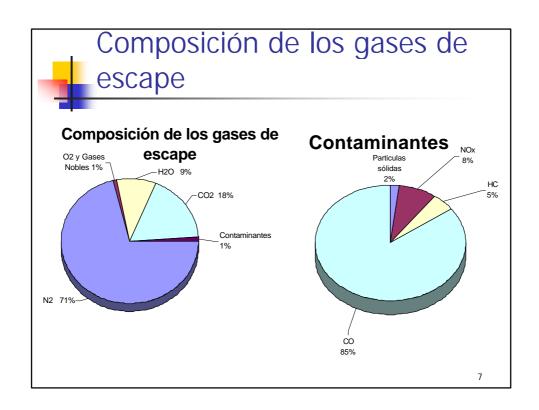
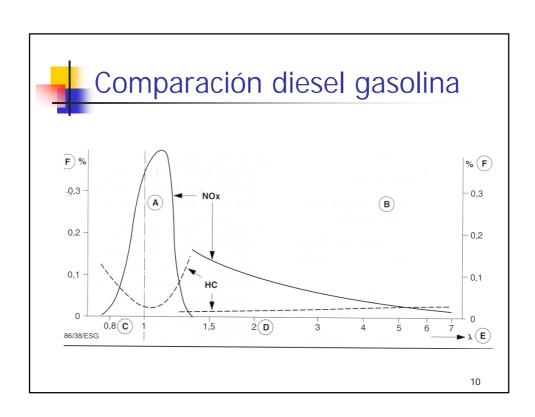

•

Fuentes de contaminación en el vehículo


- Gases de evaporación del combustible
 - Perdidas por respiración del depósito
 - Pérdidas por parada en caliente
- Gases del carter de aceite
 - Al mezclarse gases de combustión que atraviesan los segmentos con el aceite del carter
- Gases de escape

Gases no tóxicos

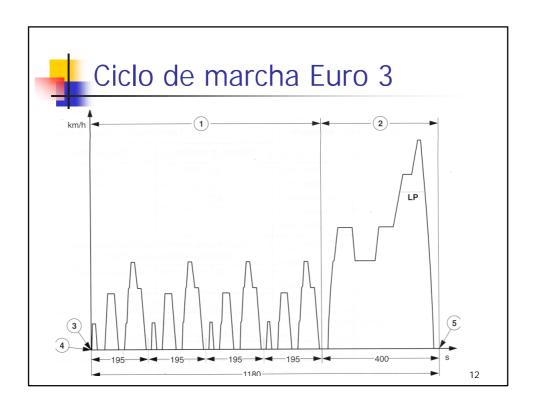
- Nitrógeno N₂
- Oxígeno O₂
- Vapor de agua H₂O
- Anhídrido carbónico CO₂
- Gases nobles Helio, Neón, Xenón Criptón y Radón



Gases tóxicos

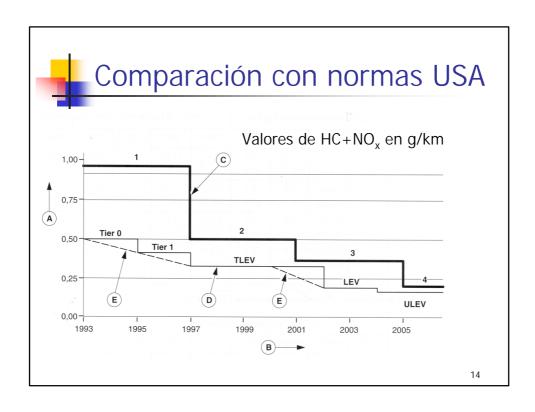
- Hidrocarburos sin quemar HC
- Monóxido de carbono CO
- Óxidos de nitrógeno NO_x
- Partículas sólidas y líquidas
- Óxidos de azufre, óxidos de plomo, óxidos de manganeso
- Ozono

Ç



	co		HC		NOx	HC + NOx		Partículas	
	Gasolina	Diesel	Gasolina	Diesel	Gasolina	Diesel	Gasolina	Diesel	Diesel
Euro1 (1993)	2.72	2.72	(-3)	-	(-	-	0.97	0.97	0.140
Euro2 (1996)	2.20	1.00	22	3	-	24	0.50	0.70	0.080
Euro3 (2000)	2.30	0.64	0.20	=	0.15	0.50	2	0.56	0.050
Euro4 (2005)	1.00	0.50	0.10	149	0.08	0.25	2	0.30	0.025

Medidas en gramos por km. Consumido en el ciclo de marcha UE



Novedades Normativa Euro 3

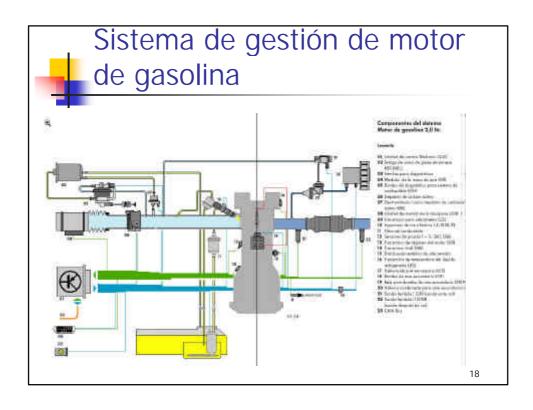
- Nuevo ciclo de marcha
- Prueba a bajas temperaturas
- Valores límite mas severos
- Diagnosis EOBD para motores de gasolina, y a partir del 2003 para gasoil

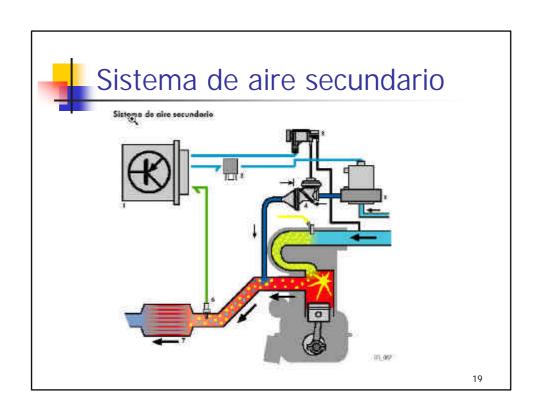
Soluciones que actúan sobre el combustible

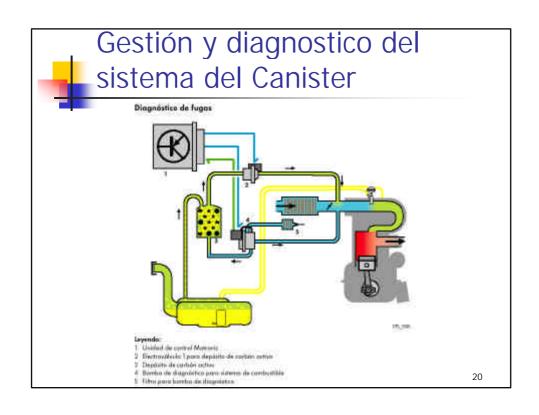
- Eliminar el plomo del combustible.
 - Aditivo antidetonante en gasolina Super
 - Se sustituye por MTBE o hidrocarburos ligeros
 - Tóxico
 - Incompatible con el uso de catalizadores
- Eliminar el azufre

15

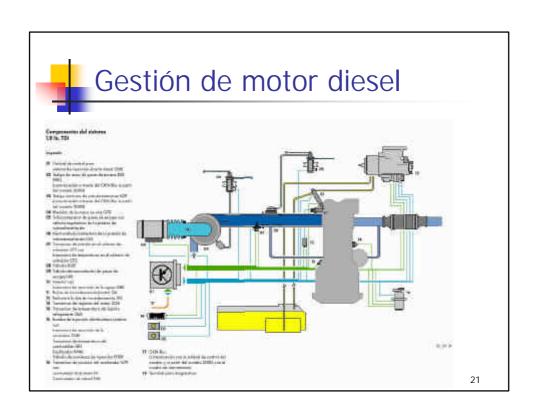
Soluciones que actúan sobre el diseño del motor

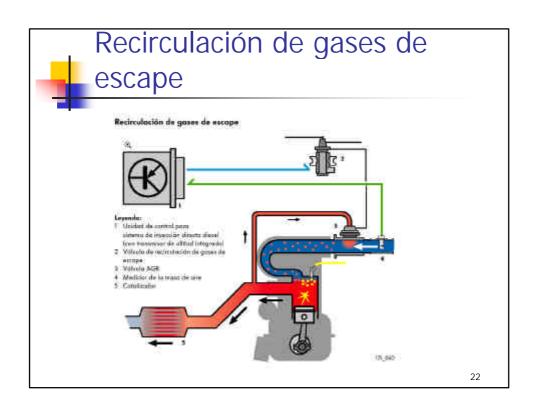

- Regulación con sonda lambda
- Preparación de la mezcla
- Distribución uniforme en admisión
- Recirculación de gases de escape
- Punto de encendido (gasolina)
 - Si es incorrecto aumenta los HC
- Punto de inyección (diesel)
 - Retrasando la inyección bajan los NOx
 - Retrasando en exceso aumentan los HC
- Cámara de combustión
 - Inyección Indirecta -> Menos NOx
 - Inyección Directa -> Mas NOx

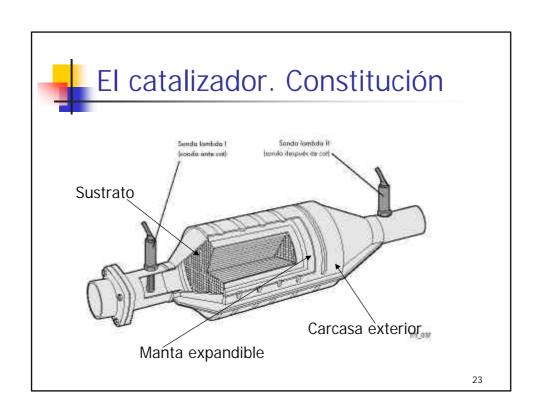


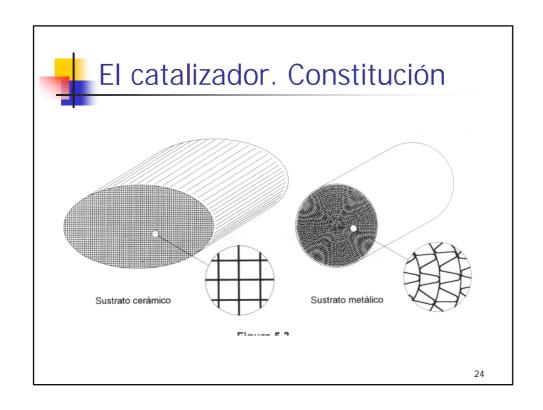

Soluciones que actúan sobre los gases de escape

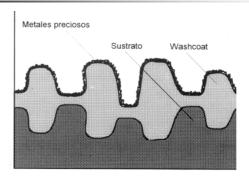
- Tratamiento térmico de los gases de escape
 - Inyección de aire en el escape
 - Filtro de partículas
- Tratamiento catalítico de los gases de escape











El catalizador. Constitución

- La capa Washcoat esta formada por alúmina
- Esta recubierta de metales preciosos, Platino, Paladio y Ródio

25

El catalizador. Función

- Acelera las reacciones químicas que permiten la disminución drástica de los gases contaminantes
- Necesita una temperatura de funcionamiento a partir de 350°C, por debajo no funciona

Reacciones en el catalizador. Oxidación

- \bullet $C_m H_n + O_2 -> CO_2 + H_2 O$
- \bullet 2 CO + O₂ -> 2 CO₂
- \bullet H₂ + O₂ -> H₂O
 - Son catalizadas por el Pt y el Pd
 - Necesitan mezcla pobre
 - Regla PPO (platino, pobre, oxida)

27

Reacciones en el catalizador. Reducción

- \bullet 2 CO + 2 NO -> N_2 + 2 CO₂
- CmHn +NO -> N_2 + CO_2 + H_2O
- \bullet 2 H₂ + 2 NO -> N₂ +2 H₂O
 - Son catalizadas por el Ródio
 - Necesitan mezcla rica (CO alto)
 - Regla RRR (Rodio, rica, reduce)

Tipos de catalizador.

- 2 vías o de oxidación
 - Trabajan con mezcla pobre
 - Se utiliza en motores diesel
 - Los NOx se eliminan con la EGR
- 3 vías en bucle abierto
 - Trabajan con mezcla rica. Coches USA
 - 2 monolitos, con toma de aire intermedia
 - El primero reduce los NOx y el segundo oxida los HC y el CO.

20

Tipos de catalizador

- 3 vías en bucle cerrado
 - Con sonda Lambda
 - Trabajan con mezclas cercanas a la estequiométrica. 1Kg Combustible/14,7 kg de aire
 - Oxidan y reducen a la vez
 - Es el utilizado en Europa en motores de gasolina

Factor Lambda

 $o = \frac{\text{Peso real del aire aspirado}}{\text{Peso teórico del aire necesario}}$

- Si λ es > 1 Mezcla pobre
- Si λ es < 1 Mezcla rica

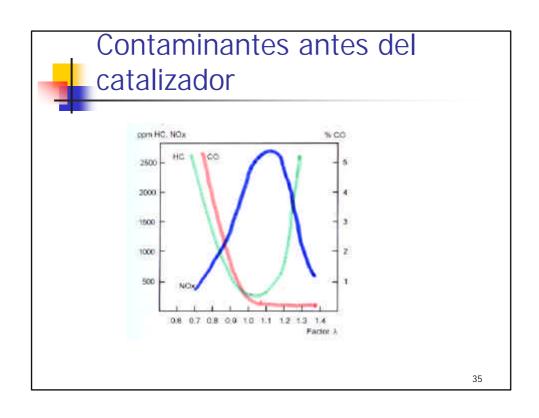
3

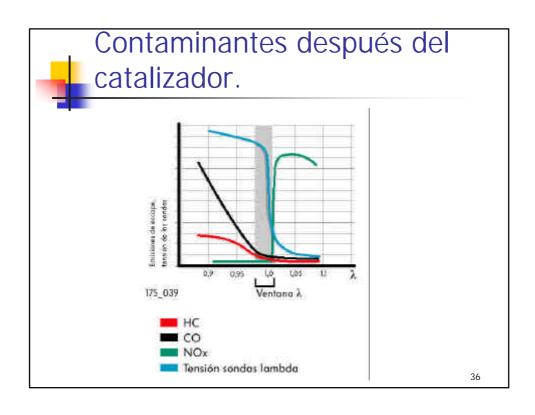
Motores de gasolina. Mezcla rica

- Menor que 0,75
 - El motor se ahoga. Mezcla poco inflamable
- Entre 0,75 y 0,85
 - Mezcla muy rica, proporciona aumento de potencia si las aceleraciones son breves
- Entre 0,85 y 0,99
 - Mezcla rica, se entrega potencia de forma continuada, pero el consumo aumenta. No se debe usar de forma continuada.

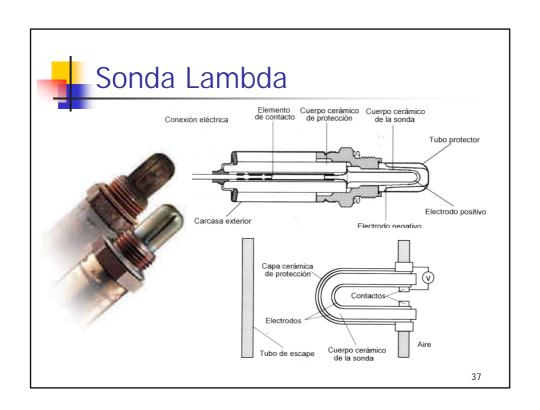
Mezcla ideal

- Entre 0,99 y 1,01
 - El motor debe funcionar con este régimen, tanto en ralentí como en régimen estacionario.

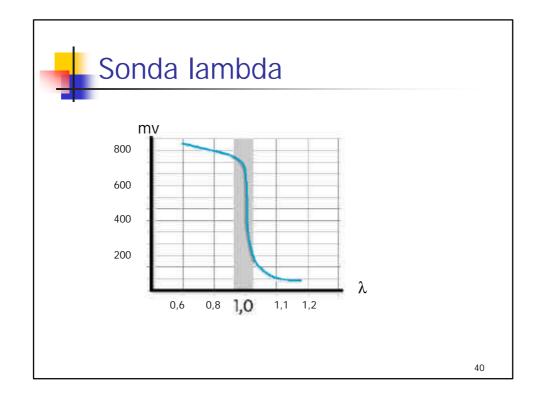

33

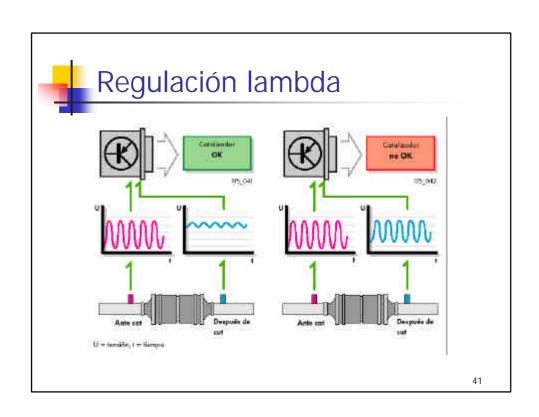


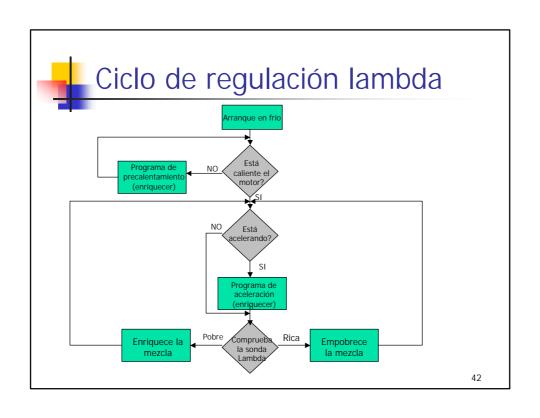
Mezcla pobre


- Entre 1,01 y 1,15.
 - Mezcla pobre. Consumo mínimo, el motor pierde potencia.
- Entre 1,15 y 1,30.
 - El motor pierde mucha potencia y aumenta el consumo. Se producen problemas de autoencendido y explosiones en escape.
- Menor que 1,30
 - La mezcla no es inflamable

Sonda lambda. Tipos


- De óxido de Zirconio
 - Generan tensiones superiores a 800 mv con atmósfera rica, e inferiores a 200 mv con atmósfera pobre
- De titanio
 - Varía su resistencia con la concentración de oxígeno




Sonda lambda. Tipos

- Sin precalentar
 - De 1 o 2 cables. Se sitúan próximos al colector de escape, o se utilizan junto con sistemas de inyección de aire en el escape
- Precalentadas
 - De 3 o 4 cables. Llevan una resistencia para alcanzar antes la temperatura de funcionamiento de 300° C



Averías del catalizador

- Desgaste natural. 80,000 km de vida.
- Envenenamiento, producido por plomo, y aditivos de la gasolina o el aceite
- Obstrucción del monolito
 - Carbonilla del motor. Mezcla muy rica
 - Restos de aceite
 - Partículas metálicas por deterioro del motor

Averías del catalizador

- Fusión del monolito
 - Debido a fallos de encendido, que provocan que la gasolina se queme en el catalizador
 - Mezcla muy pobre que también provoca que se queme en el catalizador
- Rotura del monolito
 - Vibraciones debidas a mala sujeción del escape
 - Golpes contra piedras, bordillos, etc

45

Recomendaciones de uso

- No utilizar nunca gasolina sin plomo ni aditivos que la misma que lo contengan
- Comprobar que el consumo de aceite no supera 1 litro cada 1000 km.
- Revisar revisiones periódicas del estado del encendido

Recomendaciones de uso

- No arrancar el vehículo empujándolo cuando el catalizador aún esté caliente.
- Nunca permitir que el depósito de gasolina se vacíe, ya que esto provocaría un suministro irregular de combustible, provocando falsas explosiones y elevada temperatura en el catalizador

47

Valores en emisiones de gases

	Carburación	Inyección sin catalizar	Inyección antes del catalizador	Inyección después del catalizador
СО	1÷2 %	1,5 ÷ 0,5 %	0,4 ÷ 0,8 %	< 0,2 %
НС	< 400 ppm	< 300 ppm	< 250 ppm	< 100 ppm
CO ₂	>11%	> 12 %	> 13 %	> 13,5 %
O ₂	< 3,5 %	< 2,5 %	< 1,5 %	< 0,2 %
λ			0,9 ÷ 1,02	0,99 ÷1,01
R.P.M	2000	2000	2000	2000

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
CO	< 0,2 %	5%
HC	< 100 ppm	390 ppm
CO_2	> 13,5 %	12%
O_2	< 0,2 %	0,2%
λ	0,99 ÷1,01	0,92
R.P.M	1500	1500

Alto
Alto
Bajo
Casi bien
Rica

Mezcla rica

Filtro sucio

Poco aire

Caudalímetro obstruido

40

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
CO	< 0,2 %	0,3 %
HC	< 100 ppm	250 ppm
CO_2	> 13,5 %	11%
O_2	< 0,2 %	3%
λ	0,99 ÷1,01	1,20
R.P.M	1500	1500

Alto Alto	Emergencia (HC 200 ÷ 400)
Bajo Alto	(HC 200 ÷ 400)
Pobre	

Modo de emergencia

Demasiado aire en escape

Escape roto

Antes de sonda

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
CO	< 0,2 %	1,5 %
HC	< 100 ppm	300 ppm
CO_2	> 13,5 %	9%
O ₂	< 0,2 %	6%
λ	0,99 ÷1,01	Fuera de escala
R.P.M	1500	1500

Alto Alto Muy Bajo Muy Alto	Emergencia (CO 1 ÷ 2) Emergencia (HC 200 ÷ 400)

- Modo de emergencia
- Demasiado aire en escape

Escape roto, antes de sonda Orificio mas grande que el

г 1

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
CO	< 0,2 %	1%
HC	< 100 ppm	1500 ppm
CO_2	> 13,5 %	11 %
O_2	< 0,2 %	6%
λ	0,99 ÷1,01	Fuera de escala
R.P.M	1500	1500

	<u>.</u>
Alto	Emergencia (CO 1 ÷ 2)
Muy Alto	
Bajo	
Muy Alto	

- Modo de emergencia
- Hidrocarburos sin quemar
- Oxigeno sin quemar

Fallo de encendido

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
СО	< 0,2 %	0,2%
HC	< 100 ppm	60 ppm
CO ₂	> 13,5 %	12,2 %
O ₂	< 0,2 %	5,5%
λ	0,99 ÷1,01	Fuera de escala
R.P.M	1500	1500

Bien
Bien
poco bajo
Alto

• Todo bien menos el Oxigeno

Toma de aire después del catalizador. Escape roto

53

Diagnóstico de casos prácticos

	Valores Óptimos	Caso real
CO	< 0,2 %	0,5%
HC	< 100 ppm	600 ppm
CO_2	> 13,5 %	10,5 %
O_2	< 0,2 %	5%
λ	0,99 ÷1,01	Fuera de escala
R.P.M	1500	1500

Alto
Alto
Bajo
Alto

- Hay oxigeno para catalizar
- No está en modo de emergencia

Toma de aire en la admisión por un cilindro.