2000 Mazda MPV Service Highlights

FOREWORD

This manual explains each component or system operation and function for the Mazda MPV.

For proper repair and maintenance, a thorough familiarization with this manual is important, and it should always be kept in a handy place for quick and easy reference.

The contents of this manual, including drawings and specifications, are the latest available at the time of printing.

As modifications affecting repair or maintenance occur, relevant information supplementary to this volume will be made available at Mazda dealers. This manual should be kept up-to-date.

Mazda Motor Corporation reserves the right to alter the specifications and contents of this manual without obligation or advance notice.

All rights reserved. No part of this book may be reproduced or used in any form or by any means, electronic or mechanical—including photocopying and recording and the use of any kind of information storage and retrieval system—without permission in writing.

Mazda Motor Corporation HIROSHIMA, JAPAN

APPLICATION:

This manual is applicable to vehicles beginning with the Vehicle Identification Numbers (VIN), and related materials shown on the following page.

CONTENTS

Title	Section
ENGINE	01
SUSPENSION	02
DRIVELINE/AXLE	03
BRAKES	04
TRANSMISSION/TRANSAXLE	05
STEERING	06
HEATER, VENTILATION & AIR CONDITIONING (HVAC)	07
RESTRAINTS	08
BODY & ACCESSORIES	09

© 1999 Mazda Motor Corporation PRINTED IN U.S.A. MARCH 1999 Form No. 3334-10-99C Part No. 9999-95-029F-00

VEHICLE IDENTIFICATION NUMBERS (VIN)

JM3 LW28G * Y# 100001—

RELATED MATERIALS

1989 MPV Service Highlights	9999-95-029F-89
1989 B-Series, RX-7, MPV 4 Wheel Drive	
Service Highlights	9999-95-030F-89
1990 626, MX-6, MPV, 929, 929S Service Highlights	9999-95-065F-90
1996 Protegé, MX-3, MX-5, 626, MX-6, MPV, millenia	
Service Highlights	9999-95-MODL-96
1997 Protegé, MX-5, 626, MX-6, MPV, millenia	
Service Highlights	9999-95-MODL-97
1995, 1996, 1997 OBD-II Service Highlights	9999-95-OBD2-97
1998 Protegé, MPV, millenia Service Highlights	9999-95-MODL-98
1998 626 Service Highlights	9999-95-039F-98
1999 626, millenia Service Highlights	9999-95-050F-99
1999 Protegé Service Highlights	

ENGINE

01	
SECTIO	N

OUTLINE 01–00 MECHANICAL 01–10 LUBRICATION 01–11 COOLING SYSTEM 01–12 INTAKE-AIR SYSTEM 01–13 FUEL SYSTEM 01–14 EXHAUST SYSTEM 01–15	EMISSION SYSTEM 01–16 CHARGING SYSTEM 01–17 IGNITION SYSTEM 01–18 STARTING SYSTEM 01–19 CRUISE CONTROL SYSTEM 01–20 CONTROL SYSTEM 01–40
01–00 OUTLINE	
ENGINE ABBREVIATIONS	Reduced Engine Size

OUTLINE

ENGINE ABBREVIATIONS

YMU100S01

ABDC	After bottom dead center
A/C	Air conditioning
ATDC	After top dead center
BARO	Barometric pressure
BBDC	Before bottom dead center
BTDC	Before top dead center
CDCV	Canister drain cut valve
CKP	Crankshaft position
CMP	Camshaft position
C/P	Crankshaft pulley
DI	Distributor ignition
DLC	Data link connector
DLC-2	Data link connector-2
DLI	Distributorless ignition
DOHC	Double overhead camshaft
DTC	Diagnostic trouble code
ECT	Engine coolant temperature
EGR	Exhaust gas recalculation
ESA	Electric spark advance
EVAP	Evaporative emission
EX	Exhaust
GEN	Generator
GND	Ground
HLA	Hydraulic lash adjuster
HO2S	Heated oxygen sensor
IAC	Idle air control

IAT	Intake air temperature
IMRC	Intake manifold runner control
IN	Intake
LH	Left hand
MAF	Mass air flow
MIL	Malfunction indicator light
NGS	New generation star
OHC	Overhead camshaft
Р	Primary
PCM	Powertrain control module
PCV	Positive crankcase ventilation
PID	Parameter identification
PRC	Pressure regulator control
P/S	Power steering
PSP	Power steering pressure
RH	Right hand
S	Secondary
TCM	Transmission control module
TDC	Top dead center
TEN	Tensioner
TP	Throttle position
TR	Transaxle range
TWC	Three way catalytic converter
VSS	Vehicle speed sensor
W/P	Water pump
WU-TWC	Warm-up three way catalytic converter

ENGINE NEW FEATURES

Improved Engine Performance

- DOHC with 4 valves per cylinder
- Swing arm type rocker arms for high valve lift
- Pentroof combustion chamber
- Intake manifold runner control (IMRC) system
- Distributorless ignition (DLI) system

Reduced Engine Weight

- Main parts (cylinder block, cylinder head, and oil pan) made of aluminum alloy
- Hollow camshafts
- Short-skirt pistons
- Sintered metal connecting rods
- Eliminated the voltage regulator of the generator (Generator control is carried out by the PCM.)

Reduced Engine Noise and Vibration

- High-rigidity aluminum alloy cylinder block
- Aluminum alloy oil pan
- Forged steel crankshaft
- Silent timing chains
- Sintered connecting rods

Reduced Engine Size

- Camshaft-driven water pump
- Oil pump directly connected to and driven by crankshaft
- Single auxiliary parts driving belt

Improved Serviceability

- Tension of the auxiliary parts driving belt is adjusted automatically with an auto tensioner
- Timing chain tension is adjusted automatically with hydraulic tensioners
- Valve clearance is adjusted automatically to 0 mm {0 in} with HLA
- Timing chains have been adopted to eliminate the need for replacement.
- Divided DTC
- Three type quick release connectors

Improved Emission System

- Stepping motor type EGR valve
- Warm-up three way catalytic converter (California emission regulations applicable model only)

Improved Durability

- Platinum spark plugs
- Timing chains

		Specifications		
Item		2000MY	1998MY	
		GY	JE	
MECHANICAL				
Туре			Gasoline, 4-cycle	←
Cylinder arrangeme	ent and num	ber	60° V configuration, 6-cylinder	←
Combustion chamb			Pentroof	
Valve system			DOHC, Timing chain driven, 24 valves	SOHC, Timing belt driven, 18 valves
Displacement		(ml {cc, cu in})	2,498 {2,498, 152.4}	2,954 {2,954, 180.2}
Bore × stroke		(mm {in})	81.7×79.5 {3.22×3.13}	90.0×77.4 {3.54×3.05}
Compression ratio			9.7 : 1	8.5 : 1
		Open BTDC	17°	9°
Valve timing	IN	Close ABDC	47° (Primary), 53° (Secondary)	53°
	EV	Open BBDC	67°	51°
	EX	Close ATDC	13°	11°
Valve clearance	IN	(mm {in})	0 (0) Maintenance-free	←
(Engine cold)	EX	(mm {in})	0 (0) Maintenance-free	←
LUBRICATION SY	STEM			
Туре			Force-fed type	←
Oil pump	Type		Trochoid gear	←
Oil filter	Туре		Full flow, paper element	←
Engine oil			ILSAC (GF-II)	API Service SG (Energy Conserving II), SH (Energy Conserving II) or ILSAC (GF-I) SJ or ILSAC (GF-II)
COOLING SYSTEM	И			
Туре			Water-cooled, forced circulation	←
Coolant capacity		(L {US qt, Imp qt})	10.2 {10.8, 9.0} (without rear heater) 12.0 {12.7, 10.6} (with rear heater)	7.2 {7.6, 6.3}
Water pump	Туре		Centrifugal	←
water pump	Water sea	al	Unified mechanical seal	←
Thermostat	Туре		Wax, bottom-bypass	←
Radiator	Type		Corrugated fin	←
	Туре		Electric	Thermo-modulated
Cooling fan		Outer diameter (mm {in})	320 {12.6}	430 {16.9}
Cooming rain	Blade	Number	Without A/C 5 With A/C No.1: 5, No.2: 7	7
INTAKE-AIR SYST	EM			
Air cleaner element	Туре		Paper element (wet type)	←
FUEL SYSTEM				
Fuel pump	Туре		Electrical	←
Fuel tank	Capacity	(L {US gal, Imp gal})	70 {18, 15}	74.0 {19.6, 16.3} (2WD) 75.0 {19.8, 16.5} (4WD)
Required fuel			Unleaded (RON 91 or higher)	←
Fuel pressure		(kPa {kgf/cm ² , psi})	310—350 {3.1—3.6, 45—51}	220—260 {2.2—2.7, 31—38}

		Specifications				
Item			20	DOOMY	1998MY	
				GY	JE	
EMISSION SYSTEM	Л					
EGR control	Туре		Steppin	g motor type	N/A	
CHARGING SYSTE	M					
Battery	Voltage	(V)		12	←	
Dattery	Type and	capacity (5-hour rate) (A·h)	55D23L(48	s), 75D26L(52)* ¹	←	
	Output	(V–A)	1:	2–100	12–70	
Generator	Regulated	d voltage (V)	Contr	olled PCM	14.1—14.7 [20°C {68°F}]	
	Self-diagr	nosis function	Conti	olled PCIVI	Equipped	
IGNITION SYSTEM						
Туре				DLI	DI	
Spark advance			Electronic		←	
			1-4-	-2-5-3-6	1-2-3-4-5-6	
			CYLINDER No.		CYLINDER No.	
		ENGINE	CRANKSHAFT PULLEY	ENGINE CRANKSHAFT PULLEY		
Fising and a			(4)	(1)	(2) (1)	
Firing order			$ \ \ \simeq $			
			5	(2)	4 3	
		6	3			
			LH	RH	LH RH	
		NGK			BKR5E-11* ² , BKR6E-11* ³	
Spark plug	Type DENSO Motorcraft			_	K16PR-U11* ² , K20PR-U11* ³	
-1			AW	/SF-32F	<u> </u>	
STARTING SYSTEM						
Ctartar	Туре		Coaxia	al reduction	←	
Starter	Output (kW)		1.6		1.0, 1.7* ¹	

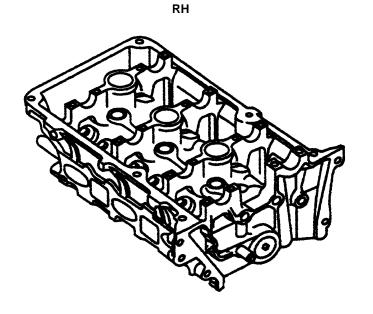
^{*1 :} Cold area *2 : Standard plug *3 : Cold type plug

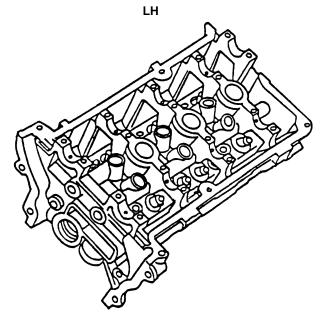
01

01-10 MECHANICAL

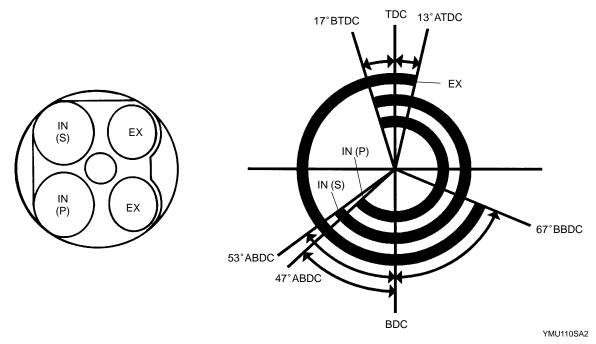
MECHANICAL OUTLINE 01–10–1	CAMSHAFT DESCRIPTION 01–10–	11
CYLINDER HEAD DESCRIPTION 01–10–1	VALVE DRIVE DESCRIPTION 01–10–	12
HEAD GASKET DESCRIPTION 01–10–3	ACCESSORY DRIVE DESCRIPTION 01-10-	13
CYLINDER BLOCK DESCRIPTION 01–10–3	Front	13
CRANKSHAFT DESCRIPTION 01–10–6	Rear01–10–	14
PISTON DESCRIPTION01-10-8	ENGINE MOUNT DESCRIPTION 01-10-	15
CONNECTING ROD DESCRIPTION 01–10–9	NO.3 ENGINE MOUNTING RUBBER	
CAMSHAFT DRIVE DESCRIPTION 01–10–10	DESCRIPTION	16

MECHANICAL OUTLINE

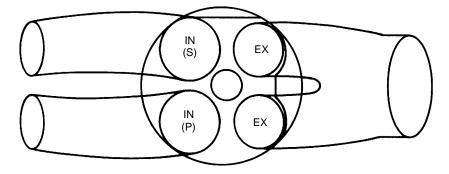

YMU110S01

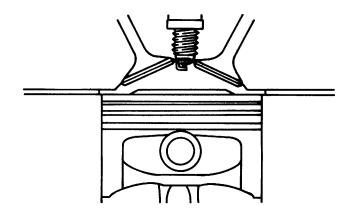

- The new GY engine (2.5L) has been adopted.
- The main features are as follows:
 - V6 24-valve DOHC engine
 - The main engine components are made of aluminum (cylinder block, cylinder head and oil pan).
 - Cast iron inserts for each cylinder because the cylinder block is made of aluminum
 - The camshaft is driven by the timing chain.
 - The camshaft and sprocket are integrated and cannot be disassembled.
 - An automatically adjusted V-ribbed belt drives the accessories.
 - V-ribbed belt in a serpentine configuration has been adopted.

CYLINDER HEAD DESCRIPTION


YMU110S02

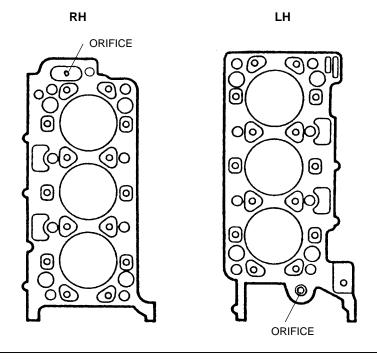
- The aluminum cylinder head is shaped differently on either bank.
- The cylinder head bolts are pliant type and cannot be reused.




- Each cylinder consists of two intake valves and two exhaust valves.
- The two intake valves, primary (P) and secondary (S), close at different times.

• Separated intake passages in the cylinder head are adopted.

• Pentroof type combustion chambers are adopted.

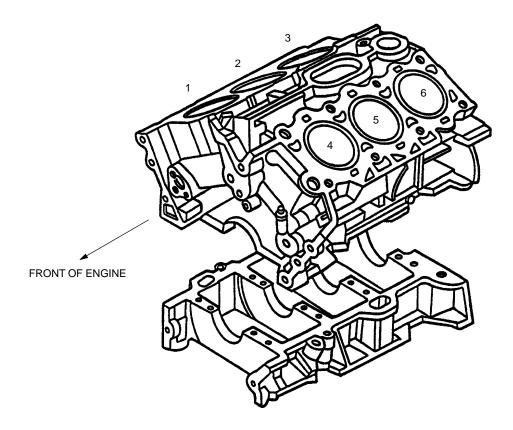


YMU110SA5

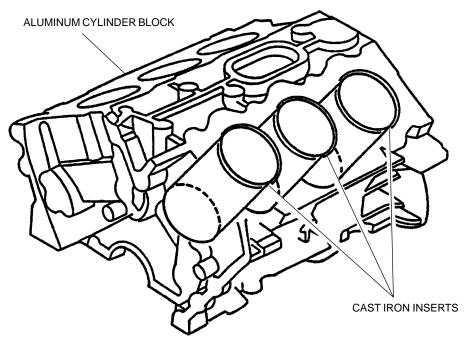
YMU110S03

HEAD GASKET DESCRIPTION

- The head gaskets are steel laminated.
- The orifice, which controls the amount of oil flowing to the cylinder head, is located on the head gasket.

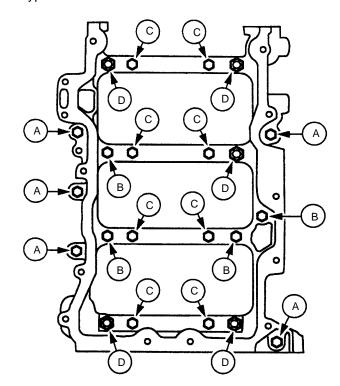


CYLINDER BLOCK DESCRIPTION


YMU110S04

YMU110SA6

- The aluminum cylinder block consists of an upper and a lower block.
- The cylinders are numbered one, two, and three beginning from the front right bank, and four, five, and six beginning from the front left bank.

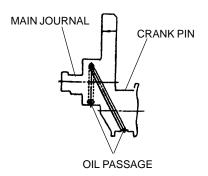


Cast iron inserts are installed in the cylinder block and cannot be bored or replaced.

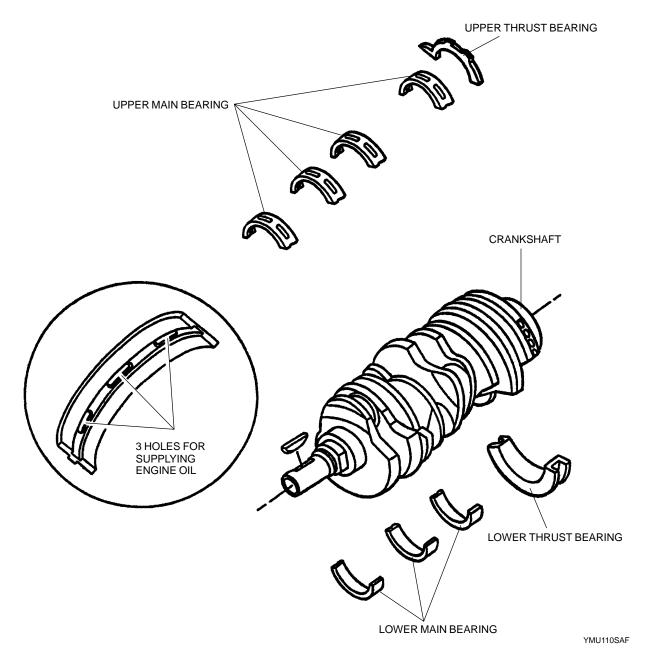
YMU110SA8

- The upper and lower blocks are connected by 22 bolts. Bolts B, C and D are pliant type and cannot be reused.

MECHANICAL

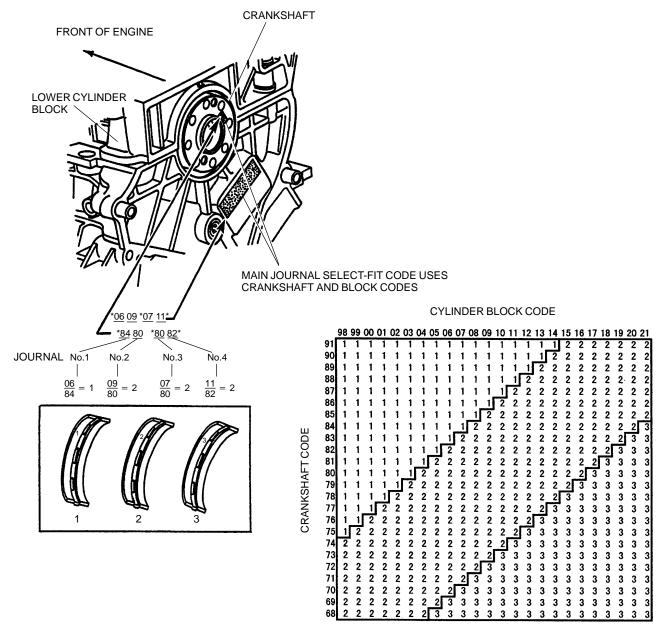

• The bolts have the following shapes and specifications.

Bolt	Bolt shape	Description
А	YMU110SAA	M8×1.25×79.3 Bolt & Washer Pilot
В		$M8 \times 1.25 \times 95.3$ Pliant Type Bolt & Washer Pilot
	YMU110SAB	
С	YMU110SAC	M10×1.5×106 Pliant Type Bolt & Washer Pilot
	YMU110SAC	
D		$M6 \times 1.0 \times 19.5/$ $M8 \times 1.25 \times 95.3$ Pliant Type Stud & Washer Pilot
	YMU110SAD	


CRANKSHAFT DESCRIPTION

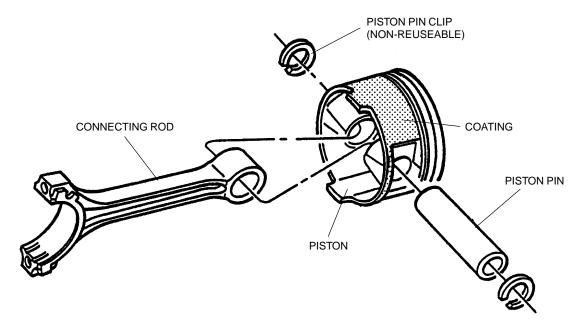
YMU110S05

The crankshaft main journal has an oil passage as shown in the figure.

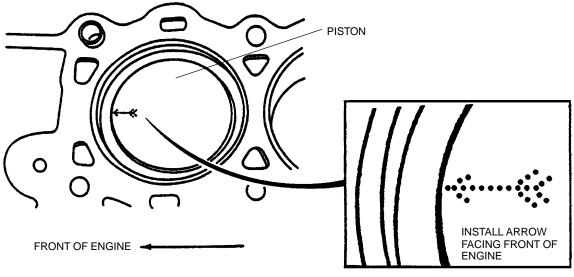

- A thrust bearing receives the thrust force of the crankshaft. There are three holes for supplying engine oil in the upper main bearing.

MECHANICAL

- To obtain an appropriate clearance of main bearings, three kinds of main bearings are available as service parts.
- The selection codes are marked on the cylinder block and the crankshaft.
- Refer to the chart below to select the necessary bearings.

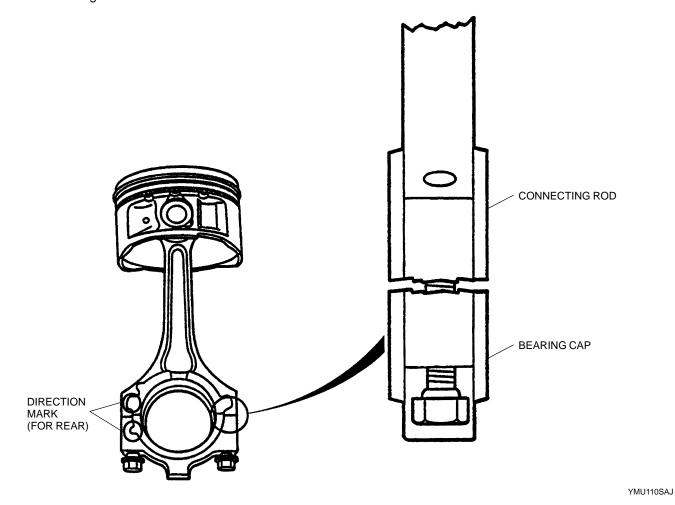

AN EXAMPLE OF MAIN BEARING SELECTION

PISTON DESCRIPTION

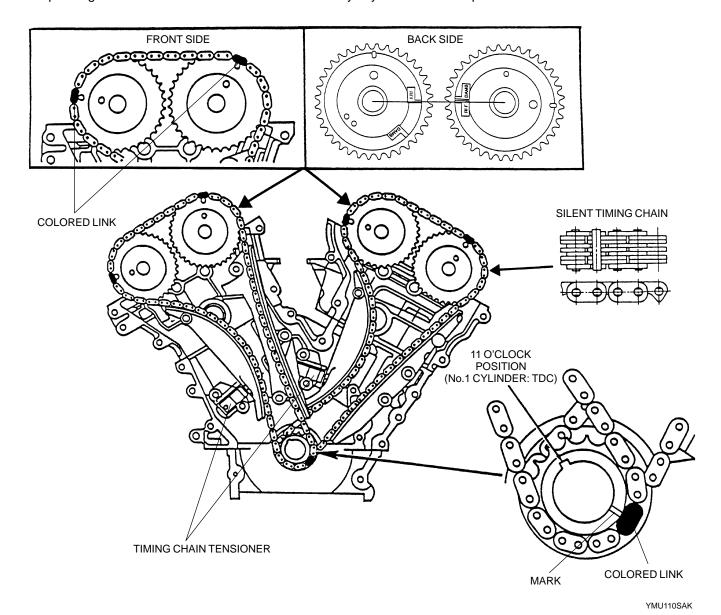

YMU110S06

- The piston skirt is coated to improve wear resistance.
- The connection between the piston and the connecting rod is full floating.
- The piston pin clips cannot be reused; use new clips when reassembling the piston and connecting rod.

YMU110SAH

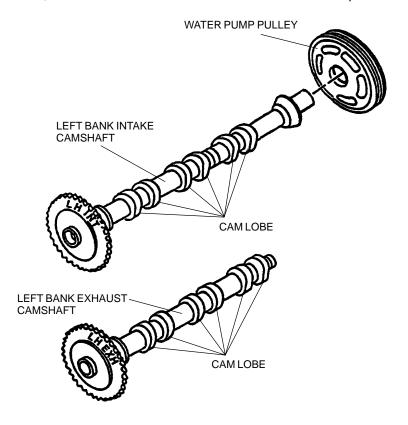

When reassembling the piston to the engine, make sure the arrow mark on the piston faces the front of the engine.

CONNECTING ROD DESCRIPTION

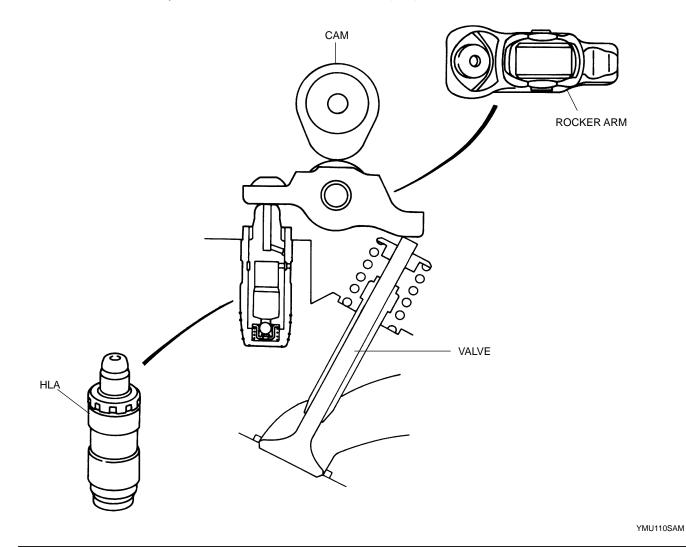

- Pliant bolts are used in the connection with the connecting rod caps and are not reusable.
- The big end is sheared off during production instead of being machined to fit together cleanly.

 Avoid contact with dirt, grease or other contaminants on the mating faces, as they may cause improper bearing fit.

CAMSHAFT DRIVE DESCRIPTION


- Silent timing chains that are extremely quiet and durable have been adopted.
- The camshafts are driven by timing chains.
- There are three colored links on the timing chains for each bank.
- The timing chain adjusters mounted in the cylinder block use both engine oil pressure and spring pressure to automatically maintain timing chain tension.
- The colored links on the timing chain are used as reference for adjusting the timing chain.
- To check the TDC No.1 firing position, verify that RFF flags on the back side of the camshaft sprockets are pointing toward each other when the crankshaft keyway is at 11 o'clock position.

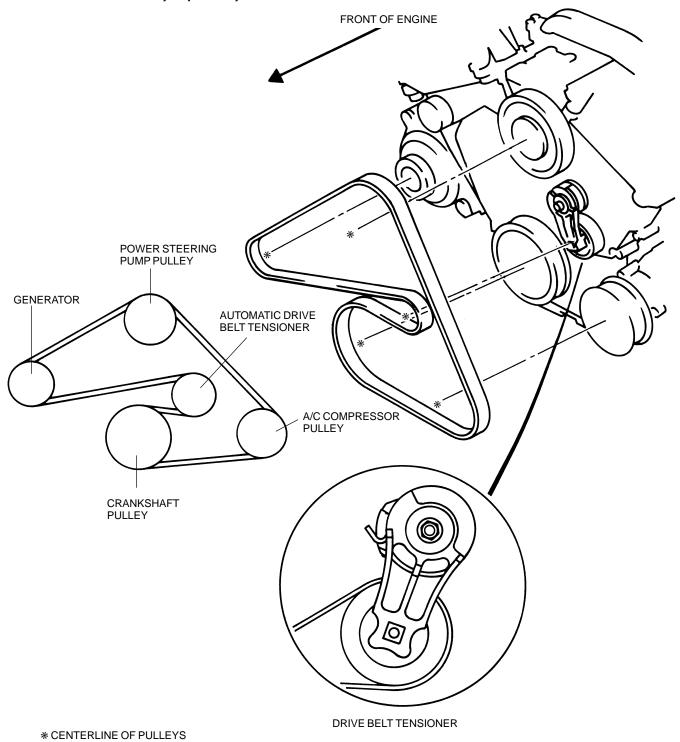
CAMSHAFT DESCRIPTION


YMU110S09

- The camshafts and sprockets are integrated and cannot be disassembled.
- The camshafts are hollow.
- The cam lobes are pressed onto the camshafts.
- The left and right banks, and intake and exhaust identifications are on the sprocket of the camshaft.

VALVE DRIVE DESCRIPTION

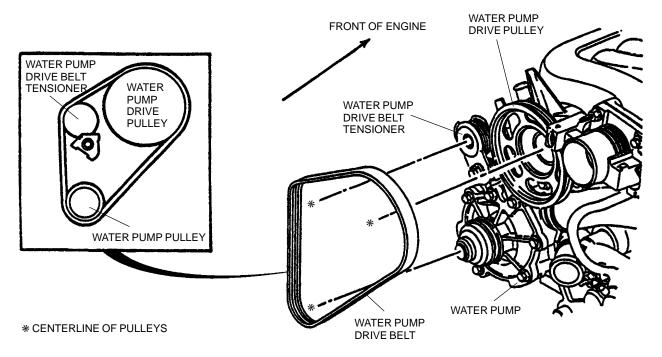
- The valve is driven by the cam through the rocker arm. The HLA automatically maintains valve clearance at 0 mm $\{0 \text{ in}\}$.



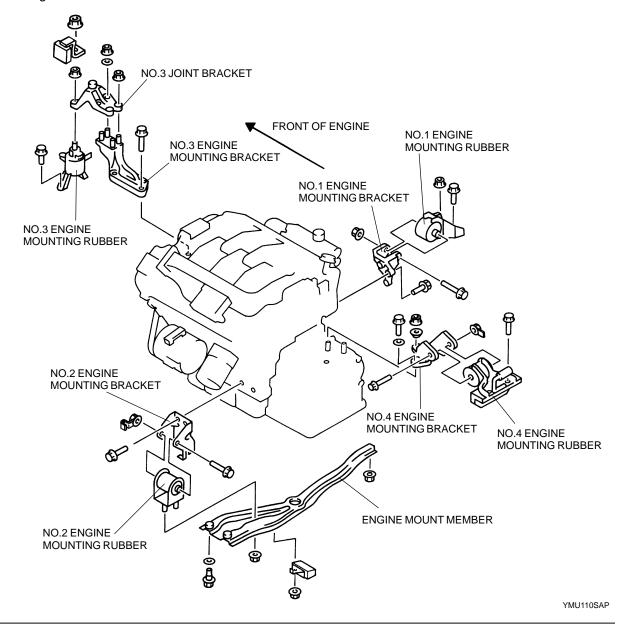
ACCESSORY DRIVE DESCRIPTION

YMU110S11

Front

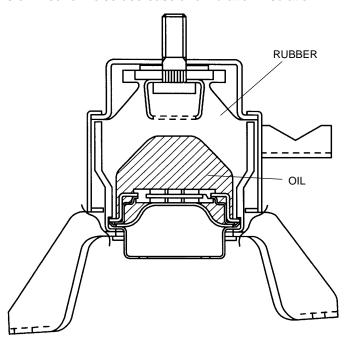

- The generator, power steering pump, and A/C compressor are driven by the V-ribbed belt in a serpentine configuration.
- Tension is automatically adjusted by the drive belt tensioner.

MECHANICAL


Rear

- The water pump is driven by the V-ribbed belt from the water pump drive pulley on the left bank intake camshaft.
- The tension is automatically adjusted by the drive belt tensioner.

ENGINE MOUNT DESCRIPTION

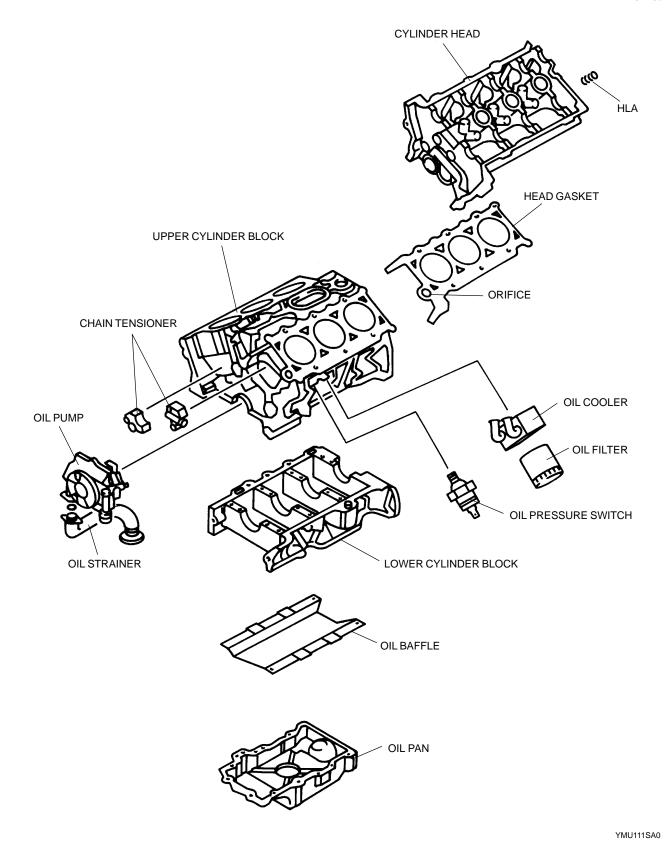

- The engine is supported by four engine mounts.
- The No.3 engine mount is oil-filled.

NO.3 ENGINE MOUNTING RUBBER DESCRIPTION

YMU110S13

• The No.3 engine mount is oil-filled for noise decrease and vibration insulation.

LUBRICATION


01-11 LUBRICATION

LUBRICATION OUTLINE01–11–1	OIL PUMP DESCRIPTION 01–11–4
LUBRICATION STRUCTURAL VIEW 01-11-2	OIL PAN DESCRIPTION 01-11-
I UBRICATION FLOW DIAGRAM 01-11-3	


LUBRICATION OUTLINE

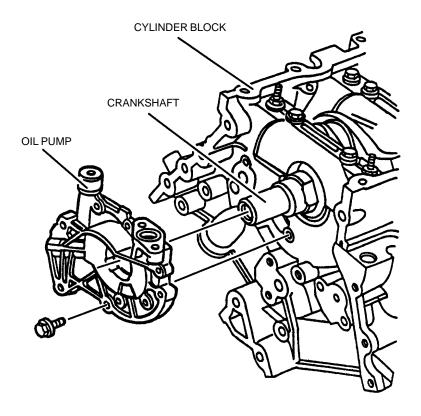
YMU111S01

- The oil pump is driven directly by the crankshaft.
- As the oil pump is not serviceable, it must be replaced as a unit.
- A water-cooled oil cooler has been adopted to cool the engine oil.

YMU111S03

YMU111SA1

 $^{^{\}star}\;$: Timing chains are lubricated by the oil returning from the camshaft bearing.


LUBRICATION

OIL PUMP DESCRIPTION

- The oil pump is driven directly by the crankshaft.
- As the oil pump is not serviceable, it must be replaced as a unit if any of the following conditions exist.

 - Major repairs on a high mileage engine.

 Contaminated oil due to internal engine part failure or wear.
 - Excessive bearing wear or bearing failure.
 - Low oil pressure on a high mileage engine.


YMU111SA2

YMU111S04

OIL PAN DESCRIPTION

YMU111S05

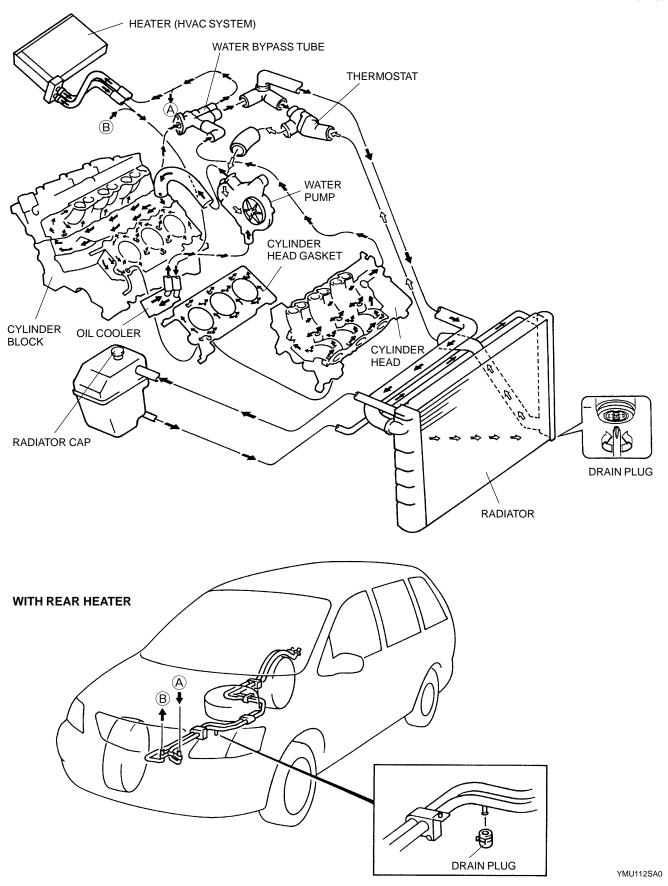
The oil pan is made of aluminum with ribs to increase the crankcase rigidity.

YMU111SA3

COOLING SYSTEM

01-12 COOLING SYSTEM

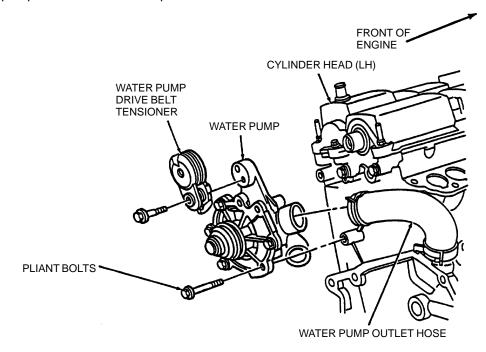
COOLING SYSTEM OUTLINE 01–12–1	THERMOSTAT DESCRIPTION 01-12-
COOLING SYSTEM FLOW DIAGRAM . 01-12-2	RADIATOR DESCRIPTION 01–12–4
WATER PUMP DESCRIPTION 01–12–3	COOLANT RESERVOIR DESCRIPTION 01-12-


COOLING SYSTEM OUTLINE

YMU112S01

- The water pump is mounted to the left bank on the back of the engine.
- The tension of the V-ribbed belt is automatically adjusted by the auto tensioner.
- A sealed cooling system is used.
- The radiator cap is located on the coolant reservoir.
- On vehicles equipped with a rear heater, coolant must also be removed from the drain plug under the vehicle during coolant replacement.

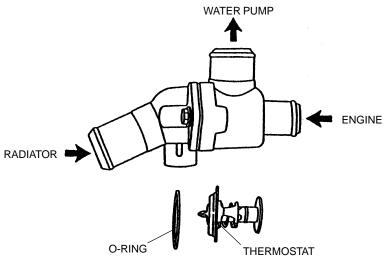
COOLING SYSTEM FLOW DIAGRAM


YMU112S02

WATER PUMP DESCRIPTION

YMU112S03

- The water pump is driven by the V-ribbed belt from the pulley on the back of the intake camshaft on the cylinder head (LH).
- The V-ribbed belt is automatically adjusted by the auto tensioner.
- The water pump is not serviceable and must be replaced as a unit if faulty.
- The pump installation bolts are pliant bolts and cannot be reused.

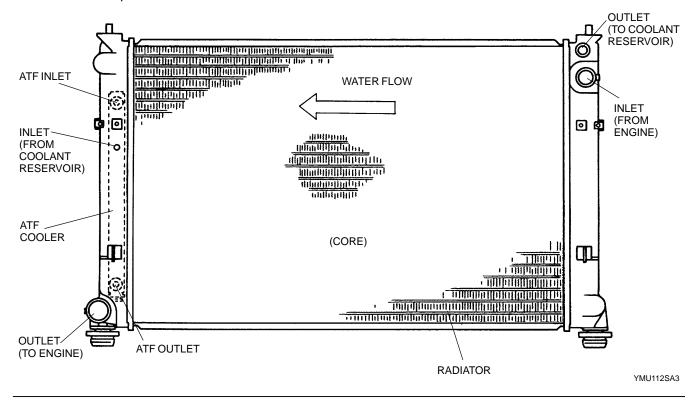


YMU112SA1

THERMOSTAT DESCRIPTION

YMU112S04

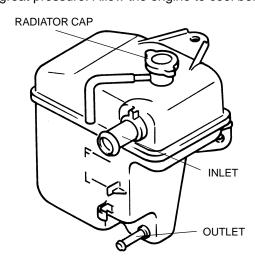
• The thermostat is a bottom-bypass type.



YMU112SA2

RADIATOR DESCRIPTION

YMU112S05


- The cross flow type radiator has been adopted.
- There is no cap on the radiator.

COOLANT RESERVOIR DESCRIPTION

YMU112S06

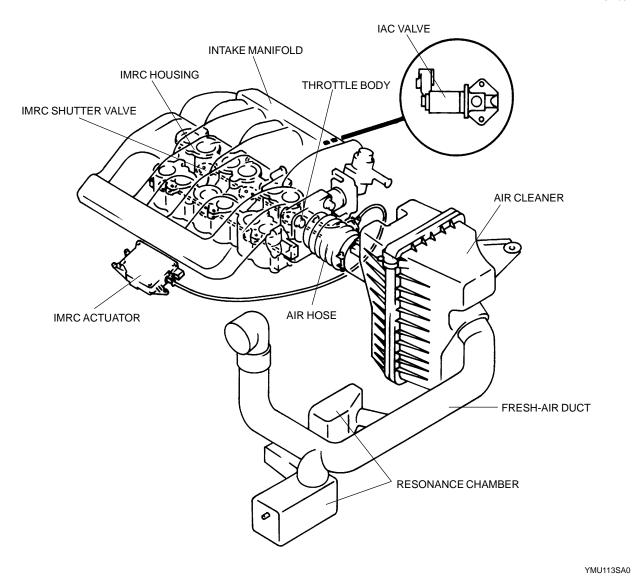
- The pressure type coolant reservoir with radiator cap has been adopted.
- The coolant reservoir is under great pressure. Allow the engine to cool before removing the radiator cap.

YMU112SA4

INTAKE-AIR SYSTEM

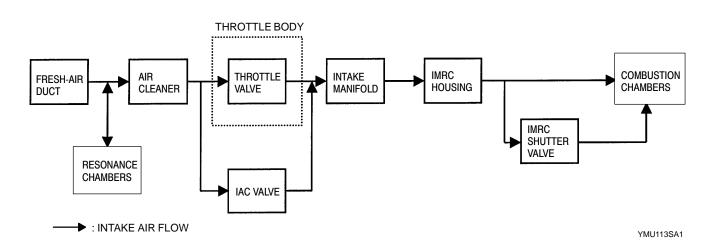
01-13 INTAKE-AIR SYSTEM

VIEW 01–13–2 INTAKI INTAKE-AIR SYSTEM FLOW (IMRC DIAGRAM 01–13–2 Struct FRESH-AIR DUCT DESCRIPTION 01–13–3 INTAKI Function 01–13–3 (IMRC RESONANCE CHAMBER Function Function DESCRIPTION 01–13–3 INTAKI Function 01–13–4 INTAKI Structure 01–13–4 (IMRC THROTTLE BODY DESCRIPTION 01–13–4 Structure IDLE AIR CONTROL (IAC) VALVE Open DESCRIPTION 01–13–5 INTAKI Function 01–13–5 (IMRC Structure 01–13–5 Function Structure 01–13–5 Function	C) SYSTEM OUTLINE
---	-------------------


INTAKE-AIR SYSTEM OUTLINE

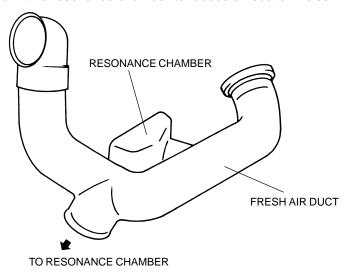
YMU113S01

• The Intake Manifold Runner Control (IMRC) system components have been adopted.


INTAKE-AIR SYSTEM STRUCTURAL VIEW

YMU113S12

INTAKE-AIR SYSTEM FLOW DIAGRAM

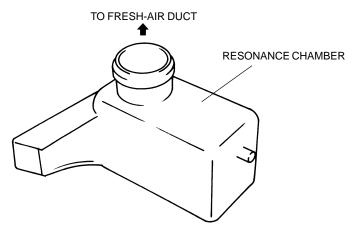

YMU113S13

FRESH-AIR DUCT DESCRIPTION

Function

- The fresh-air duct directs fresh air from the radiator grille to the air cleaner.
- The fresh-air duct is equipped with a resonance chamber to reduce air suction noise.

YMU113SA2

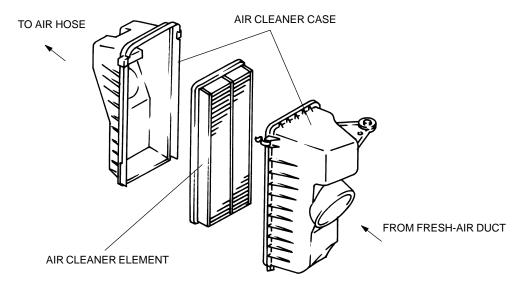

YMU113S02

RESONANCE CHAMBER DESCRIPTION

YMU113S03

Function

- The resonance chamber reduces air suction noise.
- A resonance chamber has been adopted to reduce high-frequency sound, which tends to be produced at medium to high engine speeds.

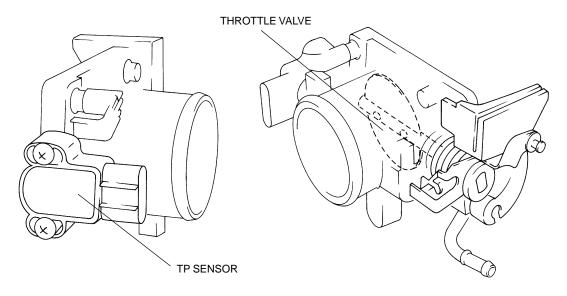

YMU113SA3

AIR CLEANER DESCRIPTION

YMU113S04

Structure

- The air cleaner element is oil permeated type.
- The air cleaner case has been enlarged to reduce air suction noise.


YMU113SA4

THROTTLE BODY DESCRIPTION

YMU113S05

Structure

- The throttle body is composed of the TP sensor and throttle valve.
- Idle speed does not require adjustment. The throttle body is not equipped with an air adjust screw (AAS).

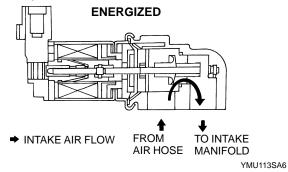
YMU113SA5

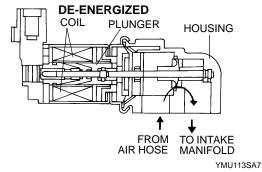
INTAKE-AIR SYSTEM

IDLE AIR CONTROL (IAC) VALVE DESCRIPTION

YMU113S06

Function

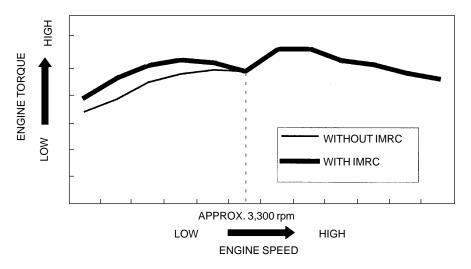

- The IAC valve adjusts the intake air amount that bypasses the throttle valve controlled by PCM signal.
- The air, which bypass the throttle valve, flows through the IAC valve from inlet port (air hose side) to outlet port (intake manifold side).


Structure

• IAC valve is composed of a housing, plunger, and coil.

Operation

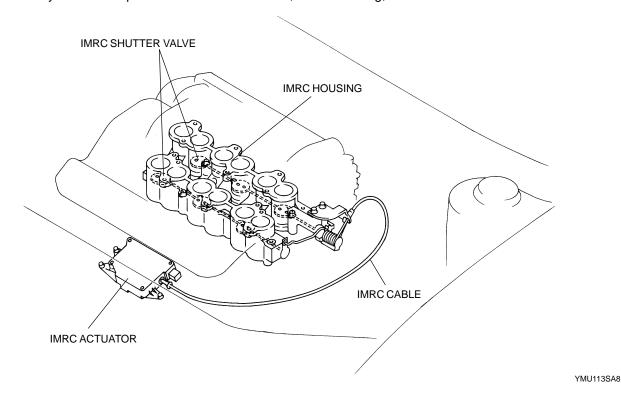
 When a signal from the PCM reaches the IAC valve, the plunger is pulled back to allow bypass air into the outlet port.



INTAKE MANIFOLD RUNNER CONTROL (IMRC) SYSTEM OUTLINE

YMU113S07

- Due to the adoption of an IMRC system, higher engine torque has been obtained at all engine speeds.
- The IMRC system concept is the same as the variable inertia charging system (VICS).

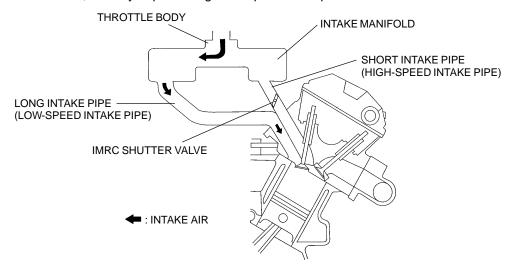

INTAKE MANIFOLD RUNNER CONTROL (IMRC) SYSTEM STRUCTURAL VIEW

YMU113S08

YMU113SAC

Structure

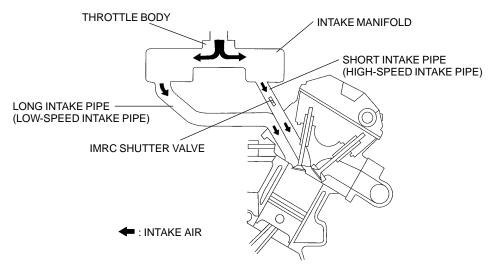
• The IMRC system is composed of the IMRC actuator, IMRC housing, IMRC cable and IMRC shutter valves.


INTAKE MANIFOLD RUNNER CONTROL (IMRC) SYSTEM DESCRIPTION

YMU113S09

Function

Low engine speed


Because the IMRC shutter valve is closed at low engine speeds, intake air is supplied to the engine through
the long intake pipe (low-speed intake pipe). This increases the intake airflow and creates strong swirl in the
combustion chamber, thereby improve engine torque at low speeds.

YMU113SAD

High engine speed

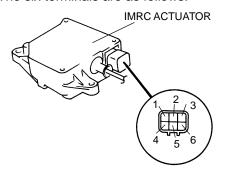
 IMRC shutter valve is opened. At high engine speed, by opening the IMRC shutter valve, the intake pipes are switched and the short intake pipe (high-speed intake pipe) for high engine speed operates, resulting in high performance.

YMU113SAE

Operation

• The IMRC shutter valve operates when the IMRC actuator receives the signal from the PCM when the engine speed is approx. 3,300 rpm.

INTAKE MANIFOLD RUNNER CONTROL (IMRC) ACTUATOR DESCRIPTION


YMU113S10

Function

IMRC actuator actuates the IMRC shutter valve according to the signal from the PCM.

Structure

- The IMRC actuator is installed on the cylinder head cover (LH).
- The six terminals are as follows.

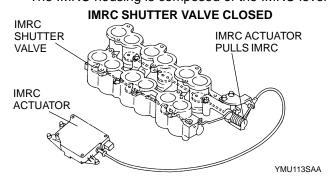
Terminal	Description
1	IMRC actuation signal (From PCM)
2	Power supply (B+)
3	IMRC actuator (motor) ground
4	Not used.
5	IMRC cable monitor signal (To PCM)
6	IMRC cable monitor signal ground

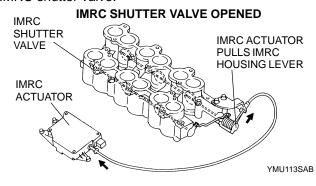
YMU113SA9

Operation

When the motor in the IMRC actuator receives a signal from the PCM and starts to operate, the IMRC cable
is pulled and the IMRC shutter valve opens. The IMRC actuator also sends a signal to the PCM to verify
operation of the IMRC actuator.

INTAKE MANIFOLD RUNNER CONTROL (IMRC) HOUSING DESCRIPTION


YMU113S11


Function

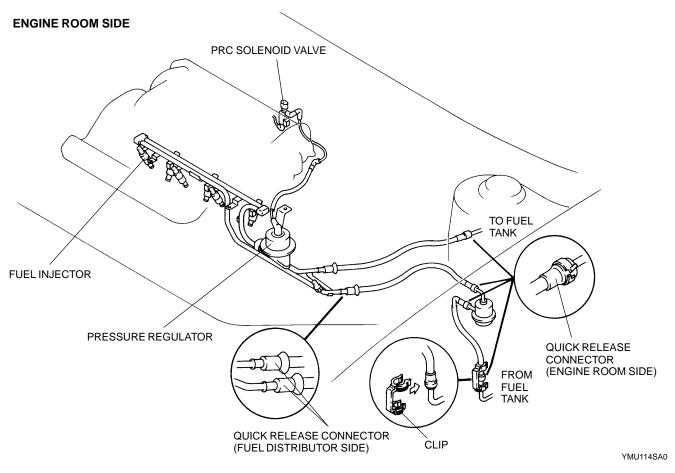
The IMRC cable connects the IMRC actuator and the IMRC housing lever. When the IMRC actuator pulls the
cable, the lever is pulled and the IMRC shutter valve located in both banks of the intake manifold (short side)
opens.

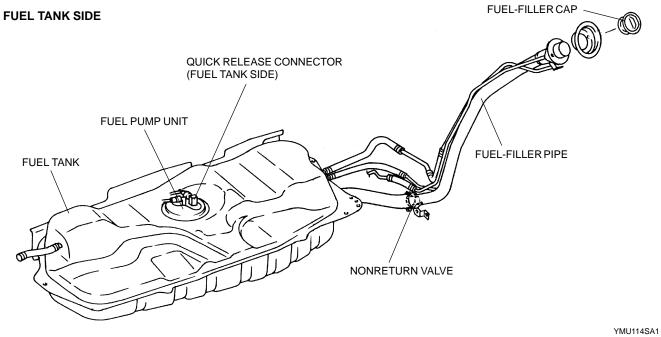
Structure

- The IMRC housing is installed between the intake manifold and cylinder head.
- The IMRC housing is composed of the IMRC lever and IMRC shutter valve.

FUEL SYSTEM

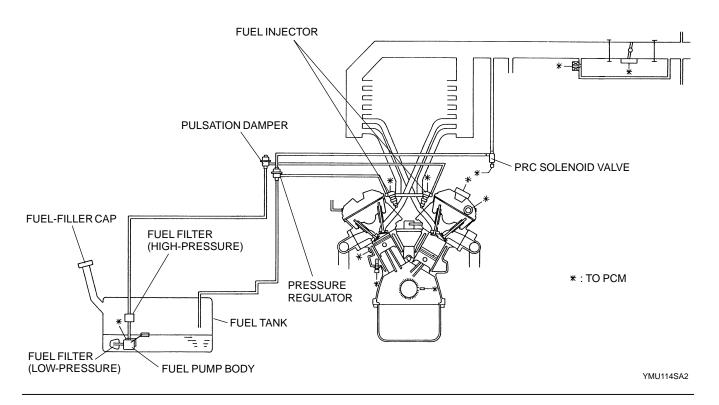
01-14 FUEL SYSTEM


FUEL SYSTEM OUTLINE


YMU114S01

- Compared to the 1998MY MPV, the following have been adopted to the fuel system of the 2000MY MPV.
 - Adopted a one-stage PRC system
 - Adopted a pulsation damper
 - Adopted a fuel tank with built-in rollover valves, and fuel shut-off valve
 - Adopted a fuel pump unit equipped with fuel filters (high- and low-pressure)
 - Adopted three types of quick release connectors for fuel lines
 - Clips designed to prevent static electrical charges have been installed in one place on the quick release connector (engine room) between the pulsation damper and the fuel tank, and in two places on the quick release connector (inlet, return) between the fuel pump and the fuel distributor.

FUEL SYSTEM STRUCTURAL VIEW



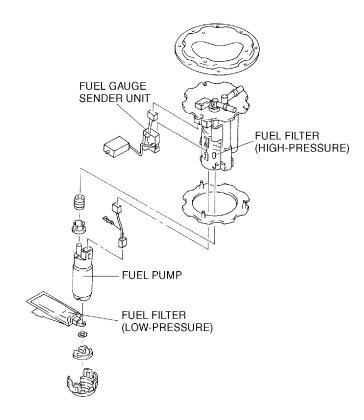
FUEL SYSTEM DIAGRAM

YMU114S03

FUEL TANK DESCRIPTION

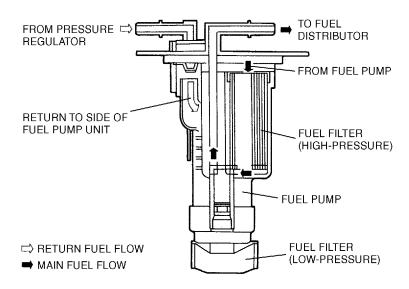
YMU114S04

Structure


- The fuel shut-off valve, fuel filters (high- and low-pressure) and two rollover valves are integrated into the fuel tank.
- The fuel shut-off valve and rollover valves are not replaceable.
- The fuel filters (high- and low-pressure) are replaceable.

FUEL PUMP UNIT DESCRIPTION

YMU114S05


Structure

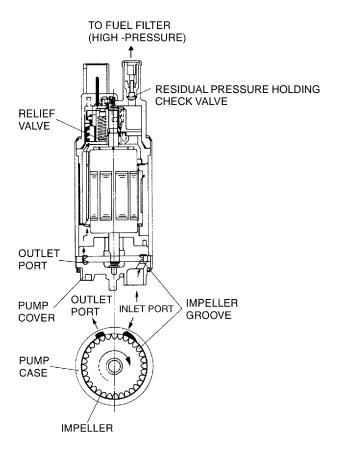
- The construction and operation of the fuel pump unit for the 2000MY MPV and the 1999MY Protegé are the same.
- The fuel pump unit is composed of a fuel filter (low-pressure), fuel pump, fuel filter (high-pressure) and fuel gauge sender unit.

YMU114SA3

Fuel Flow

YMU114SA4

FUEL PUMP DESCRIPTION


YMU114S06

Structure

- The circumference flow type fuel pump is mainly composed of the impeller, pump case and pump cover.
- The residual pressure holding check valve maintains the residual fuel line pressure when the engine is not running. This prevents fuel vapor lock and improves engine restarting.
- As a safety measure to protect the fuel line, the relief valve will open and maintain the fuel line pressure if the fuel line pressure is increased to over 590—780 kPa {6.0—8.0 kgf/cm², 86—110 psi}.

Operation

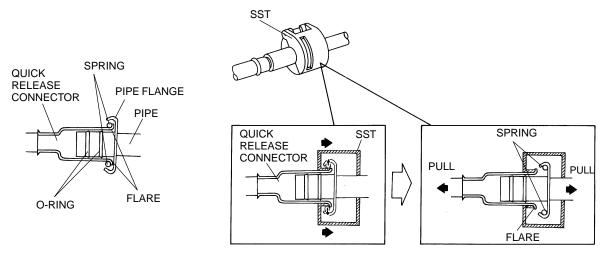
• Rotating the impeller makes the fuel flow from the inlet port to the outlet port.

YMU114SA5

QUICK RELEASE CONNECTOR (FUEL DISTRIBUTOR SIDE) DESCRIPTION

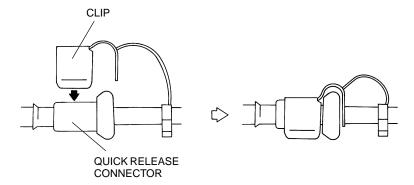
YMU114S08

Function


 Plastic fuel hoses and metal quick release connectors have been adopted on the fuel distributor side to improve serviceability.

Structure

- The quick release connector (fuel distributor side) is similar to 1998—1999MY B-series.
- The quick release connector and plastic fuel hose are integrated and cannot be disconnected.
- The **SST** is required to disconnect the quick release connector.


Operation

When the quick release connector is coupled, the flare of the pipe is fixed by the spring in the pipe flange. By
positioning the SST as shown in the figure, the spring expands to unlock the flare of the pipe, and the quick
release connector can be uncoupled.

YMU114SA7

- A click is heard when the flare of the quick release connector are correctly pushed into the locked position.
- Fixing the quick release connector with the clip ensures that the highly pressurized fuel will not leak, even if the quick release connector should happen not to be completely coupled.

YMU114SA8

QUICK RELEASE CONNECTOR (ENGINE ROOM SIDE) DESCRIPTION

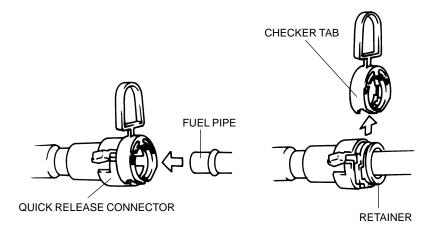
YMU114S09

Function

 Plastic fuel hoses and quick release connectors have been adopted on the engine room side to ease connecting and disconnecting the fuel lines for improved serviceability.

Structure

- A new-type quick release connector is adopted for engine room side.
- The quick release connector and plastic fuel hose are integrated and cannot be disconnected.
- An SST is not required to uncouple this type of quick release connector.


Operation

• The quick release connector will be disconnected from the fuel pipe when the tab is squeezed.

YMU114SA9

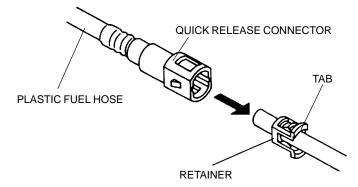
- A click is heard when the retainer is correctly pushed into the locked position.
- The new quick release connectors are equipped with a checker tab, which fixes the retainer. The checker tab can be removed from the quick release connector when the connector is correctly seated in the fuel pipe. This enables verification that the quick release connector has been completely coupled.

YMU114SAA

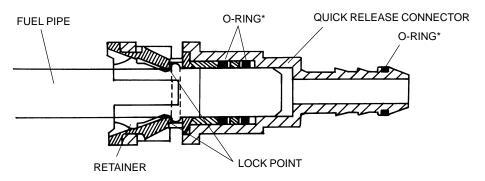
QUICK RELEASE CONNECTOR (FUEL TANK SIDE) DESCRIPTION

YMU114S07

Function

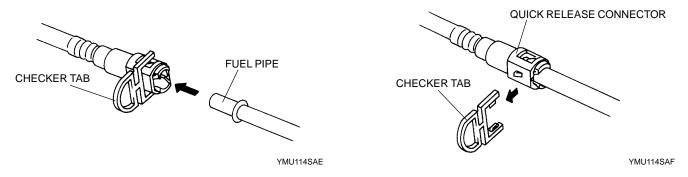

 Plastic fuel hoses and quick release connectors have been adopted on the fuel tank side to ease connecting and disconnecting the fuel lines for improved serviceability.

Structure


- The construction of the quick release connector (fuel tank side) for the 2000MY MPV and the 1999MY MX-5
 are the same.
- A new quick release connector has a pre-inserted retainer.
- The retainer is installed on the fuel pipe, cannot be removed, and remains on the fuel pipe when the quick release connector is uncoupled from the fuel pipe.
- The guick release connector and plastic fuel hose are integrated and cannot be disconnected.
- An SST is not required to uncouple this type of quick release connector as well as the 1999MY Protegé.

Operation

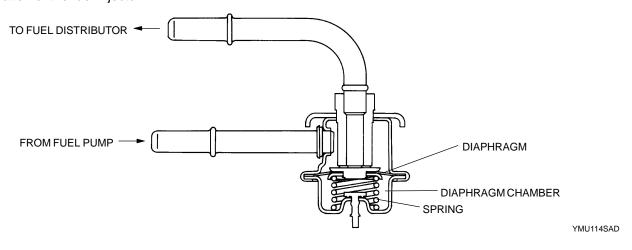
- Squeeze the tabs of the retainer to unlock and uncouple the quick release connector from the fuel pipe.
- A click is heard when the tabs of the retainer are correctly pushed into the lock point of the quick release connector.


X5U114SA4

*: O-ring is not available as a service part.

YMU114SA6

• The new quick release connectors are equipped with a checker tab, as well as the engine room side quick release connector. The checker tab can be removed from the quick release connector when the connector is correctly seated in the fuel pipe.



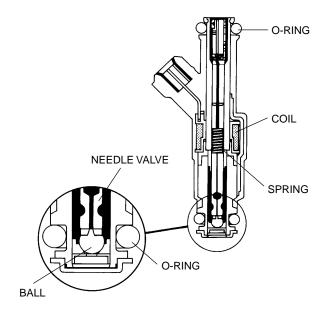
PULSATION DAMPER DESCRIPTION

YMU114S10

Function

 The pulsation damper maintains fuel line pressure and reduces the fuel pulsation that is created by the operation of the fuel injector.

FUEL INJECTOR DESCRIPTION


YMU114S11

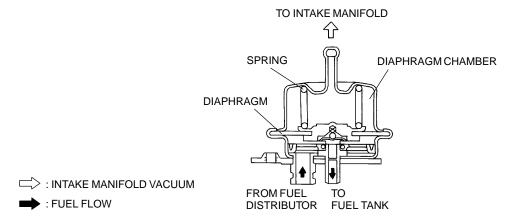
Structure

• The fuel injectors are installed on the intake manifold.

Operation

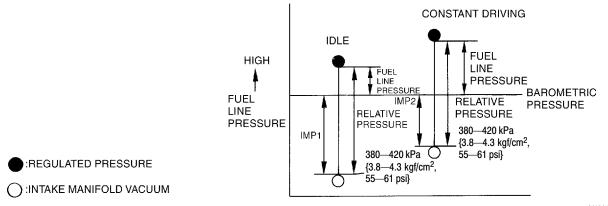
• The injection amount is determined by the period of time current is applied to the coil circuit. This current opens the needle valve, allowing fuel to flow.

YMU114SAB


PRESSURE REGULATOR DESCRIPTION

YMU114S12

YMU114SAC


Structure

The pressure regulator has been installed at the end of the fuel distributor.

Operation

- The valve opens when the pressure differece between the diaphragm chamber pressure and fuel line pressure in the pressure regulator is over 380—420 kPa {3.8—4.3 kgf/cm², 55—61 psi}. The excess fuel is returned to the fuel tank.
- During engine idling, the diaphragm chamber pressure increases with intake manifold vacuum (IMP1). Spring force is reduced by fuel line pressure in the fuel distributor, and the valve opens during low fuel line pressure.
- During constant driving, the diaphragm chamber pressure decreases with intake manifold vacuum (IMP2).
 Spring force increases, and the valve opens during high fuel line pressure condition.

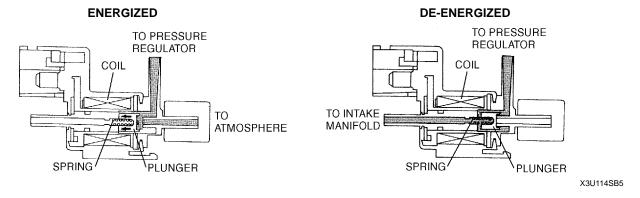
X3U114SB4

FUEL SYSTEM

PRESSURE REGULATOR CONTROL (PRC) SOLENOID VALVE DESCRIPTION

YMU114S13

Function


The PRC solenoid valve cuts the vacuum applied to the pressure regulator from the intake manifold. This
increases the fuel line pressure in order to prevent vapor lock in the fuel line during starting when the engine
is hot and for a specified period after start. (Refer to 01–40 PRESSURE REGULATOR CONTROL (PRC)
OUTLINE.) (Refer to 01–40 PRESSURE REGULATOR CONTROL (PRC) OPERATION.)

Structure

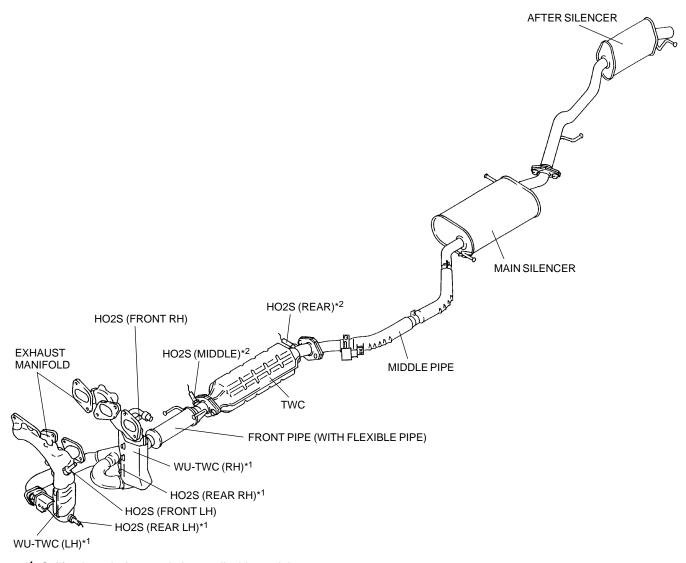
- The PRC solenoid valve is located on the intake manifold.
- The PRC solenoid valve is composed of a coil, plunger, spring and air filter.

Operation

• The air passage between the pressure regulator and intake manifold is closed or opened depending upon whether the PRC solenoid valve is energized or de-energized.

01-15 EXHAUST SYSTEM

EXHAUST SYSTEM OUTLINE


YMU115S01

• A flexible pipe has been adopted to reduce the engine vibration transmitted past the front pipe.

EXHAUST SYSTEM STRUCTURAL VIEW

YMU115S02

 The exhaust system is composed of exhaust manifolds, WU-TWC (California emission regulation applicable model), front pipe, TWC, middle pipe, and silencers.

- *1: California emission regulation applicable models
- *2: Federal emission regulation applicable models

YMU115SA0

01–16 EMISSION SYSTEM

EMISSION SYSTEM OUTLINE	CANISTER DRAIN CUT VALVE (CDCV) DESCRIPTION

EMISSION SYSTEM OUTLINE

YMU116S01

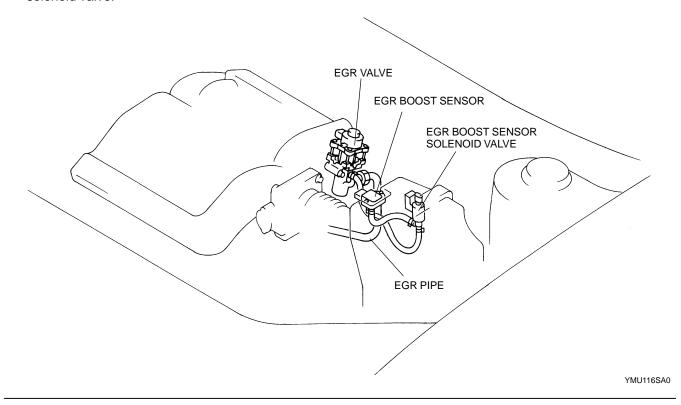
Structure

- The emission system is composed of the EGR system, evaporative emissions (EVAP) control system, positive crankcase ventilation (PCV) system and catalytic converter system.
- A new fuel shut-off valve not only prevents the back flow of fuel, but also enables the evaporative gas in the fuel tank to be absorbed directly by the charcoal canister.

Emission System New Feature

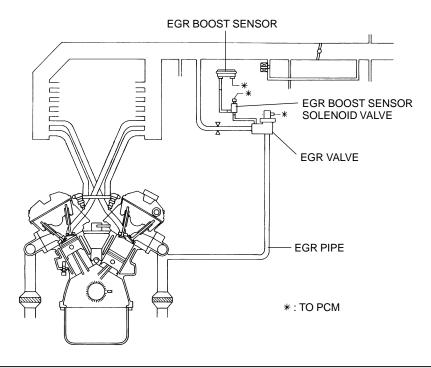
- The changes in the emission systems of the 2000MY MPV compared to the 1998MY MPV are indicated below.
 - EGR system
 - The stepping motor type EGR valve has been adopted.
 - EVAP control system
 - The separator, cut valve, and tank pressure control valve have been abolished.
 - PCV system
 - Blow-by gas is inducted from the oil separator located between the banks of engine.

EGR SYSTEM OUTLINE


YMU116S02

• The EGR system controls the amount of exhaust gas recirculated to the combustion chamber, which lowers combustion temperature and reduces NOx emissions.

EGR SYSTEM STRUCTURAL VIEW


YMU116S03

 The EGR system is composed of the EGR pipe, EGR valve, EGR boost sensor and EGR boost sensor solenoid valve.

EGR SYSTEM DIAGRAM

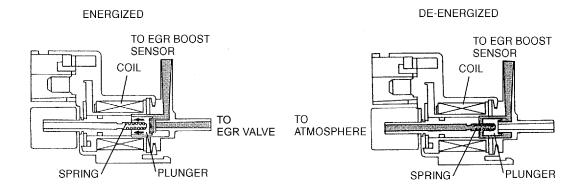
YMU116S04

YMU116SA1

EGR BOOST SENSOR SOLENOID VALVE DESCRIPTION

YMU116S05

Function


 The EGR boost sensor solenoid valve switches the application of barometric pressure or intake manifold vacuum to the EGR boost sensor.

Structure

- The EGR boost sensor solenoid valve is located between the EGR valve and EGR boost sensor.
- The EGR boost sensor solenoid valve is composed of a coil, plunger and spring.

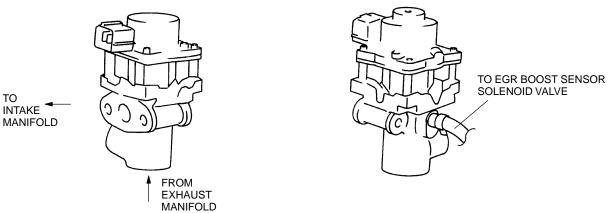
Operation

Intake manifold vacuum is applied to the EGR boost sensor when the EGR boost solenoid valve is energized.

YMU116SA2

EGR VALVE DESCRIPTION

YMU116S06


Function

- The EGR valve controls the EGR flow via a stepping motor that is integrated into the EGR valve and actuated by a signal from the PCM.
- The EGR valve is actuated in 0—52 steps according to the PCM signals.

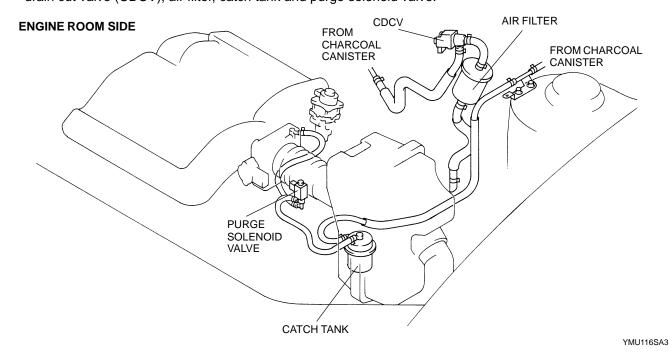
Structure

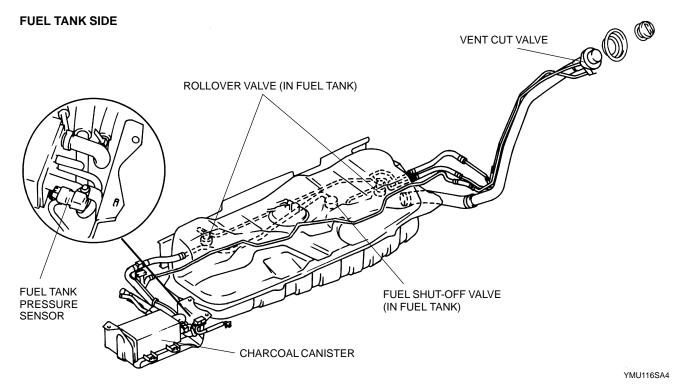
Note

- The EGR valve cannot be disassembled.
- The 2000MY MPV has adopted the same type EGR valve as the 1999MY Protegé.

YMU116SAB

EVAPORATIVE EMISSIONS (EVAP) CONTROL SYSTEM OUTLINE

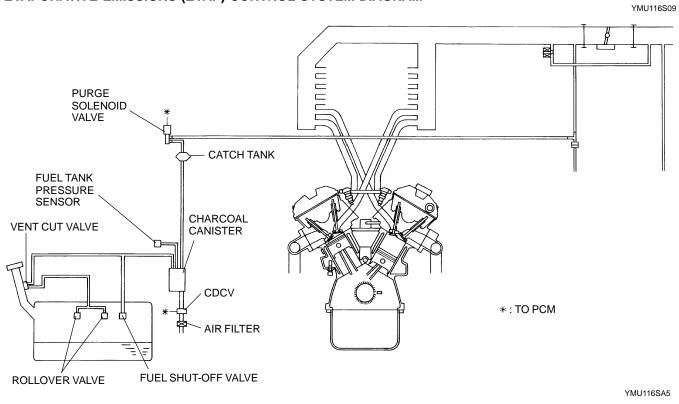

YMU116S08


- The new fuel shut-off valve prevents the back flow of fuel, and enables the evaporative gas in the fuel tank to be absorbed directly by the charcoal canister.
- The vent cut valve prevents release of evaporative gas into the atmosphere during fuelling.
- To improve control of the evaporative gas in the fuel tank during fuelling, the diameter of evaporative hose between the fuel tank and the charcoal canister has been increased.
- No pressure control valve is in the system.

EVAPORATIVE EMISSIONS (EVAP) CONTROL SYSTEM STRUCTURAL VIEW

YMU116S07

• The EVAP control system is composed of the fuel shut-off valve, rollover valve, charcoal canister, canister drain cut valve (CDCV), air filter, catch tank and purge solenoid valve.

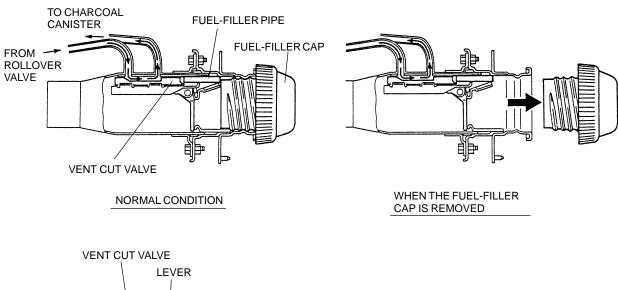


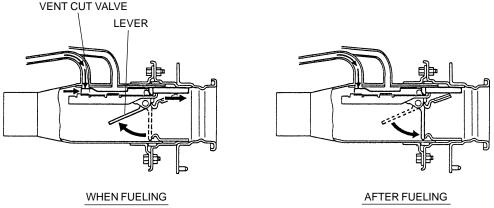
01-16-4

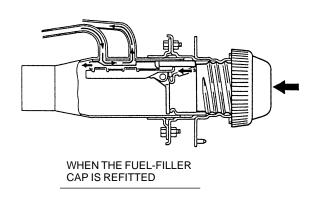
EMISSION SYSTEM

EVAPORATIVE EMISSIONS (EVAP) CONTROL SYSTEM DIAGRAM

VENT CUT VALVE DESCRIPTION


YMU116S10


Function


The vent cut valve prevents release of evaporative gas into the atmosphere during fueling.

Operation

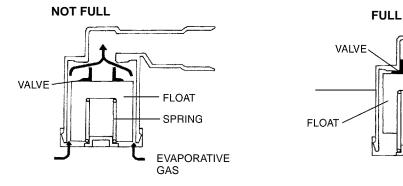
- The evaporative passage is open under normal conditions (fuel-filler cap is closed).
- When fueling, the fuel-filler nozzle trips a lever that position the vent cut valve to close the evaporative passage. The evaporative passage remains closed even after the fuel-filler nozzle is removed.
- When the fuel-filler cap is refitted, the cap pushes the vent cut valve to the original position, and the evaporative passage again opens.

YMU116SA6

FUEL SHUT-OFF VALVE DESCRIPTION

YMU116S11

Function


- The fuel shut-off valve prevents fuel from flowing to the charcoal canister during tight turns or vehicle rollover.
- The fuel shut-off valve releases evaporative gas to the charcoal canister.

Structure

The fuel shut-off valve is composed of a valve, float and spring.

Operation

• When the fuel flows into the fuel shut-off valve, the float (valve) closes the flow passage by relation of float weight, spring force and float floating force.

YMU116SA7

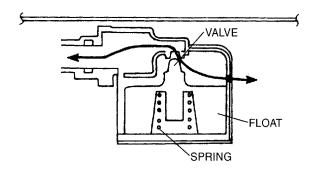
FUEL LEVEL

SPRING

ROLLOVER VALVE DESCRIPTION

YMU116S12

Function


 The rollover valve prevents fuel from flowing to the charcoal canister during tight turns, vehicle rollover or when the fuel tank is full.

Structure

• The rollover valve is composed of a valve, float and spring.

Operation

• When the fuel flows into the rollover valve, the float (valve) closes the flow passage by relation of float weight, spring force and float floating force.

X3U116SAE

CHARCOAL CANISTER DESCRIPTION

YMU116S13

Function

The charcoal canister stores the evaporative gas from fuel in the fuel tank.

Structure

The charcoal canister contains activated carbon.

CANISTER DRAIN CUT VALVE (CDCV) DESCRIPTION

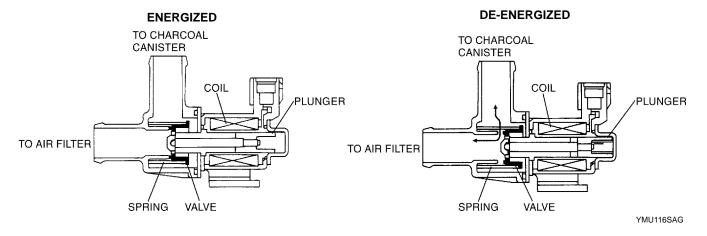
YMU116S14

Function

 The CDCV closes the passage on the atmospheric pressure side of the charcoal canister to make the evaporative system airtight during leak monitoring.

Structure

The CDCV is composed of a spring, plunger, coil and valve.


Operation

Energized

 The plunger (with valve) is pushed forward to close the air passage between the charcoal canister and air filter.

De-energized

The plunger (with valve) is pushed back to open the air passage between the charcoal canister and air filter.

AIR FILTER DESCRIPTION

YMU116S15

Function

The air filter filters the dust from the air drawn to the charcoal canister.

Structure

The air filter is located the CDCV on the atmosphere side.

CATCH TANK DESCRIPTION

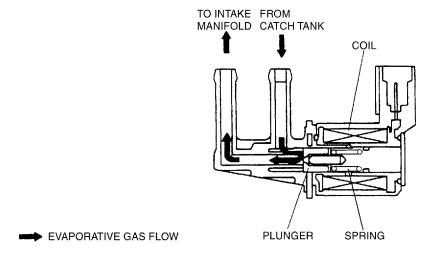
YMU116S16

Function

 Due to a drop in temperature, evaporative gas condenses between the charcoal canister and the purge solenoid valve before reaching the intake manifold. The catch tank prevents the condensed evaporative gas from being supplied to the intake manifold and making the air-fuel mixture too rich.

PURGE SOLENOID VALVE DESCRIPTION

Function


 The purge solenoid valve controls the amount of evaporative gas that flows from the charcoal canister through the catch tank to the intake manifold.

Structure

The purge solenoid valve is composed of a coil, spring and plunger.

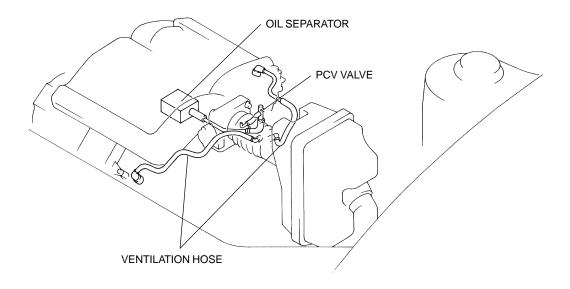
Operation

- When a signal from the PCM reaches the purge solenoid valve, the plunger is pulled to allow the evaporative gas to flow from the catch tank to the intake manifold.
- The flow amount of evaporative gas flow is controlled by the period of time that current is applied to the coil circuit. This current opens the plunger, allowing evaporative gas to enter the intake manifold.

X3U116SAH

YMU116S17

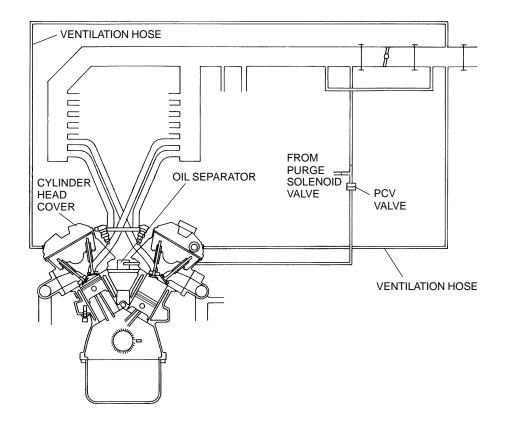
POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM OUTLINE


• The PCV system discharges blow-by gas from the crankcase to the intake manifold.

YMU116S18

POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM STRUCTURAL VIEW

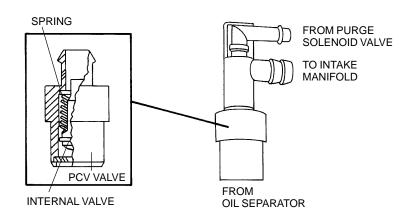
YMU116S19


• The PCV system is composed of ventilation hoses, oil separator and PCV valve.

YMU116SA8

POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM DIAGRAM

YMU116S20


YMU116SA9

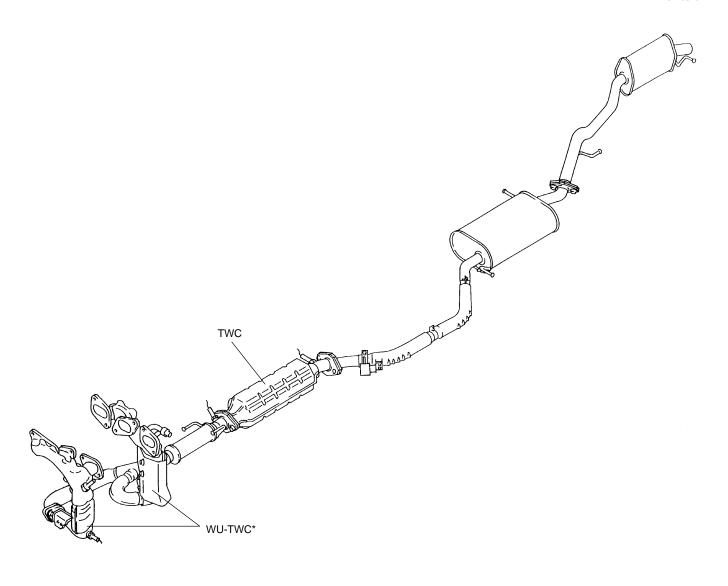
POSITIVE CRANKCASE VENTILATION (PCV) VALVE DESCRIPTION

YMU116S21

Structure

The PCV valve is composed of springs and an internal valve.

CATALYTIC CONVERTER SYSTEM OUTLINE


YMU116S22

YMU116SAC

- The catalytic converter system uses a TWC for all models.
- The catalytic converter system also uses a WU-TWC for California emission regulation applicable models.

CATALYTIC CONVERTER SYSTEM STRUCTURAL VIEW

YMU116S23

^{*:} California emission regulation applicable models

YMU116SAA

WARM-UP THREE WAY CATALYTIC CONVERTER (WU-TWC) DESCRIPTION [CALIFORNIA EMISSION REGULATION APPLICABLE MODELS]

YMU116S24

Function

The WU-TWC oxidizes/deoxidizes exhaust gas to reduce HC, CO and NOx.

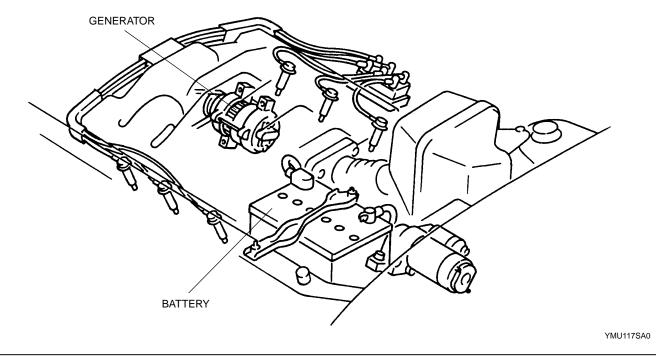
THREE WAY CATALYTIC CONVERTER (TWC) DESCRIPTION [ALL MODELS]

YMU116S25

Function

- The TWC oxidizes/deoxidizes exhaust gas to reduce HC, CO and NOx (other than California emission regulation applicable models).
- The TWC oxidizes/deoxidizes exhaust gas, which has already had its HC, CO, and NOx content reduced by the WU-TWC (California emission regulation applicable models).

01–17 CHARGING SYSTEM


CHARGING SYSTEM OUTLINE

YMU117S01

- The construction and operation of the charging system are basically the same as the 1998MY MPV. However, the following items have been changed.
 - Current generated by the generator is regulated by the PCM.
 - Due to the adoption of the auto tensioner, adjustment of the front drive belt is unnecessary. (Refer to 01–10–13 ACCESSORY DRIVE DESCRIPTION.)

CHARGING SYSTEM STRUCTURAL VIEW

YMU117S02

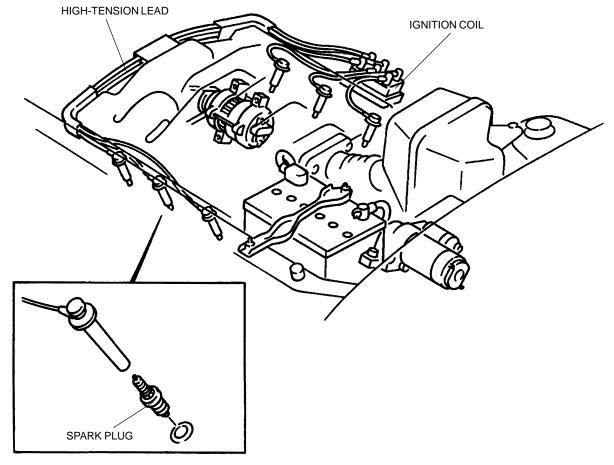
GENERATOR DESCRIPTION

VMI 1117903

 As in the 1999MY Protegé, the voltage regulator has been eliminated, and generator control is carried out by the PCM.

01–18 IGNITION SYSTEM

IGNITION SYSTEM OUTLINE 01-18-1	IGNITION COIL DESCRIPTION 01-18-2
IGNITION SYSTEM STRUCTURAL	SPARK PLUG DESCRIPTION 01-18-2
VIEW 04 49 4	

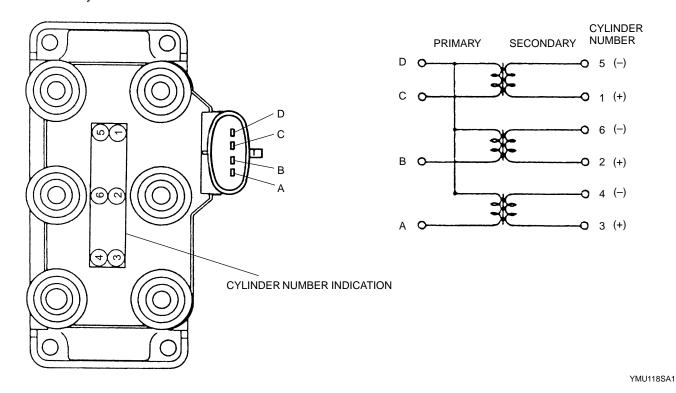

IGNITION SYSTEM OUTLINE

YMU118S01

- The construction and operation of the ignition system are basically the same as the 1998MY MPV. However, the following items have been changed.
 - DLI system has been adopted. This system is the same as the 1999MY 626.
 - Spark plugs that have a platinum-tipped center electrode have been adopted.

IGNITION SYSTEM STRUCTURAL VIEW

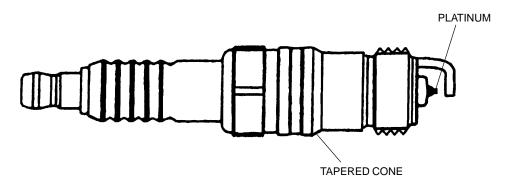
YMU118S02



YMU118SA0

IGNITION COIL DESCRIPTION

YMU118S03


- The ignition coil is the same type as the 1999MY 626 KL engine.
- The ignition coil contains three coils. Due to the adoption of an electric wiring system, each coil has two secondary terminals.

SPARK PLUG DESCRIPTION

YMU118S04

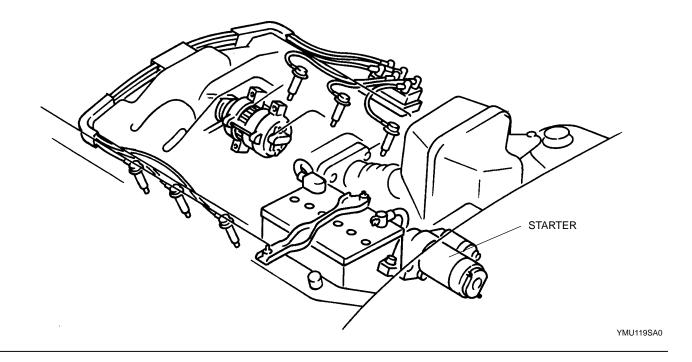
- Spark plugs with platinum-tipped center electrodes are used for longer life.
- A tapered cone type of seal is used in the spark plug. Use only the specified type of spark plug. Otherwise the
 effectiveness of seal between the spark plug and the cylinder head may be reduced.

YMU118SA2

STARTING SYSTEM

01-19 STARTING SYSTEM

STARTING SYSTEM OUTLINE 01-19-1


STARTING SYSTEM OUTLINE

YMU119S01

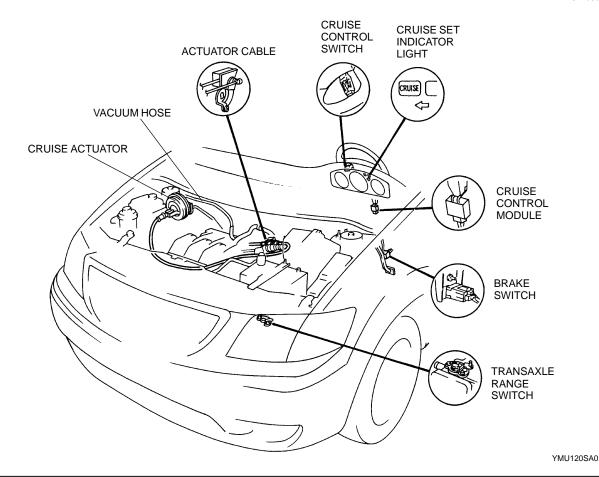
• The construction and operation of the starting system are basically the same as the 1998MY MPV.

STARTING SYSTEM STRUCTURAL VIEW

YMU119S02

01-20 CRUISE CONTROL SYSTEM

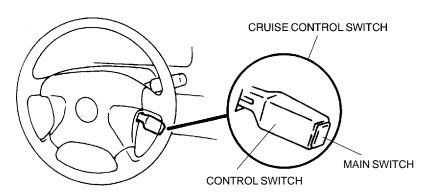
CRUISE CONTROL SYSTEM	CRUISE CONTROL SYSTEM	
OUTLINE01–20–1	DESCRIPTION	01-20-2
CRUISE CONTROL SYSTEM	Cruise Control Switch	01–20–2
STRUCTURAL VIEW 01–20–1	On-Board Diagnosis	01–20–3


CRUISE CONTROL SYSTEM OUTLINE

YMU120S01

- The cruise control system consists of the cruise control switch, cruise actuator, actuator cable, vacuum hose, vehicle speed sensor, brake switch, transaxle range switch, cruise control module, and cruise set indicator light.
- The system operation is basically the same as the 1998MY MPV except for the following. The following items are the same as the 1999MY Protegé.
 - The cruise control main switch is integrated with the cruise control switch, it can be operated by the lever.
 This switch is the same as the 1999MY Protegé.
 - Because the cruise control main switch is integrated with the cruise control switch, the terminal arrangement of the cruise control module has been changed.
 - DTC13 in on-board diagnosis has been added.

CRUISE CONTROL SYSTEM STRUCTURAL VIEW


YMU120S02

CRUISE CONTROL SYSTEM DESCRIPTION

Cruise Control Switch

YMU120SA1

Function Main switch

- The main switch is the main power supply of the system.
- When the ignition switch is turned to LOCK position, the main switch is automatically turned off.
- When the ignition switch has been turned to LOCK or ACC position while the main switch is on and the
 ignition switch is later turned to ON position, the main switch will remain on but the set cruise control speed
 will not be stored in the memory.

Control switch

- The lever type control switch has five functions (SET, COAST, RESUME, ACCEL, and CANCEL).
- SET and COAST functions are operated in the same direction.
- RESUME and ACCEL functions are operated in the same direction.

Operation

Main switch

The main switch is turned on or off by pressing it.

Control switch

- By moving the lever down and releasing it, the current driving speed is set. (SET)
- By moving the lever down and holding it, the cruising speed is decreased. (COAST)
- By moving the lever upward and releasing it, the most recent set speed is resumed. (RESUME)
- By moving the lever upward and holding it, the cruising speed is increased. (ACCEL)
- By pulling the lever forward, the set speed is canceled. (CANCEL)

YMU120SA2

CRUISE CONTROL SYSTEM

On-Board Diagnosis

- There are two on-board diagnostic functions:
 - Operation Mode, which inspects for and indicates correct operation of the input signals to the control module
 - Condition Detection Mode, which indicates malfunctions in the system.
- DTC13, which indicates a malfunction in the ground circuit on the cruise control switch, has been added.

DTC	Output pattern		Display on the NGS	Diagnosed circuit		
13		X3U120SA9	SET/COAST SW OR RES/ACC SW DEFECT	Cruise control switch (Ground circuit)		

01-40 CONTROL SYSTEM

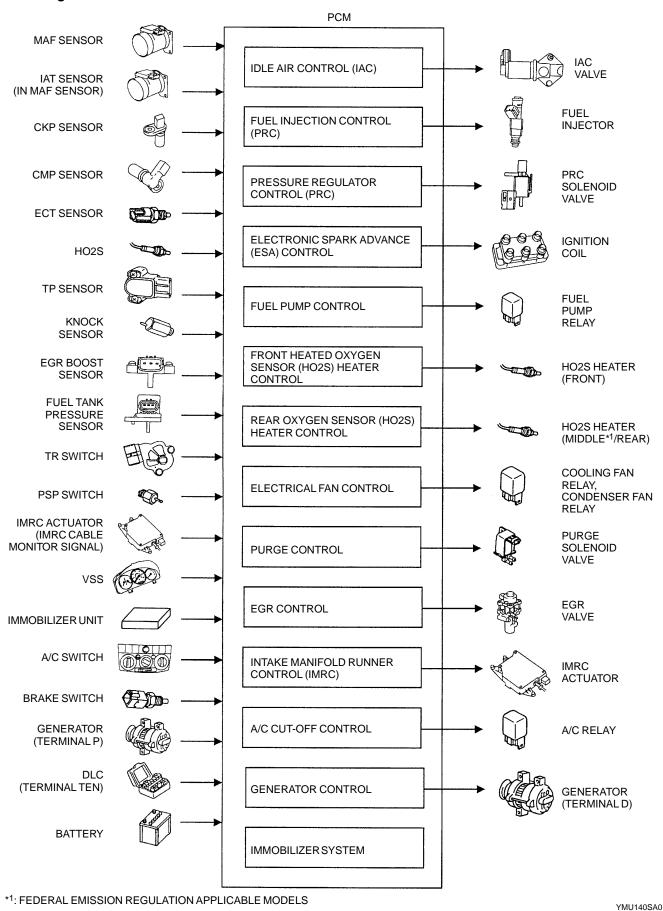
CONTROL SYSTEM OUTLINE 01–40–2	PRESSURE REGULATOR CONTROL (PRC)
Block Diagram01-40-4	OUTLINE
CONTROL SYSTEM DIAGRAM 01-40-5	Block Diagram
CONTROL SYSTEM WIRING DIAGRAM 01-40-6	PRESSURE REGULATOR CONTROL (PRC)
CONTROL SYSTEM DEVICE AND	DESCRIPTION
CONTROL STOTEM DEVICE AND CONTROL RELATIONSHIP CHART 01–40–10	Operation
	ELECTRIC SPARK ADVANCE (ESA)
Engine Control System01–40–10	
Monitoring System	CONTROL OUTLINE
PCM DESCRIPTION	Block Diagram
MASS AIR FLOW (MAF) SENSOR	ELECTRIC ŠPARK ADVANCE (ESA)
DESCRIPTION01–40–12	CONTROL DESCRIPTION 01–40–33
Structure and Operation	Ignition Timing
CAMSHAFT POSITION (CMP) SENSOR	Control Zones
DESCRIPTION	FUEL PUMP CONTROL OUTLINE 01-40-35
Function	Block Diagram
Structure and Detection Principle 01–40–14	FUEL PUMP CONTROL DESCRIPTION 01-40-35
CRANKSHAFT POSITION (CKP) SENSOR	Operation
DESCRIPTION	HEATED OXYGEN SENSOR (HO2S)
Function	(FRONT) HEATER CONTROL
	OUTLINE 04 40 25
Structure and Detection Principle 01–40–14	OUTLINE
THROTTLE POSITION (TP) SENSOR	Block Diagram
DESCRIPTION	HEATED OXYGEN SENSOR (HO2S)
Characteristic	(FRONT) HEATER CONTROL
ENGINE COOLANT TEMPERATURE (ECT)	DESCRIPTION
SENSOR DESCRIPTION 01–40–15	Operation
Characteristic	HEATED OXYGEN SENSOR (HO2S)
KNOCK SENSOR DESCRIPTION 01–40–16	(MIDDLE/REAR) HEATER CONTRÓL
INTAKE AIR TEMPERATURE (IAT)	OUTLINE 01–40–36
SENSOR DESCRIPTION 01–40–16	Block Diagram
Characteristic	HEATED OXYGEN SENSOR (HO2S)
HEATED OXYGEN SENSOR (HO2S)	(MIDDLE/REAR) HEATER CONTROL
DESCRIPTION	DESCRIPTION
Characteristic	Operation
EGR BOOST SENSOR DESCRIPTION . 01–40–17	ELECTRIC FAN CONTROL OUTLINE 01–40–37
Operation	Block Diagram
Characteristic	ELECTRIC FAN CONTROL
FUEL TANK PRESSURE SENSOR	DESCRIPTION
DESCRIPTION	Operation
Characteristic	PURGE CONTROL OUTLINE 01-40-39
POWER STEERING PRESSURE (PSP)	Block Diagram
SWITCH DESCRIPTION	PURGE CONTROL DESCRIPTION 01-40-40
Operation	Purge solenoid valve actuation time 01-40-40
BRAKE SWITCH DESCRIPTION 01-40-19	Target purge flow amount01–40–40
Operation	Operation
MAIN RELAY DESCRIPTION 01–40–19	EGR CONTROL OUTLINE
	Block Diagram
IDLE AIR CONTROL (IAC) OUTLINE 01–40–20	
Block Diagram	EGR CONTROL DESCRIPTION 01-40-42
IDLE AIR CONTROL (IAC)	Outline of Control
DESCRIPTION	Operation
IAC Valve Activation Time	INTAKE MANIFOLD RUNNER CONTROL
Determination	(IMRC) OUTLINE
IAC Target Airflow	Block Diagram
Required Volumetric of Air 01–40–21	INTAKE MANIFOLD RUNNER CONTROL
Target Charging Efficiency 01–40–21	(IMRC) DESCRIPTION 01–40–43
Prohibition Condition	Operation
FUEL INJECTION CONTROL OUTLINE 01-40-23	GENERATOR CONTROL OUTLINE 01-40-44
Block Diagram	Block Diagram 01–40–44
FUEL INJECTION CONTROL	GENERATOR CONTROL
DESCRIPTION	DESCRIPTION
Fuel Injection Time	Duty Control
Fuel Injection Timing	Operation
Control Zones	A/C CUT-OFF CONTROL OUTLINE 01–40–46
	Block Diagram 01–40–46

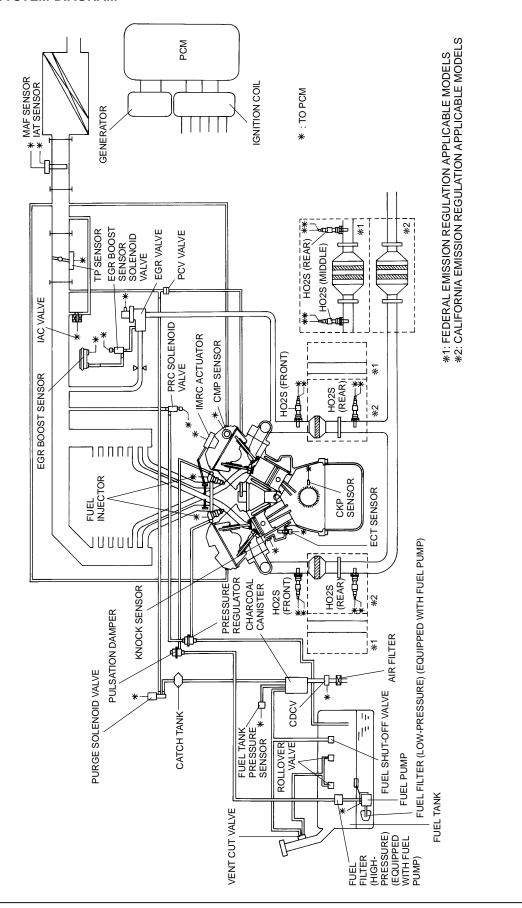
	Parameter Identification (PID) Access . 01-40-48
01-40-46	DTC Comparsion Lists01–40–51
01-40-46	DTC Table
	Failure Detection Functions 01–40–57
01-40-47	Failure Indication Function 01–40–57
	Using the NGS tester01–40–58
01-40-47	DLC-2 Outline
	Simulation Test
01-40-47	Failure Detection Condition 01–40–60
01-40-48	
	01-40-46 01-40-47 01-40-47 01-40-47

CONTROL SYSTEM OUTLINE

YMU140S01

- The 2000MY MPV uses a 104-pin PCM. Since the TCM has been integrated into the PCM, the PCM controls
 both the engine and automatic transaxle.
- The PCM is established independently to meet California or Federal emission regulations.
- The PCM receives all input signals and controls output devices based on these signals.
- The intake manifold runner control (IMRC) system has been adopted to increase the engine torque.
- Since the electric spark advance (ESA) system, including the electric distribution ignition function, has been adopted, the distributor has been eliminated on the 2000MY MPV.
- The front-heated oxygen sensor heater is controlled by a duty value to control the heater temperature
 precisely in accordance with the driving situation.
- To improve serviceability, DTCs have been divided by system(s) and, additions and changes have been made to the monitoring system.
- A Flash EPROM Power Supply (FEPS) line has been added between the DLC-2 inside the driver compartment and the PCM for PCM reprogramming.
- EGR system monitor has been adopted.
- The following changes have been made to the input and output devices for the "2000MY MPV".

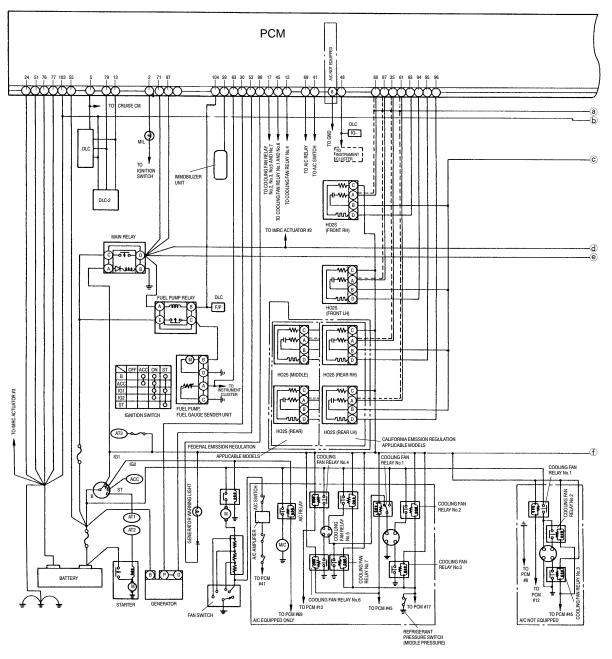

Input

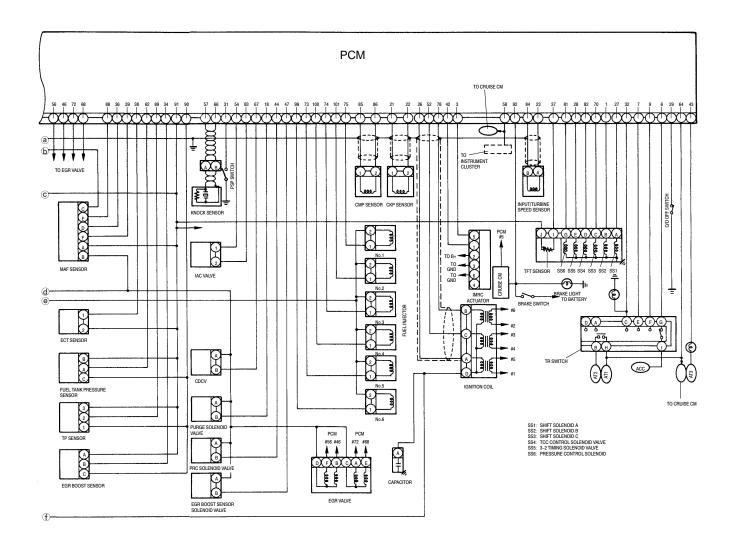

Component	Remarks						
Brake switch	Same function as 1998MY MPV						
Refrigerant pressure switch, A/C switch, blower fan switch and A/C amplifier	Same function as 1998MY MPV						
CKP sensor	The sensor generates an alternating current wave from the 35-tooth CKP sensor pulse wheel, and inputs it into the PCM						
CMP sensor	Uses inductive sensors						
VSS	Same function as 1998MY MPV						
EGR boost sensor	Signal used for barometric pressure detection and EGR monitoring						
MAF sensor	Uses hot wire type. The IAT sensor is integrated into the MAF sensor						
ECT sensor	Same function as 1998MY MPV						
IAT sensor	Integrated into the MAF sensor						
TP sensor	Eliminated the idle switch						
Knock sensor	Used piezoelectrical typeNewly adopted						
HO2S (Front/Middle/Rear)	Same function as 1998MY MPV						
Fuel gauge sender unit	Same function as 1998MY MPV						
PSP switch	Same function as 1998MY MPV						
Main relay	Same function as 1998MY MPV						
Generator	Generator control system newly adopted						
Fuel tank pressure sensor	Same function as 1998MY MPV						

Output

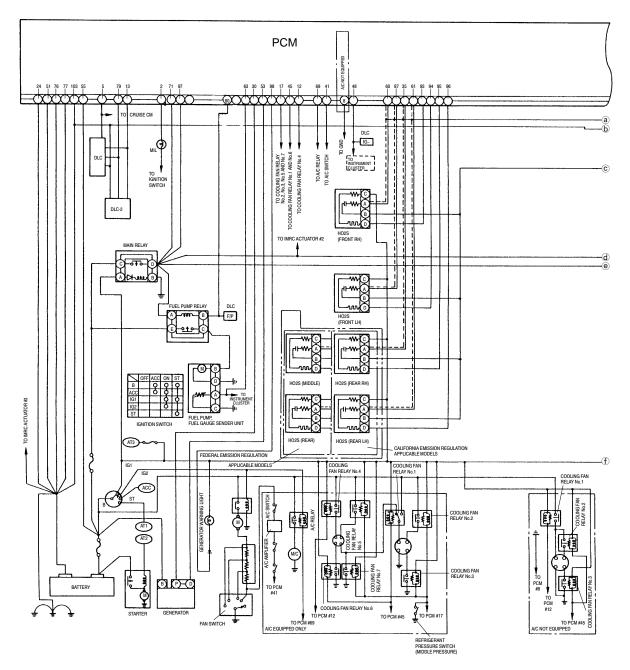
Component	Remarks				
IAC valve	Same function as 1999MY Protegé				
A/C relay	Same function as 1998MY MPV				
Fuel pump relay	Same function as 1998MY MPV				
Purge solenoid valve	Same function as 1998MY MPV				
Cooling fan relay	Same function as 1998MY MPV				
Condenser fan relay	Same function as 1998MY MPV				
IMRC actuator	Newly adopted				
Immobilizer unit	Same function as 1998–1999 626				
EGR valve	Same function as 1999MY Protegé				
EGR boost sensor solenoid valve	Same function as 1999MY Protegé				
HO2S (Front/Middle/Rear) heater	Heater controlled by duty value. (Front RH, LH) Heater controlled ON/OFF. (others)				
Ignition coil	Ignition coil creates secondary ignition energy and distributes it to each spark plug. The ignition coils ignite in pairs (cylinders 1 and 5, cylinders 2 and 6 and cylinders 3 and 4).				
Fuel injectors	Same function as 1998MY MPV				
Pressure regulator control (PRC) solenoid valve	Same function as 1998MY MPV				
Tachometer	Same function as 1998MY MPV				
Canister drain cut valve (CDCV)	Same function as 1998MY MPV				
Generator	Generator control system newly adopted				
Generator warning light	Newly adopted				
MIL	Same function as 1998MY MPV				

Block Diagram

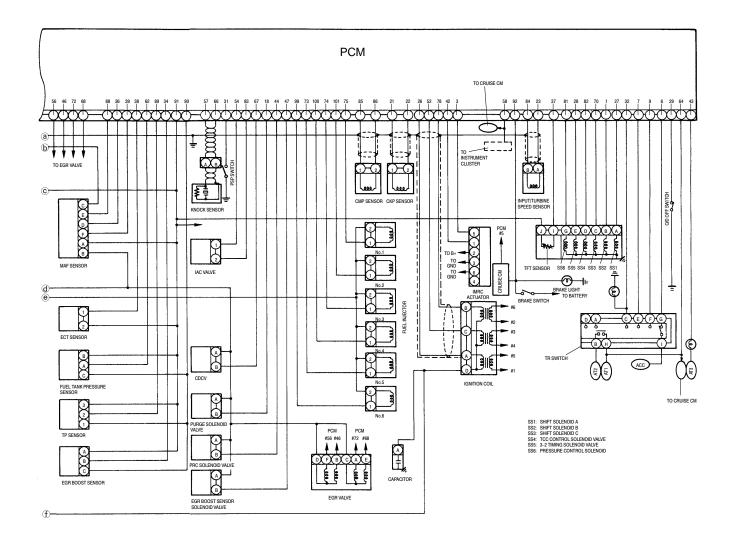




CONTROL SYSTEM WIRING DIAGRAM


With immobilizer system

YMU140S03



Without immobilizer system

YMU140SC0

YMU140SC1

CONTROL SYSTEM DEVICE AND CONTROL RELATIONSHIP CHART

Engine Control System

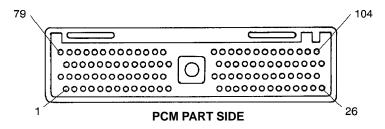
		lied

-														пррпеа
Component	Idle air control (IAC)	Fuel injection control	Pressure regulator control (PRC)	Electronic spark advance control	Fuel pump control	HO2S heater (Front RH, LH)	HO2S heater (Rear RH, LH* ¹ and Middle* ²)	Electrical fan control	Purge control	EGR control	IMRC	A/C cut-off control	Generator control	Immobilizer system
Input	•										•			
Brake switch		×												
Refrigerant pressure switch, A/C switch, A/C amplifier	×	×						×				×		
CKP sensor	×	×	×	×	×	×			×	×	×		×	
CMP sensor		×		×										
VSS		×		×						×	×		×	
EGR boost sensor (BARO sensor)		×		×					×					
MAF sensor	×	×		×		×			×	×				
ECT sensor	×	×	×	×		×	×	×	×	×	×	×	×	
IAT sensor	×	×	×						×	×			×	
TP sensor	×	×	×	×				×		×	×	×	×	
HO2S (Front)		×												
Knock sensor				×										
TR switch	×	×	×	×										
PSP switch		×		×								×		
Generator (Terminal P)	×												×	
DLC (TEN terminal)	×			×				×						
Battery		×		×					×				×	
IMRC actuator (IMRC cable monitor signal)		×									×			
Immobilizer unit		×		×										×
Output														
IAC valve	×													
Fuel injector		×												×
PRC solenoid valve			×											
Ignition coil				×										×
Fuel pump relay					×									
HO2S heater (Front)						×								
HO2S heater (Middle*2, Rear)							×							
Cooling fan relay								×						
Purge solenoid valve									×					
EGR valve										×				
IMRC actuator											×			
A/C relay												×		
Generator (Terminal D)													×	
Generator warning light													×	

^{*1:} California emission regulation applicable models
*2: Federal emission regulation applicable models

Monitoring System

 \times : Applied

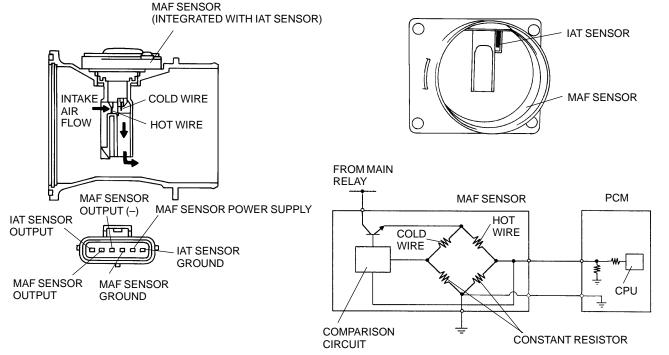

Component	nitor	itor	Evaporative system monitor	monitor	Oxygen sensor monitor	Oxygen sensor heater monitor	n monitor
	Catalyst monitor	Misfire monitor	Evaporative	Fuel system monitor	Oxygen sen	Oxygen sen	EGR system monitor
Input							
Refrigerant pressure switch, A/C switch, blower fan switch and A/C amplifier							×
PSP switch							×
CKP sensor	×	×	×	×	×	×	×
CMP sensor	×	×	×	×	×	×	×
VSS	×	×	×	×	×		×
MAF sensor	×	×	×	×	×	×	×
ECT sensor	×	×	×	×	×	×	×
IAT sensor	×	×	×	×	×		×
TP sensor	×	×	×	×	×		×
EGR boost sensor							×
Fuel level sensor			×				
Fuel gauge sender unit			×				
HO2S (Rear/Middle*1)	×				×	×	
HO2S (Front)	×			×	×	×	
Output							
DLC-2 in driver compartment (Terminal KLN)	×	×	×	×	×	×	×
MIL	×	×	×	×	×	×	×
Purge solenoid valve			×	×	×		
EGR valve							×
EGR boost sensor solenoid valve							×
Canister drain cut valve			×				
Fuel injectors				×			

^{*1:} Federal emission regulation applicable models

PCM DESCRIPTION

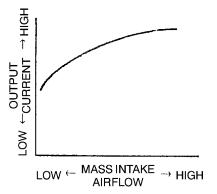
X3U140S06

- The PCM controls the output devices according to the signals from various input sensors and switches.
- A one-connector, 104-pin type PCM is used.
- Input/output PCM signals are easily inspected by using the PID/DATA MONITOR AND RECORD function of the NGS tester with the ignition switch in the ON position and/or the engine running.
- They are separate PCMs for California and Federal emission regulations.
- The TCM has been integrated into the PCM.



W6U140SA6

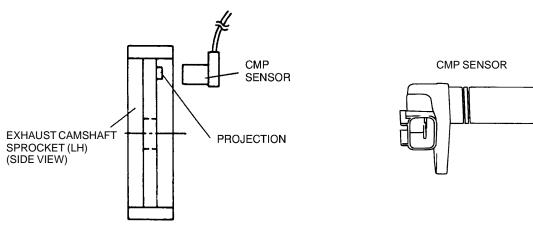
MASS AIR FLOW (MAF) SENSOR DESCRIPTION


YMU140S05

- A hot-wire type MAF sensor is used.
- The MAF sensor has a built-in IAT sensor.

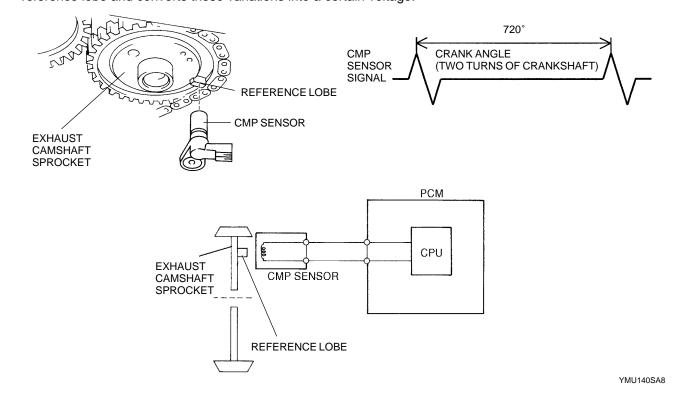
Structure and Operation

- The hot wire type MAF sensor detects the mass intake airflow that corresponds to the output current.
- The output current is controlled by the control circuit within the MAF sensor and heats the hot wire so that the temperature difference between the hot wire and the intake air is constant.
- The output current required to maintain the hot wire temperature is proportional to the intake airflow volume. The output current characteristic against the mass intake airflow is as shown in the figure below.
- The cold wire corrects the variation in resistance of the hot wire which is caused by the intake air temperature.


X3U140SF0

CAMSHAFT POSITION (CMP) SENSOR DESCRIPTION

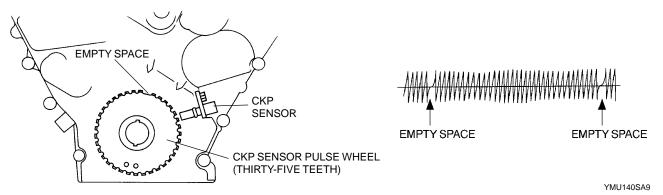
YMU140S06


Function

• The inductive type CMP sensor, which is installed to the engine front cover, detects the reference lobe signal on the exhaust camshaft sprocket. The PCM uses this signal to identify TDC of the No.1 cylinder.

Structure and Detection Principle

- There is a reference lobe on the exhaust camshaft sprocket. The CMP sensor detects one signal every rotation of the exhaust camshaft sprocket.
- The CMP sensor is an inductive sensor which detects the magnetic force variations caused by the rotating reference lobe and converts these variations into a certain voltage.



CRANKSHAFT POSITION (CKP) SENSOR DESCRIPTION

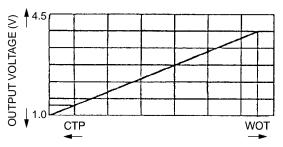
YMU140S07

Function

 The CKP sensor is located near the crankshaft pulley. It detects the pulley rotation signal (NE signal), and changes the signal into the engine speed. Since the NE signal is detected directly by the projections on the CKP sensor pulse wheel, accuracy is high and is not influenced by timing belt looseness or camshaft pulley misalignment.

Structure and Detection Principle

There are thirty-five teeth, and one spot where a tooth has been removed, spaced ten degrees apart on the
plate. The CKP sensor detects seventy alternating current waves every two rotations of the crankshaft. By
monitoring the spot where the tooth is missing, the CKP sensor is able to identify the piston travel and
synchronize the ignition system.

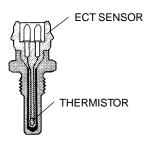

THROTTLE POSITION (TP) SENSOR DESCRIPTION

YMU140S08

- A linear type TP sensor which output voltage is proportional to throttle valve operating angle is used.
- The TP sensor detects the throttle position.

Characteristic

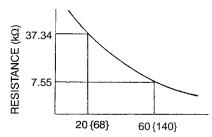
• The output voltage characteristic of TP sensor is as shown.


THROTTLE VALVE OPERATING ANGLE

X3U140F3

ENGINE COOLANT TEMPERATURE (ECT) SENSOR DESCRIPTION

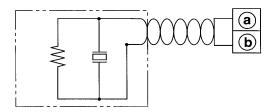
YMU140S09


• ECT sensor detects the engine coolant temperature.

YMU140SAA

Characteristic

The resistance characteristic of the ECT sensor is as shown.


ENGINE COOLANT TEMPERATURE (°C {°F})

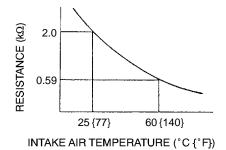
YMU140SC2

KNOCK SENSOR DESCRIPTION

YMU140S12

- A two-terminal type of knock sensor is used. The signal and ground lines through which the knocking signal is sent to the PCM are crossed in order to prevent the affect of noise.
- A piezoelectrical type knock sensor (which utilizes the piezo electric effect) is used.

YMU140SAC


INTAKE AIR TEMPERATURE (IAT) SENSOR DESCRIPTION

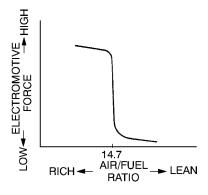
YMU140S10

- The IAT sensor detects the intake air temperature.
- The IAT sensor is integrated into the MAF sensor.

Characteristic

• The resistance characteristic of the IAT sensor is as shown.

YMU140SAB


HEATED OXYGEN SENSOR (HO2S) DESCRIPTION

YMU140S11

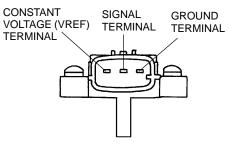
- The HO2S is equipped with a heater to provide constant detection of oxygen concentration in the exhaust gas even when exhaust gas temperature is low.
- The principle of the solid electrolyte oxygen density battery is applied to this sensor.
- The signal from the front HO2S indicates how rich/lean the engine is operating and serves as an input to the
 oxygen sensor monitor. The signal from the rear and middle HO2S shows how the catalytic converter is
 operating and is used as a signal to the catalyst efficiency monitor.

Characteristic

• The current producing characteristic of the HO2S sensor is as shown.

X3U140SF7

EGR BOOST SENSOR DESCRIPTION

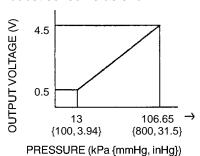

YMU140S13

- The EGR boost sensor (BARO sensor) convert the intake manifold pressure into the voltage values, and outputs the voltage values to the PCM.
- The EGR boost sensor is used to monitor the EGR flow from the EGR valve into the intake manifold. The
 EGR boost sensor detects the pressure differential of intake manifold when the EGR valve is forced open or
 closed. When the pressure difference is not within specification during 2 continuous drive cycles, insufficient
 or excessive EGR flow is indicated by illuminating MIL, and DTC will be stored.

Operation

• The PCM controls the EGR boost sensor solenoid valve depending on the EGR monitoring condition.

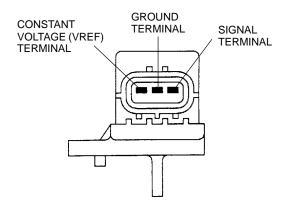
Condition	Valve operation	Item measured
EGR monitor stopped	OFF	Barometric pressure
EGR monitor executed	ON	EGR pressure



EGR BOOST SENSOR (BARO SENSOR)

YMU140SAD

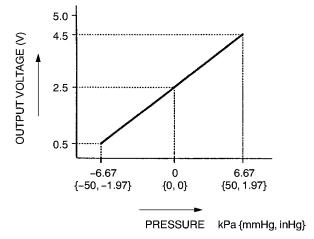
Characteristic


• The output characteristic of the EGR boost sensor is as shown.

FUEL TANK PRESSURE SENSOR DESCRIPTION

YMU140S14

- The fuel tank pressure sensor detects the fuel tank pressure.
- The fuel tank pressure sensor converts pressure into voltage.
- The fuel tank pressure sensor is used to determine if there are any evaporative gas leaks in the evaporative system. The fuel tank pressure sensor detects the evaporative gas leaks by measuring the change in vacuum when vacuum is applied to the fuel tank and evaporative system and its vacuum is shut in the evaporative system during the drive cycle.

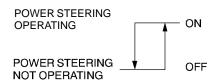


FUEL TANK PRESSURE SENSOR

YMU140SAF

Characteristic

• The output characteristic of the fuel tank pressure sensor is as shown.


POWER STEERING PRESSURE (PSP) SWITCH DESCRIPTION

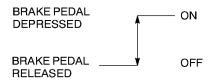
YMU140S15

 The PSP switch detects the power steering operation by variation of the fluid pressure in the power steering oil pump.

Operation

• The PSP switch is turned on when the oil pressure in the power steering pump reaches the actuation pressure point by turning the steering wheel. The switch is then turned off when the oil pressure has dropped to a certain level.

X3U140SFB

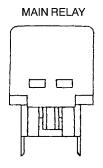

BRAKE SWITCH DESCRIPTION

YMU140S16

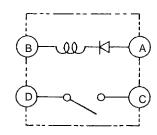
• The brake switch detects the brake pedal depressed/released condition.

Operation

• The brake switch operates as shown.

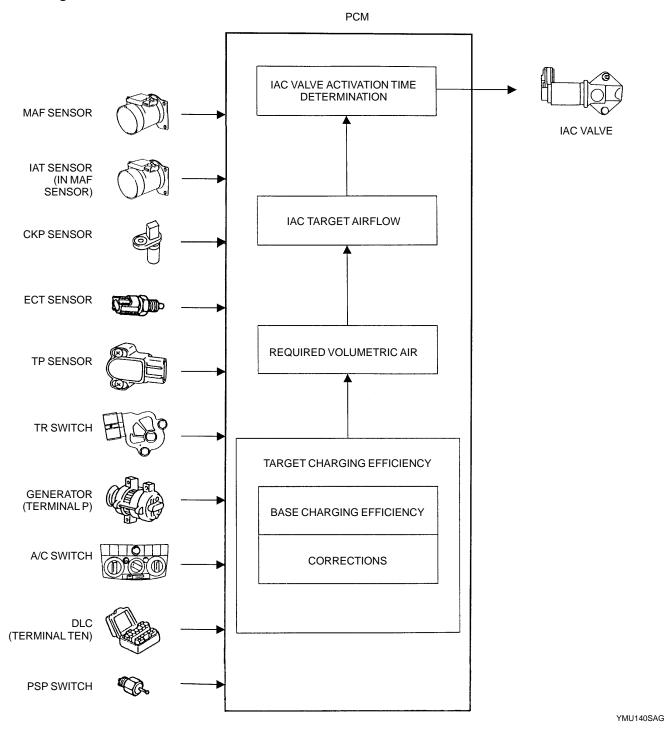


YMU140SFC


MAIN RELAY DESCRIPTION

YMU140S17

The main relay controls power to PCM when the ignition switch is turned ON/OFF.


X3U140SFF

IDLE AIR CONTROL (IAC) OUTLINE

YMU140S18

• Idle air control stabilizes idle speed by supplying the optimum amount of air (which bypasses the throttle valve) to the engine according to its operating condition. Based on the signals from the input sensors shown in the figure below, the PCM detects the engine operating conditions and controls idle speed by activating the IAC valve. (Refer to 01–13–4 THROTTLE BODY DESCRIPTION.)

Block Diagram

IDLE AIR CONTROL (IAC) DESCRIPTION

YMU140S19

IAC Valve Activation Time Determination

- The PCM calculates the amount (IAC target airflow) of air required to stabilize idle speed, and determines the
 duty signal to the IAC valve.
- The IAC valve receives the signal and moves the plunger in the solenoid valve. By changing the area of the opening, the idle speed is kept at the target idle speed.
- When the ignition switch is turned ON, the IAC valve activation time is kept at the minimum value and the IAC valve is closed for both starting and normal control.

IAC Target Airflow

 IAC target airflow is obtained by subtracting the estimated airflow that does not pass through the IAC valve (air that leaks from spaces in the throttle valve) from the airflow required to stabilize idle speed (requested air volume).

Required Volumetric of Air

 Required amount of air is calculated by supplementing either the change in airflow based on the "target charging efficiency", or the change in airflow density that results from the change in air temperature.

Target Charging Efficiency

- Target charging efficiency refers to the charging efficiency*1 required according to each engine load condition.
- Target charging efficiency is calculated by adding corrections to the base charging efficiency determined according to engine coolant temperature.
- *1 : Charging efficiency is the ratio of airflow to the maximum airflow of the cylinder. This value increases as engine load increases.

Corrections

Correction	Purpose	Condition	Amount of correction
A/C load correction	Prevent drop in engine speed during A/C operation	A/C operation	A/C operation \rightarrow correction
P/S load correction	Prevent drop in engine speed during P/S operation	P/S operation	P/S operation → correction
Electrical load correction	Prevent drop in engine speed during operation of electrical loads	Idling or driving	Electrical load increases → correction increases
Coasting clutch engagement increase correction	Reduce shock during coasting clutch (in transaxle) engagement	Coasting clutch engagement, according to vehicle speed	Vehicle speed increases → correction increases
Fuel cut recovery decrease correction	Reduce shock during fuel cut recovery	In deceleration fuel cut zone, decrease by set amount	In deceleration fuel cut zone → correction by set amount
Accelerate warm up correction	Accelerate activation of catalytic converter	Idling when engine speed > 1000 rpm and atmospheric pressure > 72.0 kPa {540 mmHg, 21.3 inHg}, according to engine coolant temperature	ECT decreases → correction increases
D range correction	Prevent drop in engine speed during shift into D position	Input of D range signal (TR switch)	Difference between engine speed and turbine speed signal decreases → correction increases
Dashpot correction	Prevent drop in engine speed caused by insufficient air during acceleration	Deceleration	Engine speed increases → correction increases
Starting correction	Prevent drop in engine speed during starting	Cranking or just after engine start	ECT increases → correction increases
Warm restart correction	Prevent drop in engine speed during warm restarting	Cranking when water temperature above 60 °C {140 °F}	IAT above 60 °C {140 °F} → increases correction
Closed loop correction A	Make engine speed approach target engine speed	Engine speed while idling (vehicle stopped) > target engine speed, or condition below (with engine speed above 300 rpm)	Below target engine speed → increase correction Above target engine speed → decreased correction

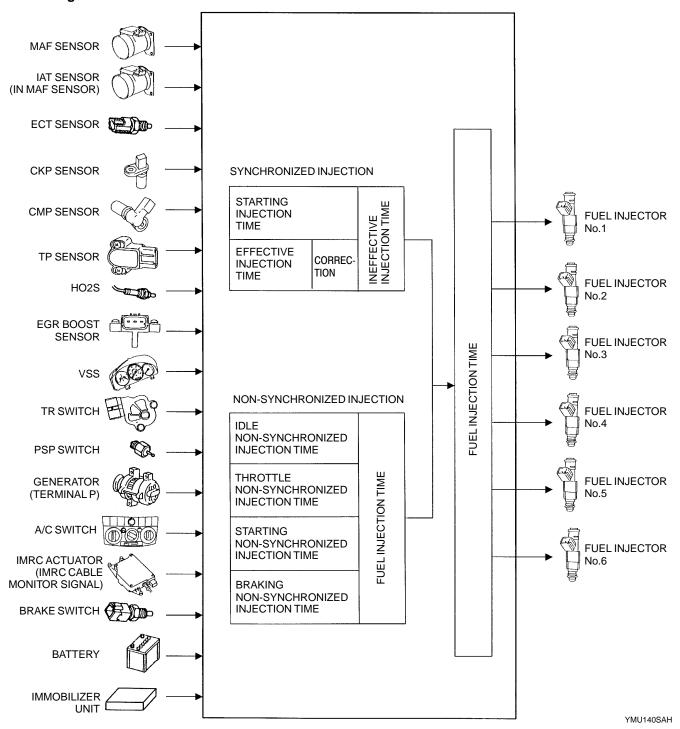
Correction	Purpose	Condition	Amount of correction
Closed loop correction B	When engine speed drops, make engine speed approach target engine speed in zone where closed loop correction A cannot compensate	Engine speed below target engine speed during deceleration (with engine speed above 300 rpm) and when closed loop correction A not active	Difference between engine speed and target engine speed increases → correction increases
Learning correction	Memorize change in air intake amount caused by differences in each engine and change that occurs over time, and gives closed loop	Idling when ECT above 80 °C {176 °F} and IAT below 75 °C {167 °F} (during closed loop correction A)	During idling → average value of closed loop correction A

Target speed

Load condition	P, N position	Except P, N position
A/C operation	850	850
During electrical load *1	750	700
Power steering operating	750	750

^{*1:} When headlights, rear defroster, blower fan (level two or higher), cooling fan, and condenser fan are all operated.

Prohibition Condition

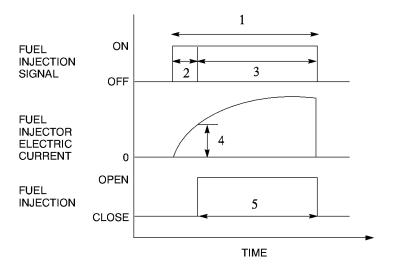

When IAC valve malfunctions (open or short IAC valve related circuit), engine flare-up during idling is
prevented by cutting the power supply to IAC valve (IAC valve is closed). Air intake at this time comes merely
from air leaking through the throttle valve passage.

FUEL INJECTION CONTROL OUTLINE

YMU140S20

- Fuel injection control varies injector pulse width (injection time) according to mass intake airflow amount signals and engine speed signals from the CKP sensor, based on the program stored in the PCM memory.
- To obtain the most efficient pulse width (injection time), fuel injection control applies corrections according to the engine operating conditions and load conditions detected by various sensors.
- There are two types of injection timing control; The synchronized injection (simultaneous injection of all
 cylinders or sequential injection) according to engine speed, and the non-synchronized injection according to
 engine load conditions.

Block Diagram



FUEL INJECTION CONTROL DESCRIPTION

YMU140S21

Fuel Injection Time Outline of control

The PCM controls the injection time to obtain the theoretical air/fuel ratio (stoichiometric) at all engine
operation ranges according to engine operating condition.

- 1 FINAL INJECTION TIME
- 2 INEFFECTIVE INJECTION TIME
- 3 EFFECTIVE INJECTION TIME
- 4 INJECTOR VALVE OPEN CURRENT
- 5 INJECTOR VALVE OPEN TIME

X3U140SFY

Final injection time

Final injection time is calculated using the following formula:

Formula

Final injection time = Effective injection time + Ineffective injection time

X3U140SFZ

- Injection in response to the PCM signal is delayed by initial current delay due to inductance, the weight of the needle valve and the plunger, and the resistance of the spring. This delay in injection is called "ineffective injection time".
- Ineffective injection time varies with fluctuations in battery positive voltage and is corrected according to the battery positive voltage.
- Effective injection time is calculated using the following formula:

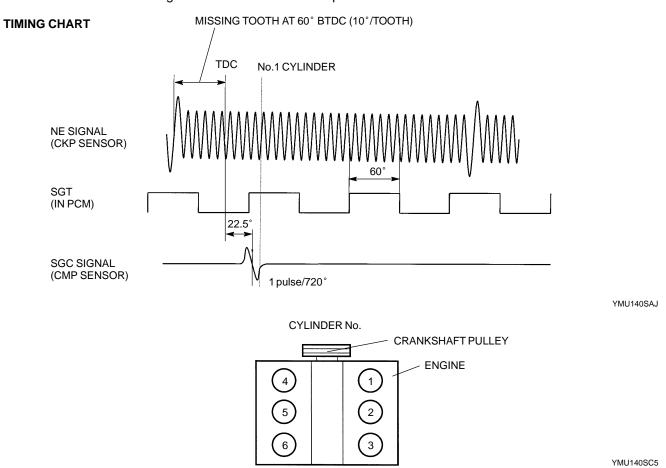
Formula

Effective injection time = Basic injection time × Correction coefficients

X3U140SG0

Basic injection time is calculated using the following formula:

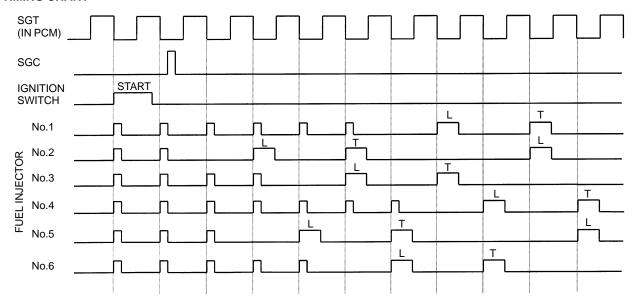
Formula


Basic injection time = Charging efficiency × Fuel flow coefficient

X3U140SG1

- Charging efficiency indicates the ratio of the air capacity in the cylinder and the actual intake air amount, and
 is calculated by the intake air amount detected by the MAF sensor.
- Charging efficiency varies with the engine operating conditions.
- Fuel flow coefficient is the calculated fuel injection time so that the optimum air/fuel ratio is always obtained. The effective injection time is roughly calculated by the charging efficiency and the fuel flow coefficient.
- Fuel flow coefficient is calculated by the fuel injection amount and the fuel pressure.
- The correction coefficients are applied according to the ECT, IAT, and engine load. The correction coefficients
 vary with the control zone.

Fuel Injection Timing Outline of control


 There are two types of injection timing, "synchronized timing" and "non-synchronized timing". Synchronized timing describes fuel injected at a preset timing. Non-synchronized timing describes fuel injected when certain conditions are satisfied regardless of the crankshaft's position.

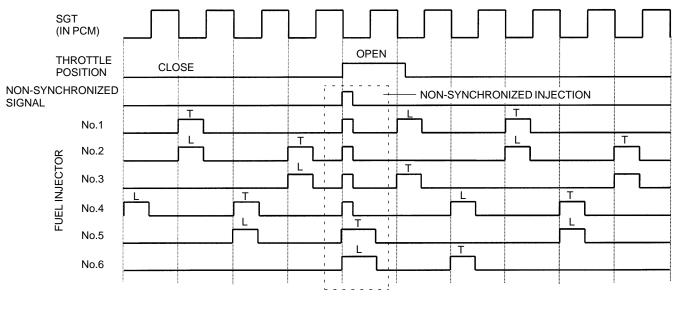
Synchronized injection

- When a cylinder is not identified, synchronize fuel injection takes place at the end of the SGT (in PCM) signal.
 When a cylinder is identified, synchronize fuel injection takes place at the start of the SGT (in PCM) signal. Sequential injection, in which fuel is injected two times (leading injection and trailing injection) to divide fuel injection amount, has been used.

TIMING CHART

L: LEADING INJECTION

T: TRAILING INJECTION

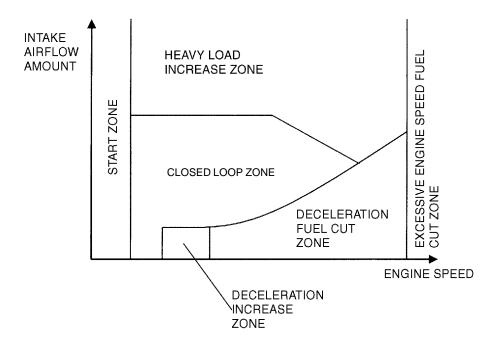

OTHERS: INJECTION BEFORE CYLINDER IDENTIFICATION SIGNAL IS DETECTED

YMU140SC6

Non-synchronized injection

- There are the following types of non-synchronized control:
 - Idle non-synchronized control
 - When the TP is closed position, all cylinders are simultaneously injected for a certain period of time according to engine coolant temperature.
 - Throttle non-synchronized control
 - When the throttle opening angle variation rate exceeds a specified value, fuel is simultaneously injected to all cylinders for a certain period of time according to ECT.
 - Starting non-synchronized injection
 - All cylinders are simultaneously injected with fuel when the engine is cranked (started) and a set amount of time has passed. The injection amount is determined according to the ECT.
 - Braking non-synchronized injection
 - All cylinders are simultaneously injected with fuel during braking deceleration after engine warm up and when the drop in turbine speed is large.

TIMING CHART



L: LEADING INJECTION T: TRAILING INJECTION

YMU140SC7

Control Zones Operation outline

 The PCM controls effective injection time by dividing engine operation into six zones according to engine conditions and load.

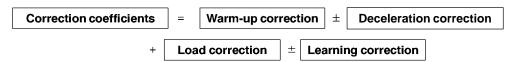
YMU140SAL

1. Start zone

- The purpose of this zone is to maintain startability.
- The definition of the start zone is that the engine speed is below 500 rpm when cranking.
- The final injection time in start zone is calculated by the ECT, engine speed and barometric pressure.
- When the throttle valve is fully opened, the final injection timing is set to 0 sec. and fuel injection is stopped (dechoke control).

2. Excessive engine speed fuel cut zone

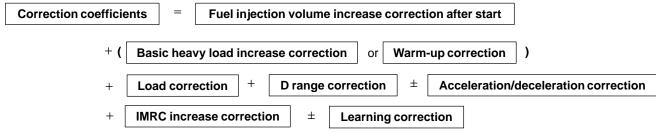
- The purpose of these zones is for engine protection and safety driving.
- The excessive engine speed fuel cut zone is for when engine speed is above 6,700 rpm.
- Fuel injection resumes when the engine speed has dropped below 6,600 rpm.
- To prevent overheating, the fuel cut function also activates when there is no load and engine speed stays above 2,400 rpm for two minutes.


3. Deceleration fuel cut zone

- The purpose of this zone is to improve fuel economy and prevent overheating of the TWC.
- The deceleration fuel cut zone is determined by the engine speed, and load condition during deceleration with the throttle valve fully closed.

4. Deceleration increase zone

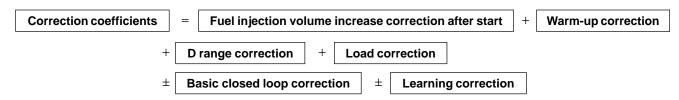
- The purpose of this zone is to improve drivability during deceleration.
- The control system enters this zone when all of the following conditions are met:
 - Throttle valve is fully closed
 - Shift lever is in D, 1 or 2 range
 - Control is in other than deceleration fuel cut zone
- The correction coefficients for this zone are calculated using the following formula:


Formula

5. Heavy load increase zone

- The purpose of this zone is to improve drivability under heavy load condition.
- The control system enters heavy load increase zone when either of the following conditions is met:
 - Throttle opening angle is above specified value
 - Charging efficiency exceeds a specified level
 - Engine speed is above 4,500 rpm
- The correction coefficients in the heavy load increase zone are calculated using the following formula.

Formula


YMU140SAN

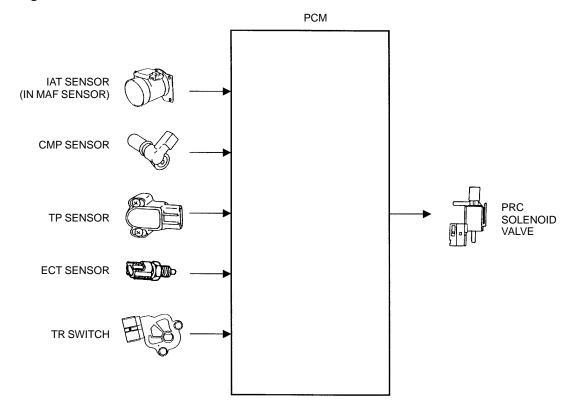
• When both warm-up correction and basic heavy load increase correction are required, the one that requires the larger correction will be carried out.

6. Closed loop zone

- The purpose of this zone is to improve fuel economy and to reduce exhaust emissions level.
- The control system is in the closed loop zone when it is in other than the above-mentioned.
- The correction coefficients in the feedback zone are calculated using the following formula.

Formula

Corrections


Correction	Purpose	Conditions	Action
Fuel injection volume increase correction after start	To maintain engine speed stability after start	Certain period after start determined by ECT	Lower ECT: Larger correction
Warm-up correction	To maintain drivability during warm-up	According to ECT	Lower ECT: Larger correction
Load correction	To maintain engine stability when load is applied	According to engine coolant temperature when P/S or A/C is operated	Load applied: Larger correction
Basic heavy load increase correction	To maintain drivability under heavy load	As required by engine load and engine speed under heavy load	_
Basic closed loop correction	To control air/fuel ratio close to stoichiometric	When control is in closed loop zone	_
Learning correction	To deal with change in air/fuel ratio caused by aging	At all times	_
D range correction	To maintain engine speed stability when shifting to D range	According to ECT at D range shift	Lower ECT: Larger correction
Acceleration/deceleration correction	Corrects change in air-fuel ratio during deceleration or acceleration when engine is cold	According to ECT	Lower ECT: larger correction
IMRC increase correction	Corrects air-fuel ratio (makes it rich) when IMRC is operating	According to engine speed and charging efficiency when IMRC system is operating	High engine speed: larger correction Larger charging efficiency: larger correction

PRESSURE REGULATOR CONTROL (PRC) OUTLINE

YMU140S22

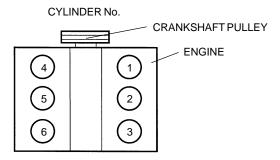
- In order to improve startability and idle stability, the pressure regulator control cuts the vacuum applied to the
 pressure regulator during engine starting and for a specific time after starting the engine if the engine is hot.
- The PCM switches the solenoid ON and OFF to change the vacuum or atmospheric pressure applied to the pressure regulator.

Block Diagram

YMU140SAQ

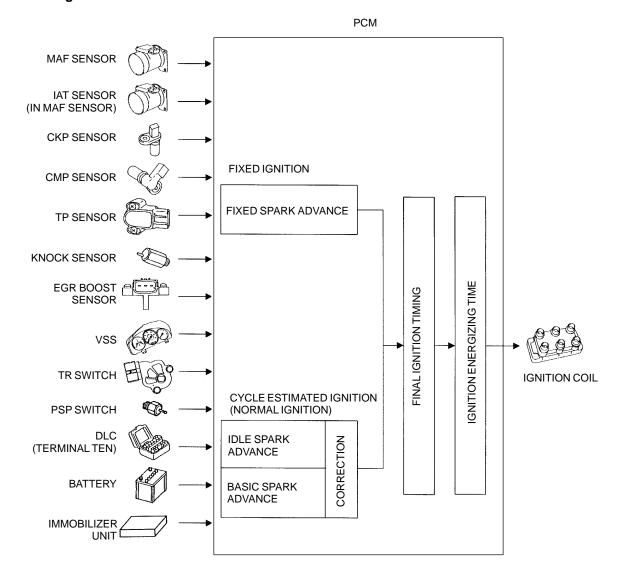
PRESSURE REGULATOR CONTROL (PRC) DESCRIPTION

YMU140S23


Operation

- The PRC solenoid valve turns ON for 60 seconds after starting the engine when all of the following conditions are met:
 - ECT is above 80 °C {176 °F}
 - IAT is above 75 °C {167 °F}
 - No load is applied or engine is running below 2,500 rpm and throttle valve opening angle is below 37.5%

ELECTRIC SPARK ADVANCE (ESA) CONTROL OUTLINE


YMU140S24

- Ignition timing is controlled by the PCM for improved fuel economy, idle stability and drivability. The PCM also
 controls the ignition coil's spark duration.
- The ESA control is broadly divided into three zones: start, idle, and normal driving. The PCM carries out
 necessary corrections for each zone, decided by engine and load conditions, to determine the final ignition
 timing and the energization time of the ignition coil.
- The four cylinders ignite in three sets. The No.1 and No.5 cylinders ignite simultaneously, the No.2 and No.6 cylinders ignite simultaneously, and the No.3 and No.4 cylinders ignite simultaneously.

YMU140SC5

Block Diagram

YMU140SAR

ELECTRIC SPARK ADVANCE (ESA) CONTROL DESCRIPTION

YMU140S25

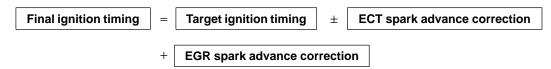
Ignition Timing

Control outline

 The PCM controls the ignition timing to either fixed ignition or cycle estimated ignition (normal ignition) ignition according to the engine operation conditions.

Fixed ignition

• The final ignition timing is fixed at the NE signal trailing edge (BTDC 10°).


Cycle estimated ignition (normal ignition)

• To obtain the optimum ignition timing, the PCM determines the final ignition timing by estimating the next ignition timing according to the engine operation conditions.

Final ignition timing

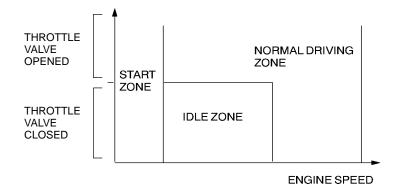
The final ignition timing is calculated using the following formula.

Formula

YMU140SB7

- The target ignition timing is determined by the ECT, IAT and load.
- The ECT spark advance correction is carried out only when engine is cold.
- EGR spark advance correction is carried out only when the EGR control is carried out (EGR valve opening angle is increased) in the normal driving zone.

Energizing Time


 The PCM controls the energization time of the ignition coil according to the estimated final ignition timing and the engine operation conditions.

Ignition coil energization time

- The PCM detects the driving condition (constant speed, acceleration or deceleration) based on signals from the CKP sensor and CMP sensor. Ignition coil energizing time signal from the PCM to the igniter in the ignition coil is determined according to the battery voltage and driving condition.
- When the energizing time exceeds the predetermined period, the signal is automatically cut to prevent damage to the transistor caused by continuous energizing to the igniter in the ignition coil.

Control Zones Control outline

• To obtain the optimum ignition timing control, the PCM divides the ignition timing control into three zones and calculates the final ignition timing according to the engine conditions.

X3U140SFL

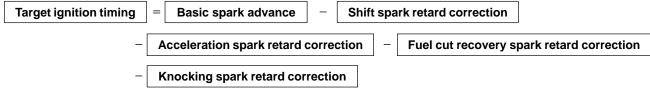
1. Start zone

- The definition of the start zone is that the engine speed is below 500 rpm when cranking, or that the MAF sensor is malfunctioning.
- Fixed ignition is applied in the start zone.

2. Idle zone

- The definition of the idle zone is that the engine speed is below a preset level when idling with the throttle
 valve fully closed.
- Cycle estimated ignition (normal ignition) ignition is applied in the idle zone.
- The target ignition timing in the idle zone is calculated using the following formula.

Formula


YMU140SAS

- The idle spark advance is determined by the charging efficiency and the engine speed during idling.
- Charging efficiency varies with the engine operating conditions.

3. Normal driving zone

- The normal driving zone corresponds to the engine driving time without idling.
- Cycle estimated ignition (normal ignition) ignition is applied in the normal driving zone.
- The target ignition timing in the normal driving zone is calculated using the following formula.

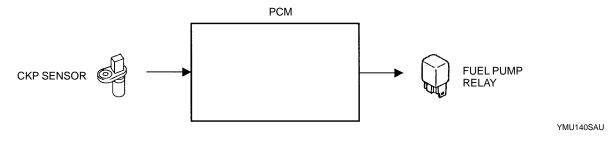
Formula

YMU140SAT

- Basic spark advance is determined by the charging efficiency and the engine speed.
- Charging efficiency varies with the engine operating conditions.

Correction

Correction	Purpose	Conditions	Action
EGR spark advance correction	To maintain drivability during EGR operation	According to engine load and engine speed during EGR operation	Higher EGR rate: Larger spark advance
ECT spark advance correction	To maintain engine speed stability when engine is cold	When engine is cold, according to ECT	Lower ECT: Larger spark advance
Knocking spark retard correction	To improve engine reliability	When knocking is detected	Heavy knocking → Large spark retard
Accelerate warm up spark retard correction	Accelerates activation of catalytic converter	According to ECT during 18-second period for engine start when engine speed > 1,000 rpm and atmospheric pressure > 72.0 kPa {540 mmHg, 21.3 inHg}	Lower ECT → Large spark retard
Fuel cut recovery spark retard correction	To prevent shock during fuel cut recovery	When fuel injection is resumed	Fuel injection is resumed: Spark retard
Acceleration spark retard correction	To prevent knocking during sudden acceleration	When sudden acceleration is detected	During sudden acceleration: Spark retard
Shift spark retard correction	To soften shift shock during downshift	During downshift	During downshift: Spark retard


FUEL PUMP CONTROL OUTLINE

YMU140S26

- The fuel pump relay is actuated only after the PCM has detected the NE signal for safety and improved durability of the fuel pump.
- The fuel pump relay can be actuated by either of the following methods:
 - Connect DLC terminals F/P and body GND with a jumper wire and turn the ignition switch ON.
 - Activate the "FP RLY" simulation function on the NGS tester with either the ignition switch ON and engine
 off, or during idling.

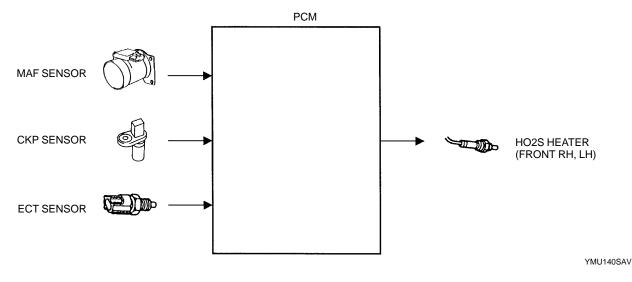
These methods are used to check the fuel pump relay and fuel pump operation.

Block Diagram

FUEL PUMP CONTROL DESCRIPTION

YMU140S27

Operation


- While the engine is running, PCM terminal 80 (Without immobilizer system), 104 (With immobilizer system) is ON (0 V) and the fuel pump is actuated by the fuel pump relay.
- While the engine is stopped, PCM terminal 80 (Without immobilizer system), 104 (With immobilizer system) is OFF (B+) and the fuel pump is not actuated.

HEATED OXYGEN SENSOR (HO2S) (FRONT) HEATER CONTROL OUTLINE

YMU140S28

- The PCM sends the duty signals to the heater.
- Heater control has three levels: 0%, 30% and 100%-duty values.

Block Diagram

HEATED OXYGEN SENSOR (HO2S) (FRONT) HEATER CONTROL DESCRIPTION

YMU140S29

Operation

HO2S heater is controlled by the PCM as follows:

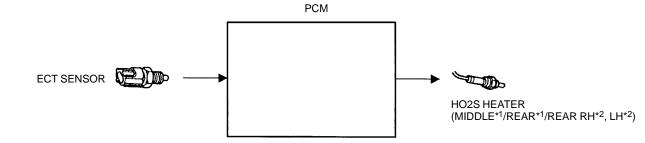
Duty value 0%

• The PCM cuts power supply to the heater circuit at high engine speeds and under heavy loads, and while an HO2S heater malfunction is detected.

Duty value 100%

When the engine is started after being allowed to cool sufficiently (ECT 10—30 °C {50—86 °F}), the HO2S heater is run at a duty value of 100% for 15 seconds.

Duty value 30%


• The PCM runs the HO2S heater at a duty value of 30% under all driving conditions other than the above.

HEATED OXYGEN SENSOR (HO2S) (MIDDLE/REAR) HEATER CONTROL OUTLINE

YMU140S30

- Heater control is adopted to activate the HO2S (Middle*1/Rear*1/Rear RH*2, LH*2) even when exhaust gas temperature is low.
- The PCM controls turning the heater ON and OFF.

Block Diagram

^{*1:} FEDERAL EMISSION REGULATION APPLICABLE MODELS

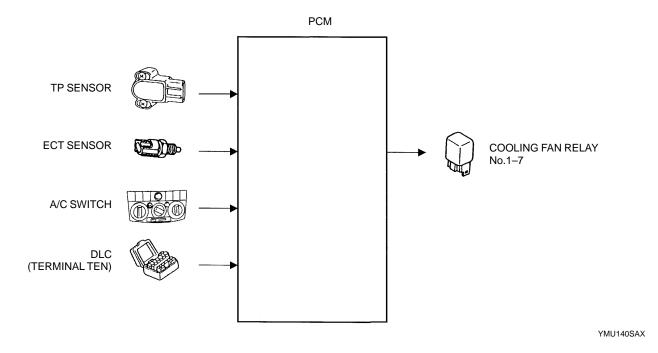
YMU140SAW

HEATED OXYGEN SENSOR (HO2S) (MIDDLE/REAR) HEATER CONTROL DESCRIPTION

YMU140S31

Operation

- HO2S heater control will run immediately after the engine is started when the ECT is above 70°C {158°F}.
- When the ECT is below 70 °C {158 °F}, the heater will run after engine is started and approx. 72 seconds pass.


^{*2:} CALIFORNIA EMISSION REGULATION APPLICABLE MODELS

ELECTRIC FAN CONTROL OUTLINE

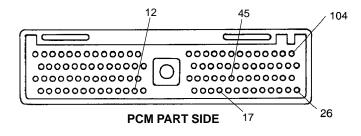
YMU140S32

- The PCM controls the cooling fan relay according to vehicle operating conditions for improved engine reliability and idle stability.
- The cooling fan relays can be actuated by either of the following methods:
 - Connect DLC terminals TEN and GND with a jumper wire and open the throttle valve with the ignition switch ON
 - Activate the simulation function on the NGS tester with either the ignition switch ON and engine off, or during idle. Select the "FAN1" "FAN2" or "FAN3" PID for the cooling fan relay.

Block Diagram

ELECTRIC FAN CONTROL DESCRIPTION

Operation A/C is equipped


YMU140S33

ON: Energized OFF: De-energized

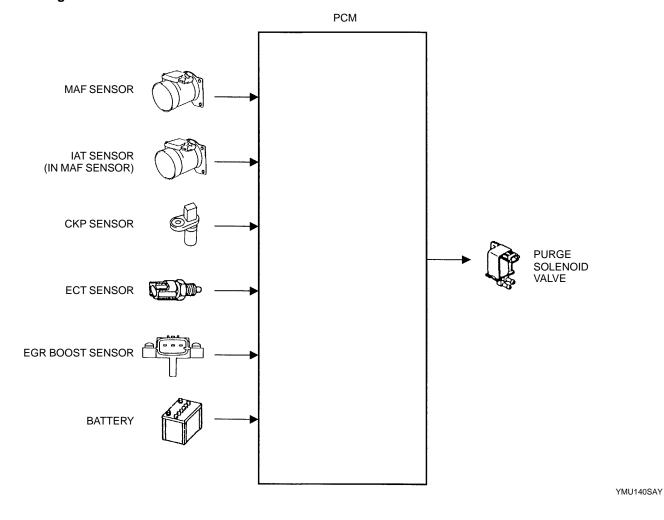
Cone	dition	PCM terminal 17	PCM terminal 12 PCM terminal 45		
Cooling fan	Condenser fan	Cooling fan relay No.2, No.3, No.5 and No.7	Cooling fan relay No.4	Cooling fan relay No.1 and No.6	Operation conditions
Stopped	Stopped	OFF	OFF	OFF	ECT: 100 °C {212 °F} or below and A/C is not operated
Low speed	Low speed	OFF	ON	OFF	ECT: 100 °C {212 °F} or below and A/C is operated
Middle speed	Middle speed	OFF	ON	ON*1	ECT: 101—107 °C {214—225 °F}
High speed	High speed	ON	ON	ON	ECT: 108 °C {226 °F} or above
High speed	High speed	ON	ON	ON	ECT sensor malfunction
High speed	High speed	ON	ON	ON	TEN terminal (in DLC) shorted to GND and accelerator pedal depressed

^{*1:} To prevent battery positive voltage from dropping just after the fan motor operation is started, PCM terminal 12 is energized (fan is in low speed), and approximately 3 seconds later, PCM terminal 45 is energized (fan is in middle speed).

YMU140SC3

A/C is not equipped

ON: Energized OFF: De-energized


Condition	PCM terminal 12	PCM terminal 45	Operation conditions
Cooling fan	Cooling fan relay No.1	Cooling fan relay No.2 and No.3	Operation conditions
Stopped	OFF	OFF	ECT: 100 °C {212 °F} or below
High speed	ON	ON* ¹	ECT: 101—107 °C {214—225 °F}
High speed	ON	ON	ECT: 108 °C {226 °F} or above
High speed	ON	ON	ECT sensor malfunction
High speed	ON	ON	TEN terminal (in DLC) shorted to GND and accelerator pedal depressed

PURGE CONTROL OUTLINE

YMU140S34

 Purge control uses the purge solenoid valve to control the amount of fuel vapor that is purged into the intake-air system for improved emission performance while maintaining drivability.

Block Diagram

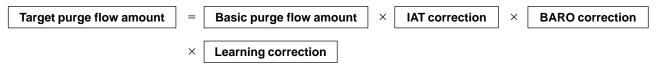
PURGE CONTROL DESCRIPTION

YMU140S35

Purge solenoid valve actuation time

The purge solenoid valve actuation time is calculated using the following formula.

Formula


Purge solenoid valve actuation time = Target purge flow amount × B+ correction

YMU140SAZ

Target purge flow amount

The target purge flow amount is calculated using the following formula.

Formula

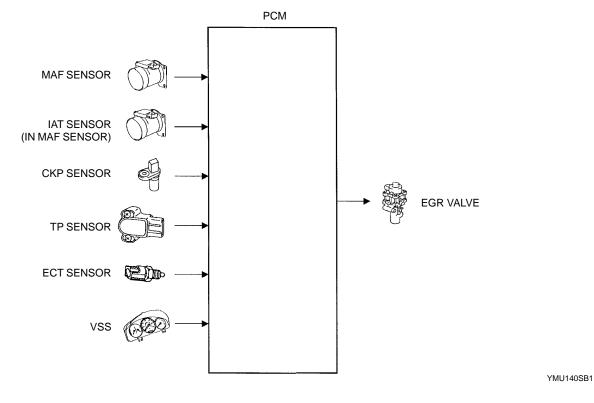
YMU140SB0

Basic purge amount according to fuel efficiency.

Operation

- PCM actuates the purge solenoid valve by duty control when all of the following conditions are met.
 - Fuel injection control is in the closed loop zone or heavy load increase zone.
 - After warm-up.
 - The PRC solenoid valve is not turned ON.
 - The evaporative gas leak monitor is not operating.
 - MAF sensor is normal.

Corrections

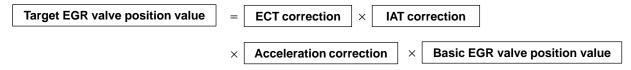

Item	Purpose	Conditions
B+ correction	To correct delay in purge solenoid valve actuation caused by low B+	According to B+
IAT correction	To improve emission performance	According to IAT
BARO correction	To improve emission performance	According to BARO
Learning correction	To deal with change in air/fuel ratio caused	At all time

EGR CONTROL OUTLINE

YMU140S36

- EGR control system uses a stepping motor type EGR valve to control amount of exhaust gas that is supplied to the intake air system in order to reduce NOx and improve fuel economy.
- The PCM adjusts the EGR amount by controlling the stepping motors in the EGR valve.

Block Diagram


EGR CONTROL DESCRIPTION

YMU140S37

Outline of Control

- The PCM initializes the stepping motor position in the EGR valve when EGR operation is canceled.
- The PCM opens/closes the EGR valve by controlling the stepping motor (#1 COIL-#4 COIL). The stepping
 motor is controlled according to the difference between the EGR valve position value (actual EGR valve
 opening angle) and the target EGR valve position value which is set according to the engine condition.
- When the actual EGR valve position value is smaller than the target value, the PCM opens the EGR valve. When the actual EGR valve position value is larger than the target value, the PCM closes the EGR valve.
- The target EGR valve position value is calculated using the following formula.

Formula

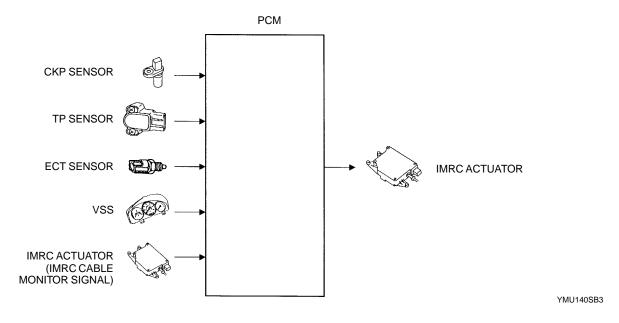
YMU140SB2

The basic EGR valve position value is determined by the charging efficiency and the engine speed.

Operation

- The EGR operation is carried out when the vehicle is running after warm up and the engine speed is over 1,400 rpm.
- To maintain drivability, the EGR operation is canceled when any of the following conditions has been met.
 - Engine is idling. (Throttle valve is at the closed position.)
 - ECT is below 55 °C {131 °F}.
 - Vehicle is stopped.
 - Engine speed is below 1,200 rpm.
 - Engine speed is above 3,500 rpm.
 - Charging efficiency is not within specified range.

Correction


Item	Purpose	Conditions	Action
ECT correction	To improve driveability	ECT is below 55 °C {131 °F} No correction	
ECT correction	To improve unveability	ECT is above 55 °C {131 °F} • According to ECT	Lower ECT: small correction
IAT correction	To improve driveability	IAT is below 55 °C {131 °F} • No correction	_
TAT COTTECTION	To improve unveability	IAT is above 55 °C {131 °F} • According to IAT	Lower IAT: small correction
Acceleration correction	To improve driveability	During acceleration when change in TP is above a set level	Accelerating: 50% correction

INTAKE MANIFOLD RUNNER CONTROL (IMRC) OUTLINE

YMU140S38

- The IMRC concept is same as VICS.
- The IMRC actuator operates the IMRC shutter valve in the IMRC housing to change the intake air pipe length, thus enhancing the inertia charging effect.

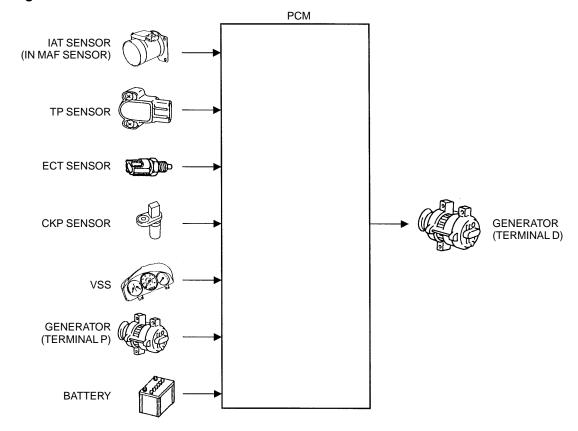
Block Diagram

INTAKE MANIFOLD RUNNER CONTROL (IMRC) DESCRIPTION

YMU140S39

Operation

- The PCM turns the IMRC actuator ON to open the IMRC shutter valve in the IMRC housing when the engine speed is approx. 3,300 rpm.
- To verify the IMRC actuator operation, the PCM monitors an operation verification signal from the IMRC actuator. Regardless of whether the PCM is activating the IMRC or not, if the PCM does not receive an operation verification signal from the IMRC actuator, the PCM judges that the IMRC system is malfunctioning and outputs a DTC.

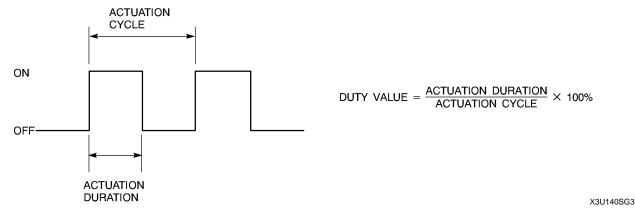

GENERATOR CONTROL OUTLINE

YMU140S40

YMU140SB4

- The PCM adjusts the field coil excitation current by controlling the duty value to obtain the optimum generator voltage according to driving conditions.
- The PCM calculates the electrical load from the adjusted field coil excitation current, and uses this calculated value for idle air control.
- The PCM also turns the generator warning light on if a malfunction is found in the charging system.

Block Diagram



GENERATOR CONTROL DESCRIPTION

YMU140S41

Duty Control

To obtain the optimum generated current, the PCM carries out duty control by calculating the battery positive
voltage and the generator field coil excitation duration. The field coil excitation duration becomes the target
excitation current of the generator field coil. The target excitation current varies with the target generated
current, which is set for each engine condition.

Field coil excitation duration

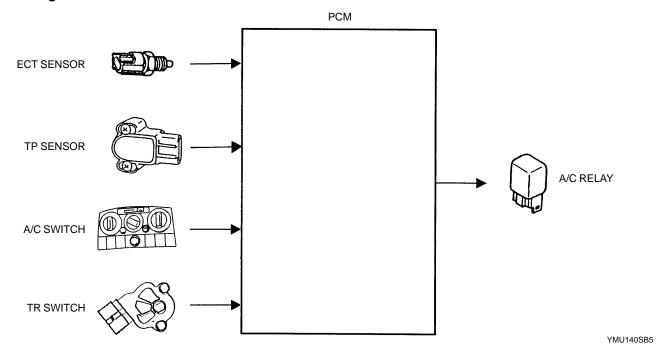
- The field coil excitation duration is determined by the target generated current and the engine speed (generator pulley rotation speed).
- The target generated current is calculated using the following formula.

Formula

X3U140SFU

 The regulated voltage is determined by the battery fluid temperature. The battery fluid temperature is determined by the IAT, the ECT and the vehicle speed.

Operation


- The duty control is carried out when the generator rotation speed is over 860 rpm.
- To increase the generated current, the field coil excitation duration is increased to increase current flow to the field coil, thus magnetic force is increased and increased current is generated.
- To decrease the generated current, the field coil excitation duration is decreased.
- When electrical load is operated, increased voltage is consumed and the battery positive voltage is reduced
 accordingly. Electrical load increases the target generated current and excitation current flow to the field coil is
 increased so that the required generated current is maintained.
- The PCM illuminates the generator warning light under any of the following when generator rotation speed is over 860 rpm.
 - Generator generated voltage is too low.
 - Generator terminal B is open.
 - Battery is overcharged.
 - IAT sensor circuit malfunction.

A/C CUT-OFF CONTROL OUTLINE

YMU140S42

Under A/C cut-off control, the operation of the A/C system is controlled according to engine operating
conditions for engine startability, stability and acceleration performance improvements, and to prevent engine
overheating.

Block Diagram

A/C CUT-OFF CONTROL DESCRIPTION

YMU140S43

Operation

portation				
A/C cut condition	A/C stop time	Purpose		
At start	For approx. 10 secs.	Startability improvement		
During acceleration	For approx. 3 secs.			
Throttle valve is opened more than 50%	For approx. 5 secs.	Acceleration performance improvement		
ECT is above approx. 113 °C {235 °F}	Alternates between 10 seconds on and 10 seconds off until ECT falls below 107 °C {225 °F}	Engine reliability improvement		
ECT is above approx. 117 °C {243 °F}	Until ECT falls below 110 °C {230 °F}			

IMMOBILIZER SYSTEM OUTLINE

YMU140S44

• Immediately after the engine is started, the immobilizer unit judges if the ignition key is valid or not. When it is judged that the key is valid, the PCM continues to run the engine. When the key is invalid, the immobilizer unit actuates the PCM to carry out the fuel injection stop and the ignition cut-off operations, and as a result, the engine stops in a few seconds. (Refer to 09–14–9 IMMOBILIZER SYSTEM OUTLINE.)

ON-BOARD DIAGNOSTIC SYSTEM OUTLINE

YMU140S45

• Several PID data monitor items for specific modes have been added, including those which allow checks of engine conditions (freeze frame data) during pending code detection or when the MIL illuminates.

PID Data Monitor (Freeze Frame Data) when DTC is Set (MIL illuminates)

- Retrieve the following freeze frame data from GENERIC OBDII FUNCTIONS, excluding FDMTIME, FDMIAT, FDMECTS and FDMTP.
- Retrieve the freeze frame data for FDMTIME, FDMIAT, FDMECTS and FDMTP from PID/DATA monitor & RECORD in DIAGNOTIC DATA LINK

Note

• Freeze frame data is a snapshot of the conditions that are present when DTC or pending code is stored. Once freeze frame data is stored, this data will remain in PCM memory even if another emission-related DTC or pending code is stored additionally, except for misfire- or fuel system-related DTC or pending code. Once misfire- or fuel system-related DTC or pending code is stored, it will overwrite any previous data and the freeze frame data will not be further overwrite. When DTC associated with the freeze frame data is erased or PCM is reset, new freeze frame data can be stored.

PID data monitor (when MIL illuminates) when MIL illuminates table

PID item	Definition	
FDMTIME	ime recorded between engine start and MIL illumination	
FDMIAT	Intake air temperature	
FDMECTS	Engine coolant temperature recorded when the engine is started	
FDMTP	Throttle opening angle	

PID Data Monitor (Freeze Frame Data) when Pending Code is Set

Retrieve the following freeze frame data from PID/DATA MONITOR & RECORD in DIAGNOSTIC DATA LINK.

Note

• The data will remain in the memory even if another emission-related DTC is stored, including the misfireand fuel system-monitor DTCs.

PID data monitor (when pending code is set) table

PID item	Definition	
FDPFS1	Fuel system feedback control status (RH)	
FDPFS2	Fuel system feedback control status (LH)	
FDPLOAD	Calculated engine load	
FDPECT	ECT when pending code is detected	
FDPSFT1	Current bank 1 fuel trim adjustment	
FDPSFT2	Current bank 2 fuel trim adjustment	
FDPLFT1	Current bank 1 fuel trim adjustment (learning correction value)	
FDPLFT2	Current bank 2 fuel trim adjustment (learning correction value)	
FDPRPM	Engine speed	
FDPVS	Vehicle speed	
FDPTIME	Time recorded between engine start and pending code is stored	
FDPIAT	Intake air temperature	
FDPECTS	Engine coolant temperature recorded when the engine is started	
FDPTP	Throttle opening angle	

ON-BOARD DIAGNOSTIC SYSTEM DESCRIPTION

YMU140S46

Parameter Identification (PID) Access
The PID mode allows access to certain data values, analog digital input and output, calculated values, and system states information.

Monitor item table

—: Not applied

Display on the	Definition	Unit/	—: Not applie	
NGS tester		Condition	4 07 70	
1GR	Calculated gear range in PCM (1st gear)	ON/OFF	1, 27, 70	
2GR	Calculated gear range in PCM (2nd gear)	ON/OFF	1, 27, 70	
3–2 TIME	3–2 timing solenoid control signal in PCM	ON/OFF	28	
3GR	Calculated gear range in PCM (3rd gear)	ON/OFF	1, 27, 70	
4GR	Calculated gear range in PCM (4th gear)	ON/OFF	1, 27, 70	
A/C RLY	A/C relay	ON/OFF	69	
A/C SW	A/C on-demand circuit, including refrigerant pressure switch, A/C amplifier, A/C switch and fan switch	ON/OFF	41	
ALTF	Generator field coil control duty valve in PCM	%	53	
ALTT V	Generator output voltage	V	30	
ATFT	ATF temperature	°C or °F	37	
ATFT V	ATF temperature signal voltage	V	37	
B+	Battery positive voltage	V	71, 97	
BARO	Barometric pressure	kPa or Hg	34	
BARO V	Barometric pressure signal voltage	V	34	
BRK SW	Brake switch	ON/OFF	92	
CDCV	CDCV control signal in PCM	ON/OFF	67	
CHRGLMP	Generator warning light control signal in PCM	ON/OFF	98	
D SW	TR switch (D range switch)	ON/OFF	6	
ECT	Engine coolant temperature	°C or °F	38	
ECT V	Engine coolant temperature voltage	V	38	
EGRBV	EGR boost sensor solenoid valve control signal in PCM	ON/OFF	47	
FAN1	Fan control signal in PCM	ON/OFF	17	
FAN2	Fan control signal in PCM	ON/OFF	12	
FAN3	Fan control signal in PCM	ON/OFF	45	
FDMIAT*1	Intake air temperature	°C or °F	39	
FDMTIME*1	Time recorded between engine start and MIL illumination	°C or °F		
FDMECTS*1	Engine coolant temperature recorded when the engine is started	MIN	38	
FDMTP*1	Throttle opening angle	%	89	
FDPECT*2	ECT when pending code is detected	°C or °F	38	
FDPECTS*2	Engine coolant temperature recorded when the engine is started	°C or °F	38	
FDPFS1* ²	Fuel system feedback control status (RH)		_	
FDPFS2*2	Fuel system feedback control status (LH)		_	
FDPIAT*2	Intake air temperature	°C or °F	39	
FDPLFT1*2	Current bank 1 fuel trim adjustment	%	_	
FDPLFT2*2	Current bank 2 fuel trim adjustment			
FDPLOAD*2	Calculated engine load	%		
FDPRPM* ²	Engine speed	∕⁰ RPM	21, 22	
FDPSFT1*2		%	21,22	
FDPSFT1*2	Current bank 1 fuel trim adjustment (learning correction value)	<u>%</u> %	_	
	Current bank 2 fuel trim adjustment (learning correction value)		_	
FDPTIME*2 FDPTP	Time recorded between engine start and pending code is stored Throttle opening angle	MIN %	— 89	

Display on the NGS tester	Definition	Unit/ Condition	PCM terminal
FDPVS	Vehicle speed	KPH or MPH	58
FHO2S L	HO2S (Front LH) signal voltage	V	87
FHO2S R	HO2S (Front RH) signal voltage	V	60
FHO2SHL	HO2S heater (Front LH) control signal in PCM	ON/OFF	94
FHO2SHR	HO2S heater (Front RH) control signal in PCM	ON/OFF	93
FP RLY	Fuel pump relay control signal in PCM	ON/OFF	80* ⁵ , 104* ⁶
FTL V	Fuel tank level signal voltage	V	63
FTP	Fuel tank pressure	kPa or Hg	62
FTP V	Fuel tank pressure signal voltage	V	62
FTP1SV	Fuel tank pressure 1 (For leak test)	kPa or Hg	62
FTP2SV	Fuel tank pressure 2 (For leak test)	kPa or Hg	62
IACV	IAC valve duty value in PCM	%	54, 83
IAT	IAT	°C or °F	39
IAT V	IAT signal voltage	V	39
IGT	Ignition timing control signal in PCM	BTC	26 for #1 & #5 52 for #3 & #4 78 for #2 & #6
IMRC	Intake manifold runner control actuator control signal in PCM	ON/OFF	42
IMRCMTR	IMRC operation verification signal	ON/OFF	3
INJ L	Fuel injection duration (LH) in PCM	MS	73, 99, 100
INJ R	Fuel injection duration (RH) in PCM	MS	74, 75, 101
KR	Spark retard value to prevent knocking	DEG	57, 66
LSW	TR switch (1 range switch)	ON/OFF	7
LINE	Line pressure control solenoid control signal in PCM	%	81
LINE DES	Target automatic transaxle oil line pressure	KPA	_
LOAD	Calculated engine load in PCM	%	_
LONGFT1	Current long fuel trim (RH) adjustment (Learning correction value) in PCM	%	_
LONGFT2	Current long fuel trim (LH) adjustment (Learning correction value) in PCM	%	_
MAF	Mass air flow amount	g/sec	88
MAF V	MAF signal voltage	V	88
MHO2S*4	HO2S (Middle) signal voltage	V	35
MHO2SH*4	HO2S heater (Middle) control signal in PCM	ON/OFF	95
MIL	Malfunction indicator light control signal in PCM	ON/OFF	2
NON A/C	A/C installation confirmation signal	ON/OFF	8
O/DF LP	Overdrive OFF indicator control signal in PCM	ON/OFF	43
O/DF SW	Overdrive OFF switch	ON/OFF	29
PRCV	PRC solenoid valve control signal in PCM	ON/OFF	44
PRGV	Purge solenoid valve duty value in PCM	%	18
PSP SW	PSP switch	ON/OFF	31
R SW	TR switch (R position switch)	ON/OFF	32
RFCFLAG	Adaptive memory condition	ON/OFF	_
RHO2S*4	HO2S (Rear) signal voltage	V	61
RHO2S L*3	HO2S (Rear LH) signal voltage	V	61
RHO2S R*3	HO2S (Rear RH) signal voltage	V	35
RHO2SH*4	HO2S heater (Rear) control signal in PCM	ON/OFF	96
RHO2SHL*3	HO2S heater (Rear LH) control signal in PCM	ON/OFF	96
RHO2SHR*3	HO2S heater (Rear RH) control signal in PCM	ON/OFF	95

Display on the NGS tester	Definition	Unit/ Condition	PCM terminal
RPM	Engine speed	rpm	21, 22
RPMDES	Target engine speed	rpm	_
S SW	TR switch (2 range switch)	ON/OFF	9
SEGRP	EGR valve (stepping motor) position in PCM	No. of step	46, 56, 68, 72
SHIFT A	Shift solenoid A control signal in PCM	ON/OFF	27
SHIFT B	Shift solenoid B control signal in PCM	ON/OFF	1
SHIFT C	Shift solenoid C control signal in PCM	ON/OFF	70
SHRTFT1	Current short fuel trim (RH) adjustment in PCM	%	_
SHRTFT2	Current short fuel trim (LH) adjustment in PCM	%	_
TCC CON	Lockup control solenoid control signal in PCM	ON/OFF	82
TEN	TEN terminal (DLC in engine compartment)	ON/OFF	5
TP V	TP sensor signal voltage	V	89
TR SW	TR switch (P and N position switches)	ON/OFF	64
TURBINE	Turbine speed	rpm	23, 84
VS	Vehicle speed	KPH or MPH	58

^{*1 :} Freeze frame data while MIL is illuminated

^{*2 :} Freeze frame data while MIL is illuminated

*2 : Freeze frame data while pending code is detected

*3 : California emission regulation applicable models

*4 : Federal emission regulation applicable models

*5 : Without immobilizer system

*6 : With immobilizer system

DTC Comparsion ListsThe following codes are divided to improve serviceability

—: Not applied

Dort Name		2000MY		1998MY
Part Name	DTC	Definition	DTC	Definition
	P0102	Circuit low input		
	P0103	Circuit high input	1	
MAF sensor	P1102	Inconsistent with MAF sensor lower than expected	P0100	Circuit malfunction
	P1103	Inconsistent with MAF sensor higher than expected		
	P0106	Circuit range/performance problem		
EGR boost sensor (BARO sensor)	P0107	Circuit low input	_	_
(Britto scrisor)	P0108	Circuit high input		
	P0111	Circuit range/performance problem		
IAT sensor	P0112	Circuit low input	P0110	Circuit malfunction
	P0113	Circuit high input	1	
	P0116	Circuit range/performance problem		
ECT sensor	P0117	Circuit low input	P0115	Circuit malfunction
	P0118	Circuit high input	1	
	P0122	Circuit low input		
TD	P0123	Circuit high input	DO400	Circuit or alformation
TP sensor	P1122	Close stuck	P0120	Circuit malfunction
	P1123	Open stuck	1	
Closed loop control	P0125	Insufficient coolant temperature for closed loop fuel control	←	←
Thermostat	P0128	Coolant thermostat	_	_
	P0130	Circuit malfunction		
HO2S (Front RH)	P0134	No activity	←	←
	P1170	Inversion	1	
HO2S (Middle)	P0136*2	Circuit malfunction	_	_
HO2S (Rear RH)	P0138*1	High voltage	T —	_
HO2S (Rear RH)	P0140*1	No activity	←	←
HO2S (Middle)	P0140*2	No activity	T —	_
11000 (D)	P0144*2	High voltage		
HO2S (Rear)	P0146*2	No activity	1 —	_
	P0150	Circuit malfunction		
HO2S (Front LH)	P0154	No activity	1 —	_
	P1173	Inversion	1	
11000 (D 111)	P0158*1	High voltage		
HO2S (Rear LH)	P0160*1	No activity	1 —	_
Fuel injection system	P0171	Fuel trim system (RH) too lean		
(RH)	P0172	Fuel trim system (RH) too rich	 	
Fuel injection system	P0174	Fuel trim system (LH) too lean	P0170	Fuel trim system malfunction
(LH)	P0175	Fuel trim system (LH) too rich	1	

Part Name	2000MY			1998MY				
rait Naiile	DTC Definition			Definition				
	P0300	Random						
	P0301	Cylinder #1						
	P0302	Cylinder #4						
Misfire	P0303	Cylinder #2	\leftarrow	←				
	P0304	Cylinder #5						
	P0305	Cylinder #3						
	P0306	Cylinder #6						
Knock sensor	P0325	Circuit malfunction	_	_				
CKP sensor	P0335	Circuit malfunction	←	←				
	P0401	EGR flow insufficient						
EGR system	P0402	EGR flow excessive	_	_				
	P0420*2	Efficiency below threshold (TWC)	←	←				
Catalyst system	P0421*1	Efficiency below threshold (WU-TWC [RH])						
	P0431*1	Efficiency below threshold (WU-TWC [LH])	-	_				
	P0442	Small leak						
Evaporative emission	P0455	Large leak or blockage	←	←				
system	P0456	Very small leak	_	_				
	P1450	Excessive vacuum	←	←				
Purge solenoid valve	P0443	Circuit malfunction	\leftarrow	←				
	P0451	Circuit range/performance problem						
Fuel tank pressure sensor	P0452	Circuit low input	P0450	Circuit malfunction				
5611501	P0453	Circuit high input						
	P0461	Circuit range/performance problem		Circuit malfunction				
Food accordance is	P0462	Circuit low input	D4 455					
Fuel gauge sender unit	P0463	Circuit high input	P1455					
	P0464	Circuit intermittent						
VSS	P0500	Circuit malfunction	←	←				
	P0506	RPM lower than expected	D0505					
IAC	P0507	RPM higher than expected	P0505	Idle control system malfunction				
PSP switch	P0550	Circuit malfunction	←	←				
Brake switch	P0703	Circuit malfunction	←	←				
TR switch	P0705	Circuit malfunction	←	←				
Torque converter system	P0740	System malfunction	←	←				
Lockup control solenoid	P0743	Circuit malfunction	_	_				
Pressure control solenoid	P0745	Circuit malfunction	←	←				
Shift solenoid A	P0750	Circuit malfunction	←	←				
Shift solenoid B	P0755	Circuit malfunction	←	←				
Shift solenoid C	P0760	Circuit malfunction	_	_				
11000 hastes /F	P0031	Circuit low	D0405	Circuit and the section				
HO2S heater (Front RH)	P0032	Circuit high	P0135	Circuit malfunction				
HO2S heater (Rear RH)	P0037*1	Circuit low						
HO2S heater (Middle)	P0037*2	Circuit low	<u> </u>	_				
HO2S heater (Rear RH)	P0038*1	Circuit high						
HO2S heater (Middle)	P0038*2	Circuit high	-	_				

Dort Nome		2000MY	1998MY		
Part Name	DTC	Definition	DTC	Definition	
LIO2C hapter (Deer)	P0043*2	Circuit low	P0141	Circuit malfunction	
HO2S heater (Rear)	P0044*2	Circuit high	P0141	Circuit malfunction	
UO2S hooter (Front I U)	P0051	Circuit low			
HO2S heater (Front LH)	P0052	Circuit high	T	_	
HO2S heater (Rear LH)	P0057*1	Circuit low			
11023 fleater (Near Lift)	P0058*1	Circuit high		_	
HO2S (Middle)	P1169*2	Inversion		_	
PRC solenoid valve	P1250	Circuit malfunction	←	←	
CMP sensor	P1345	No SGC signal	←	←	
CDCV	P1449	Circuit malfunction	←	←	
EGR boost sensor solenoid valve	P1487	Circuit malfunction	_	_	
	P1496	Coil #1 circuit malfunction			
EGR valve	P1497	Coil #2 circuit malfunction	1		
EGR valve	P1498	Coil #3 circuit malfunction	1 —	_	
	P1499	Coil #4 circuit malfunction			
IAC valve	P1504	Circuit malfunction	_	_	
	P1512	Close stuck			
IMRC actuator	P1518	Open stuck] —	_	
	P1520	Circuit malfunction			
PCM (IC)	P1309	For misfire detected	_	_	
PCM (keep alive memory)	P1562	Circuit malfunction	_	_	
	P1602	Immobilizer unit — PCM communication error			
	P1603	ID number is unregistered (Immobilizer)			
	P1604	Code word is unregistered (Immobilizer)			
Immobilizer system	P1621	Code words do not match (Immobilizer)	_	_	
	P1622	ID numbers do not match (Immobilizer)			
	P1623	Code word/ID number writing and reading error (Immobilizer)			
	P1624	PCM does not receive unlock signal from immobilizer unit (PCM is okay)			
Generator	P1631	Output voltage signal no electricity	T —	_	
Battery	P1633	Overcharge	T —	_	
Generator	P1634	Generator terminal B circuit open	T —	_	
3–2 timing solenoid	P1765	Circuit malfunction	T —	_	

 ^{*1 :} California emission regulation applicable models
 *2 : Federal emission regulation applicable models

DTC Table

×: Applied
—: Not applied

	—: Not applied								
DTC No.	Condition	Relative control system		MIL	O/D OFF indicator light	DC	*1Monitor item	Memory function	
		Engine	ATX		flashes		Item	Tunotion	
P0031	HO2S heater (Front RH) circuit low	×	_	ON	No	2	O2 sensor heater	×	
P0032	HO2S heater (Front RH) circuit high	×	_	ON	No	2	O2 sensor heater	×	
P0037	*3HO2S heater (Middle) circuit low *2HO2S heater (Rear RH) circuit low	×	_	ON	No	2	O2 sensor heater	×	
P0038	*3HO2S heater (Middle) circuit high *2HO2S heater (Rear RH) circuit high	×	_	ON	No	2	O2 sensor heater	×	
* ³ P0043	HO2S heater (Rear) circuit low	×	_	ON	No	2	O2 sensor heater	×	
* ³ P0044	HO2S heater (Rear) circuit high	×	_	ON	No	2	O2 sensor heater	×	
P0051	HO2S heater (Front LH) circuit low	×	_	ON	No	2	O2 sensor heater	×	
P0052	HO2S heater (Front LH) circuit high	×	_	ON	No	2	O2 sensor heater	×	
*2P0057	HO2S heater (Rear LH) circuit low	×	_	ON	No	2	O2 sensor heater	×	
* ² P0058	HO2S heater (Rear LH) circuit high	×	_	ON	No	2	O2 sensor heater	×	
P0102	MAF circuit low input	×	×	ON	No	1	ССМ	×	
P0103	MAF circuit high input	×	×	ON	No	1	ССМ	×	
P0106	BARO circuit performance problem	×	—	ON	No	2	ССМ	×	
P0107	BARO circuit low input	×	_	ON	No	1	CCM	×	
P0108	BARO circuit high input	×	_	ON	No	1	CCM	×	
P0111	IAT circuit performance problem	×	_	ON	No	2	CCM	×	
P0112	IAT circuit low input	×		ON	No	1	CCM	×	
P0113	IAT circuit high input	×		ON	No	1	CCM	×	
P0116	ECT circuit performance problem	×	_	ON	No	2	CCM	×	
P0117	ECT circuit low input	×	×	ON	No	1	CCM	×	
P0118	ECT circuit high input	×	×	ON	No	1	ССМ	×	
P0122	TP circuit low input	×	×	ON	Yes	1	CCM	×	
P0123	TP circuit high input	×	×	ON	Yes	1	CCM	×	
P0125	Excessive time to enter CL fuel control	×	_	ON	No	2	CCM	×	
P0128	Coolant thermostat stuck open	×	_	ON	No	2	Thermostat	×	
P0130	HO2S (Front RH) circuit malfunction	×	_	ON	No	2	O2 sensor	×	
P0134	HO2S (Front RH) circuit no activity detected	×	_	ON	No	2	CCM	×	
* ³ P0136	HO2S (Middle) circuit malfunction	×	_	ON	No	2	O2 sensor	×	
* ² P0138	HO2S (Rear RH) circuit high input	×		ON	No	2	CCM	×	
P0140	*2HO2S (Rear RH) circuit no activity detected	×	_	ON	No	2	CCM	×	
	*3HO2S (Middle) circuit no activity detected	×	_	ON	No	2	CCM	×	
*3P0144	HO2S (Rear) circuit high input	×	_	ON	No	2	CCM	×	
* ³ P0146	HO2S (Rear) circuit no activity detected	×	_	ON	No	2	CCM	×	
P0150	HO2S (Front LH) circuit malfunction	×	_	ON	No	2	O2 sensor	×	
P0154	HO2S (Front LH) circuit no activity detected	×	_	ON	No	2	CCM	×	
*2P0158	HO2S (Rear LH) circuit high input	×	_	ON	No	2	CCM	×	
* ² P0160	HO2S (Rear LH) circuit no activity detected	×		ON	No	2	CCM	×	

DTC No.	Condition	Rela control		MIL	O/D OFF indicator	DC	* ¹ Monitor item	Memory function
		Engine	ATX		light flashes			
P0171	Fuel trim system (RH) too lean	×	_	ON	No	2	Fuel	×
P0172	Fuel trim system (RH) too rich	×	_	ON	No	2	Fuel	×
P0174	Fuel trim system (LH) too lean	×	_	ON	No	2	Fuel	×
P0175	Fuel trim system (LH) too rich	×	_	ON	No	2	Fuel	×
P0300	Random misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0301	Cylinder 1 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0302	Cylinder 2 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0303	Cylinder 3 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0304	Cylinder 4 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0305	Cylinder 5 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0306	Cylinder 6 misfire detected	×	_	Flash or ON	No	1 or 2	Misfire	×
P0325	Knock sensor circuit malfunction	×	_	ON	No	1	CCM	×
P0335	CKP sensor circuit malfunction	×	X	ON	No	1	CCM	×
P0401	EGR flow insufficient detected	×	_	ON	No	2	EGR	×
P0402	EGR flow excessive detected	×	_	ON	No	2	EGR	×
* ³ P0420	Catalyst system efficiency below threshold	×	_	ON	No	2	Catalyst	×
* ² P0421	Warm-up catalyst system (RH) efficiency below threshold	×	_	ON	No	2	Catalyst	×
* ² P0431	Warm-up catalyst system (LH) efficiency below threshold	×	_	ON	No	2	Catalyst	×
P0442	Evaporative emission control system leak detected (small leak)	×	_	ON	No	2	Evaporative	×
P0443	Evaporative emission control system purge control valve circuit malfunction (Equip leak check)	×	_	OFF	No	1	Other	l
P0451	Fuel tank pressure sensor performance problem	×	_	ON	No	2	ССМ	×
P0452	Evaporative emission control system pressure sensor low input	×	_	ON	No	2	ССМ	×
P0453	Evaporative emission control system pressure sensor high input	×	_	ON	No	2	ССМ	×
P0455	Evaporative emission control system leak detected (gross leak)	×	_	ON	No	2	Evaporative	×
P0456	Evaporative emission control system leak detected (very small leak)	×	_	ON	No	2	Evaporative	×
P0461	Fuel gauge sender unit circuit range/performance	×	_	ON	No	2	ССМ	×
P0462	Fuel gauge sender unit circuit low input	×	_	ON	No	2	CCM	×
P0463	Fuel gauge sender unit circuit high input	×	_	ON	No	2	CCM	×
P0464	Fuel gauge sender unit circuit performance problem (slosh check)	×	_	ON	No	2	ССМ	×
P0500	VSS malfunction	×	X	ON	Yes	2	CCM	×
P0506	Idle control system RPM lower than expected	×	_	ON	No	2	ССМ	×
P0507	Idle control system RPM higher than expected	×	_	ON	No	2	ССМ	×

DTC No.	Condition	Rela control		MIL	O/D OFF indicator	DC	* ¹ Monitor item	Memory function
		Engine	ATX		light flashes			
P0550	PSP switch circuit malfunction	×	_	ON	No	2	ССМ	×
P0703	Brake switch input malfunction	×	_	ON	No	2	ССМ	×
P0705	TR switch circuit malfunction (Short circuit)	T —	×	ON	No	1	ССМ	×
P0706	TR switch circuit malfunction (Open circuit)	_	×	ON	No	2	ССМ	×
P0710	TFT sensor circuit malfunction (Open/short)	_	×	ON	No	1	ССМ	×
P0711	TFT sensor circuit range/performance (Stuck)	_	×	ON	No	2	ССМ	×
P0715	Input/turbine speed sensor circuit malfunction	_	×	ON	Yes	1	ССМ	×
P0731	Gear 1 incorrect	T —	×	ON	No	2	ССМ	×
P0732	Gear 2 incorrect	T —	×	ON	No	2	ССМ	×
P0733	Gear 3 incorrect	T —	×	ON	No	2	ССМ	×
P0734	Gear 4 incorrect	 	×	ON	No	2	ССМ	×
P0740	TCC system malfunction	_	×	ON	No	1	ССМ	×
P0743	TCC control solenoid valve malfunction	1 _ 1	×	ON	Yes	1	ССМ	×
P0745	Pressure control solenoid malfunction	<u> </u>	×	OFF	Yes	1	ССМ	×
P0750	Shift solenoid A malfunction (Open/short)	1 —	×	ON	Yes	1	ССМ	×
P0755	Shift solenoid B malfunction (Open/short)	T —	×	ON	Yes	1	ССМ	×
P0760	Shift solenoid C malfunction (Open/short)	<u> </u>	×	ON	Yes	1	ССМ	×
P1102	MAF sensor inconsistent with TP sensor (lower than expected)	×	_	ON	No	2	ССМ	×
P1103	MAF sensor inconsistent with RPM (greater than expected)	×	_	ON	No	2	ССМ	×
P1122	TP stuck close	×	_	ON	No	2	ССМ	×
P1123	TP stuck open	×	_	ON	No	2	ССМ	×
* ³ P1169	HO2S (Middle) no inversion	×	_	ON	No	2	ССМ	×
P1170	HO2S (Front RH) no inversion	×	_	ON	No	2	ССМ	×
P1173	HO2S (Front LH) no inversion	×	_	ON	No	2	CCM	×
P1250	PRC solenoid valve circuit malfunction	×	_	OFF	No	1	Other	×
P1309	PCM IC for misfire detection	×	_	ON	No	2	ССМ	×
P1345	CMP sensor circuit malfunction	×	_	ON	No	1	ССМ	×
P1449	CDCV circuit malfunction	×	_	OFF	No	1	Other	_
P1450	Evaporative emission control system malfunction (excessive vacuum)	×	_	ON	No	2	ССМ	×
P1487	EGR boost sensor solenoid valve circuit malfunction	×	_	OFF	No	1	Other	_
P1496	EGR valve motor coil 1 open or short	×	_	OFF	No	1	Other	_
P1497	EGR valve motor coil 2 open or short	×	_	OFF	No	1	Other	_
P1498	EGR valve motor coil 3 open or short	×	_	OFF	No	1	Other	_
P1499	EGR valve motor coil 4 open or short	×	_	OFF	No	1	Other	_
P1504	IAC valve circuit malfunction	×	_	ON	No	1	ССМ	×
P1512	IMRC shutter valve close stuck	×	_	ON	No	2	ССМ	×
P1518	IMRC shutter valve open stuck	×	_	ON	No	2	ССМ	×
P1520	IMRC drive circuit malfunction	×	_	ON	No	2	ССМ	×
P1562	PCM +BB voltage low	×	_	ON	No	1	ССМ	×
P1602	Immobilizer unit — PCM communication error	×	_	OFF	No	_	Other	×
P1603	Code word unregistered in PCM	×	_	OFF	No	_	Other	×
P1604	Key ID number unregistered in PCM	×		OFF	No		Other	×

DTC No.	Condition		Relative control system		O/D OFF indicator	DC	*1Monitor	Memory function
		Engine	ATX		light flashes		item	lunction
P1621	Code word mismatch after engine cranking	×	_	OFF	No	_	Other	×
P1622	Key ID number mismatch	×	_	OFF	No	_	Other	×
P1623	Code word or key ID number read/write error in PCM	×	_	OFF	No	_	Other	×
P1624	Immobilizer system communication counter=0	×	_	OFF	No	_	Other	×
P1631	Generator output voltage signal no electricity	×	_	OFF	No	_	Other	×
P1633	Battery overcharge	×	_	OFF	No	_	Other	×
P1634	Generator terminal B circuit open	×	_	OFF	No	_	Other	×
P1765	3-2 timing solenoid valve	_	×	OFF	Yes	_	ССМ	×

^{*1:} Indicates the applicable item in On-Board System Readiness Test defined by CARB.

Failure Detection Functions

 The failure detection functions include the self-diagnosis function, fail-safe function, auxiliary diagnosis function, and memory function.

Self-diagnosis function and fail-safe function

 Failure detection of the input sensor system is carried out when the ignition switch is at the ON position, or when the engine is running. When a failure is detected, the diagnosis system outputs the diagnostic trouble code. At the same time, the PCM switches the input signal value to the preset value in its memory to ensure vehicle drivability. The former function is called the self-diagnosis function and the latter is called the fail-safe function.

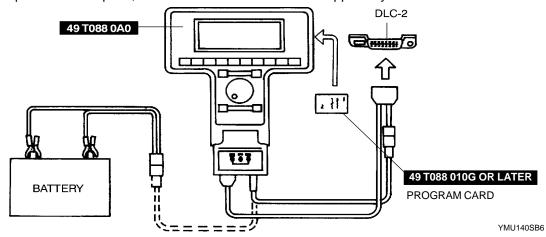
Auxiliary diagnosis function

• Failure detection of the output device system is carried out at the moment when the ignition switch is turned to the ON position. When a failure is detected, the diagnosis system outputs the diagnostic trouble code.

Memory function

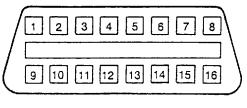
- The memory function stores a record of the failure even after failure is solved. Because failed systems are
 memorized even after the ignition switch is turned to the OFF position, this function can be used to detect
 intermittent failures.
- The memory can be erased by using the NGS or disconnecting the negative battery cable.

Failure Indication Function


• When a failure is detected, the indication function outputs the diagnostic trouble code.

^{*2 :} California emission regulation applicable models.

^{*3 :} Federal emission regulation applicable models.


Using the NGS tester

- Displays information being processed by the PCM on the screen.
- Communicates with the PCM by serial communication.
- For functions and operation description, refer to the instruction manual supplied by the manufacturer.

DLC-2 Outline

• The DLC-2 located in the driver compartment is a service connector defined by OBD II regulations.

DLC-2 X3U140SJ4

- The DLC-2 includes 16 terminals.
- Following is function of each terminal.

—: Not applied

	Terminal	Franction	—. Not applied
No.	Name	Function	Remarks
1	+BB	Battery positive voltage	For NGS tester
2	_	-	-
3	_	-	-
4	FEPS	Flash EPROM power supply	For NGS tester
5	_	_	_
6	_	_	_
7	_	_	_
8	_	_	_
9	_	_	_
10	KLN	For PCM and ABS HU/CM-related functions; PID/data monitor and record and simulation test For simulation function	For NGS tester
11	_	-	_
12	SGND	Ground (signal)	For communication
13	CGND	Ground (chassis)	For NGS tester
14	_	_	_
15	_	_	-
16		_	_

Simulation Test

 By using the SIMULATION TEST function (NGS tester), output devices can be operated regardless of the PCM control while the ignition switch is at the ON position (engine OFF) or the engine is running.

Note

Simulation items for the automatic transaxle control are not included in the following table.
 (Refer to 05–17–23 Simulation Test.)

Simulation item table

×: Applied
—: Not applied

Simulation	Applicable component	Operation	Test co	PCM	
item	Applicable component	Operation	IG ON Idle		termina
3–2 TIME	3–2 timing solenoid	ON or OFF	×	_	28
A/C RLY	A/C relay	ON or OFF	×	×	69
CHRGLMP	Generator warning light	ON or OFF	×	×	98
Cooling fan relay No 2 No 3		ON or OFF	×	×	17
FAN2	Cooling fan relay No.4	ON or OFF	×	×	12
FAN3	Cooling fan relay No.1 and No.6	ON or OFF	×	×	45
FP RLY	Fuel pump relay	ON or OFF	×	×	80* ² , 104* ¹
IACV	Idle air control valve	Actuated by any duty value (0—100%)	×	×	54, 83
IMRC	IMRC actuator	ON or OFF	×	×	42
INJ	Fuel injection duration	Actuated +50%— –50% of fuel injection time	_	×	73, 74, 75, 99, 100, 101
INJ#1	Fuel injector (Cylinder No.1)	OFF	_	×	75
INJ#2	Fuel injector (Cylinder No.2)	OFF	_	×	101
INJ#3	Fuel injector (Cylinder No.3)	OFF	_	×	74
INJ#4	Fuel injector (Cylinder No.4)	OFF	_	×	100
INJ#5	Fuel injector (Cylinder No.5)	OFF	_	×	73
INJ#6	Fuel injector (Cylinder No.6)	OFF	_	×	99
LINE	Pressure control solenoid	Actuated by any duty value (0—100%)	×	×	81
PRCV	PRC solenoid valve	ON or OFF	×	×	18
PRGCHK	Purge solenoid valve and canister drain cut valve	For purge solenoid valve: Actuated by any duty value (0—100%) For CDCV: ON	×	×	18, 67
PRGV	Purge solenoid valve	Actuated by any duty value (0—100%)	×	×	67
SEGRP	EGR valve (stepping motor)	Actuated by any stepping value (0—60 steps)	×	×	46, 56, 68, 72
ATLF	Generator field coil control duty value	OFF	_	×	53
CDCV	Canister drain cut valve	ON or OFF	×	×	67
EGRBV	EGR boost sensor solenoid valve	ON or OFF	×	×	47
SHIFT A	Shift A solenoid	ON or OFF	×	_	27
SHIFT B	Shift B solenoid	ON or OFF	×	_	1
SHIFT C	Shift C solenoid	ON or OFF	×		70
TCC CON	Lockup control solenoid	ON or OFF	×	_	82

^{*1:} With immobilizer system

^{*2 :} Without immobilizer system

Failure Detection Condition

- The failure detection function monitors input/output devices and system components and compare their value with normal values that are stored in the PCM.
- The following failure detection conditions are summarized information.

Note

All values indicated below are approximate values in order to match the NGS display.

Mass air flow (MAF) sensor

MAF sensor circuit low input (P0102)

PCM monitors input voltage from MAF sensor when engine is running. If input voltage is below 0.24 V, PCM
determines that MAF sensor circuit is malfunctioning.

MAF sensor circuit high input (P0103)

• PCM monitors input voltage from TP sensor after the ignition switch is turned to the ON position. If input voltage is above 4.8 V, PCM determines that TP sensor circuit is malfunctioning.

MAF sensor value inconsistent with TP sensor (P1102)

• PCM compares actual input signal from MAF sensor with the expected input signal from MAF sensor which the PCM calculates by input voltage from TP sensor. If the mass intake air flow amount is below 8.25 g/sec. {1.09 lb/min.} for 5 seconds and throttle opening angle is greater than 50% with the engine running, the PCM determines that the measured mass intake air flow amount is too low.

MAF sensor value inconsistent with RPM (P1103)

 PCM compares actual input signal from MAF sensor with the expected input signal from MAF sensor which PCM calculates by engine speed. If the mass intake air flow amount is above 103 g/sec. {13.6 lb/min.} for 5 seconds and engine speed is less than 2,000 rpm with the engine running, PCM determines that detected mass intake air flow amount is too high.

EGR boost sensor (BARO sensor)

EGR boost sensor circuit performance problem (P0106)

PCM monitors differences between intake manifold vacuum and atmospheric pressure at idle, which EGR boost sensor detects by switching EGR boost sensor solenoid valve. If difference is below 6.43 kPa {48.2 mmHg, 1.90 inHg}, the PCM determines that there is a EGR boost sensor performance problem.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

EGR boost sensor circuit low input (P0107)

 PCM monitors input voltage from EGR boost sensor when monitoring conditions are met. If input voltage is below 0.2 V, the PCM determines that EGR boost sensor circuit is malfunctioning.

[MONITORING CONDITION]

- Intake air temperature is above 10 °C {50 °F}.
- EGR boost sensor solenoid valve is turned OFF.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition during first drive cycle. Therefore, PENDING CODE is not available.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

EGR boost sensor circuit high input (P0108)

 PCM monitors input voltage from EGR boost sensor when monitoring conditions are met. If input voltage is above 4.8 V, the PCM determines that EGR boost sensor circuit is malfunctioning.

[MONITORING CONDITION]

- Intake air temperature is above 10 °C (50 °F).
- EGR boost sensor solenoid valve is turned OFF.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition during first drive cycle. Therefore, PENDING CODE is not available.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Intake air temperature (IAT) sensor

IAT sensor circuit performance problem (P0111)

Intake air temperature is higher than engine coolant temperature by 40 °C {104 °F}.

IAT sensor circuit low input (P0112)

PCM detected IAT sensor voltage below 0.2 V.

IAT sensor circuit high input (P0113)

PCM detected IAT sensor voltage above 4.8 V.

Engine coolant temperature (ECT) sensor

ECT sensor signal stuck (P0116)

When vehicle is soaked more than 6 hours, the PCM monitors ECT value for 5 minutes after starting the
engine. If the difference between maximum and minimum value during monitoring is less than 5.6 °C {10.1
°F}, the PCM determines that the ECT sensor signal stuck.

ECT sensor circuit low input (P0117)

PCM detected ECT sensor voltage below 0.14 V.

ECT sensor circuit high input (P0118)

PCM detected ECT sensor voltage above 4.57 V.

Throttle position (TP) sensor

TP sensor circuit low input (P0122)

• PCM monitors input voltage from TP sensor after the ignition switch is turned on (engine OFF or running). If input voltage is below 0.16 V, the PCM determines that the TP sensor circuit is malfunctioning.

TP sensor circuit high input (P0123)

 PCM monitors input voltage from TP sensor after ignition switch is turned on (engine OFF or running). If input voltage is above 4.96 V, PCM determines that TP sensor circuit is malfunctioning.

TP sensor close stuck (P1122)

PCM detects that throttle valve opening angle is below 12.5% for 5 seconds. PCM determines that TP sensor is stuck closed if engine coolant temperature is above 70 °C {158 °F} and MAF sensor signal is above 88.3 g/sec. {11.7 lb/min.} for 5 seconds.

TP sensor open stuck (P1123)

 PCM detects that throttle valve opening angle is above 50% for 5 seconds. PCM determines that TP sensor is stuck open if engine speed is above 500 rpm and MAF sensor signal is below 8.25 g/sec. {1.09 lb/min.}.

Closed loop control

Excessive time to enter closed loop fuel control (P0125)

The PCM monitor ECT sensor signal at PCM terminal 38 after engine is started at the engine is cold. If ECT voltage does not reach the expected temperature for specified period, PCM determines that it has taken an excessive amount of time for the engine coolant temperature to reach the temperature necessary to start closed-loop fuel control.

Thermostat

Thermostat open stuck (P0128)

 If accumulated temperature between predicted ECT and actual ECT is above threshold, PCM determines that the coolant thermostat is stuck open.

Heated oxygen sensor (HO2S) (Front RH) HO2S (Front RH) circuit malfunction (P0130)

PCM monitors inversion cycle period, lean-to-rich response time and rich-to-lean response time of the sensor. PCM calculates the average inversion cycle period, average lean-to-rich, rich-to-lean response time when monitoring conditions are met. If any exceeds the expected value, the PCM determines that circuit is malfunctioning.

[Monitoring conditions]

- In OBDII drive mode 3 or when all of the following conditions are met:
 - Calculation load 28—59% depends on engine speed.
 - Engine speed 1,500—3,000 rpm
 - Vehicle speed is above 5.6 km/h {3.5 mph}
 - Engine coolant temperature is above –10 °C {14 °F}

HO2S (Front RH) no activity detected (P0134)

PCM monitors input voltage from HO2S (front RH) when monitoring conditions are met. If input voltage never exceeds 0.55 V for 94 seconds, the PCM determines that the sensor circuit is not activated.
 [Monitoring conditions]

- In OBDII drive mode 3 or when both the following:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

HO2S (Front RH) no inversion (P1170)

- PCM monitors input voltage from HO2S (front RH) when monitoring conditions are met. If input voltage stays at a value other than 0.45 V for 43.2 seconds, PCM determines that there is no HO2S (front RH) inversion.
 IMonitoring Conditions!
 - In drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}.

Heated oxygen sensor (HO2S) (Middle) (Federal emission regulation applicable models) HO2S (Middle) circuit malfunction (P0136)

 PCM monitors the inversion cycle period, lean-to-rich response time and rich-to-lean response time of the sensor. PCM calculates the average of the inversion cycle period, average lean-to-rich and rich-to-lean response time when monitoring conditions are met. If any exceeds expected value, the PCM determines that circuit is malfunctioning.

[Monitoring conditions]

- In OBDII drive mode 3 or when all of the following conditions are met:
 - Calculation load 25—70% depends on engine speed.
 - Engine speed 1,500—3,000 rpm
 - Vehicle speed is over 5.6 km/h {3.5 mph}
 - Engine coolant temperature is above -10 °C {14 °F}

HO2S (Middle) no activity detected (P0140)

 PCM monitors input voltage from HO2S (middle) when monitoring conditions are met. If input voltage never exceeds 0.55 V for 94 seconds, PCM determines that sensor circuit is not activated.

[Monitoring conditions]

- In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

HO2S (Middle) no inversion (P1169)

 PCM monitors input voltage from HO2S (Middle) when the following monitoring conditions are met. If input voltage from sensor is below or above 0.45 V for 43.2 seconds, PCM determines that there is no HO2S (Middle) inversion.

[Monitoring conditions]

- Engine speed is above 1.500 rpm.
- Engine coolant temperature is above 70 °C {158 °F}

Heated oxygen sensor (HO2S) (Rear RH) (California emission regulation applicable models) HO2S (Rear RH) signal high stuck (P0138)

 PCM monitors input voltage from HO2S (rear RH) when monitoring conditions are met. If input voltage is above 0.45 V for 6 seconds during deceleration (fuel cut), the PCM determines that the circuit input is high.

HO2S (Rear RH) no activity detected (P0140)

 PCM monitors input voltage from HO2S (rear RH) when monitoring conditions are met. If input voltage never exceed 0.55 V for 30 seconds, the PCM determines that sensor circuit is not activated.

[Monitoring conditions]

- In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

Heated oxygen sensor (HO2S) (Rear) (Federal emission regulation applicable models) HO2S (Rear) signal high stuck (P0144)

 PCM monitors input voltage from HO2S (rear RH) when monitoring conditions are met. If input voltage is above 0.45 V for 6 seconds during deceleration (fuel cut), the PCM determines that the circuit input is high.

HO2S (Rear) no activity detected (P0146)

PCM monitors input voltage from HO2S (rear) when the following monitoring conditions are met. If input voltage never exceed 0.55 V for 30 seconds, the PCM determines that sensor circuit is not activated. [Monitoring conditions]

- In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1.500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

Heated oxygen sensor (HO2S) (Front LH) HO2S (Front LH) circuit malfunction (P0150)

PCM monitors inversion cycle period, lean-to-rich response time and rich-to-lean response time of the sensor.
 PCM calculates the average inversion cycle period, average lean-to-rich and rich-to-lean response time when monitoring conditions are met. If any exceeds expected value, the PCM determines that circuit is malfunctioning.

[Monitoring conditions]

- In OBDII drive mode 3 or when all of the following conditions are met:
 - Calculation load 28—59% depends on engine speed.
 - Engine speed 1,500—3,000 rpm
 - Vehicle speed is over 5.6 km/h {3.5 mph}
 - Engine coolant temperature is above –10 °C {14 °F}

HO2S (Front LH) no activity detected (P0154)

- PCM monitors input voltage from HO2S (front LH) when the following monitoring conditions are met. If the
 input voltage never exceeds 0.55 V for 94 seconds, PCM determines that sensor circuit is not activated.
 [Monitoring conditions]
 - In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

HO2S (Front LH) no inversion (P1173)

 PCM monitors input voltage from HO2S (front LH) when the following monitoring conditions are met. If input voltage stays at a value other than 0.45 V for 43.2 seconds, the PCM determines that there is no HO2S (front RH) inversion.

[Monitoring Conditions]

- In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}.

Heated oxygen sensor (HO2S) (Rear LH) (California emission regulation applicable models) HO2S (Rear LH) signal high stuck (P0158)

• PCM monitors input voltage from HO2S (rear LH) when monitoring conditions are met. If input voltage is above 0.45 V for 6 seconds during deceleration (fuel cut), the PCM determines that the circuit input is high.

HO2S (Rear LH) no activity detected (P0160)

 PCM monitors input voltage from HO2S (rear LH) when monitoring conditions are met. If input voltage never exceeds 0.55 V for 30 seconds, the PCM determines that sensor circuit is not activated.

[Monitoring conditions]

- In OBDII drive mode 3 or when both of the following conditions are met:
 - Engine speed is above 1,500 rpm.
 - Engine coolant temperature is above 70 °C {158 °F}

Fuel injection system

Fuel trim system too lean (P0171: RH, P0174: LH)

PCM monitors short fuel trim (SHRTFT) and long fuel trim (LONGFT) values when the monitoring conditions are met or during OBDII DRIVE MODE 1. If fuel trim exceeds the expected value, the PCM determines that the fuel system is too lean.

Fuel trim system too rich (P0172: RH, P0175: LH)

PCM monitors short fuel trim (SHRTFT) and long fuel trim (LONGFT) values when the monitoring conditions
are met or during OBDII DRIVE MODE 1. If fuel trim exceeds the expected value, the PCM determines that
the fuel system is too rich.

Misfire

Random/multiple misfire detected (P0300)

PCM monitors CKP sensor input signal interval time. PCM calculates the change of the interval time for each
cylinder. If the change of interval time exceeds the preprogrammed criteria, PCM detects a misfire in the
corresponding cylinder. While the engine is running, PCM counts the number of misfires that occurred at 200
crankshaft revolutions and 1,000 crankshaft revolutions and calculates misfire ratio for each crankshaft
revolution. If the ratio exceeds the preprogrammed criteria, PCM determines that a misfire, which can damage
the catalytic converter or affect emission performance, has occurred.

Specific cylinder misfire detected (P0301, P0302, P0303, P0304, P0305, P0306)

PCM monitors crankshaft position sensor input signal interval time. PCM calculates the change of the interval time for each cylinder. If the change of interval time exceeds the preprogrammed criteria, PCM detects a misfire in the corresponding cylinder. While the engine is running, PCM counts the number of misfires that occurred at 200 crankshaft revolutions and 1,000 crankshaft revolutions and calculates misfire ratio for each crankshaft revolution. If the ratio exceeds the preprogrammed criteria, PCM determines that a misfire, which can damage the catalytic converter or affect emission performance, has occurred.

Knock sensor

Knock sensor circuit malfunction (P0325)

PCM monitors input signal from knock sensor when the following monitoring conditions are met. If PCM does
not receive input signal from sensor for 5 seconds, PCM determines that knock sensor circuit is
malfunctioning.

[MONITORING CONDITION]

- Engine load is above 12%
- Engine coolant temperature is above 65 °C {149 °F}.
- Engine speed is within 1,000—4,500 rpm.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition during first drive cycle.
- PENDING CODE is not available.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

CKP sensor

CKP sensor circuit malfunction (P0335)

PCM monitors input voltage from CKP sensor while MAF is above 2.7 g/sec {0.36 lb/min}. If PCM does not
receive input voltage from CKP sensor for 4.2 sec, the PCM determines that CKP sensor circuit is
malfunctioning

EGR system

EGR flow insufficiency detected (P0401)

• Difference in intake manifold pressure when the EGR is operated and when it is stopped is too small.

EGR flow excess detected (P0402)

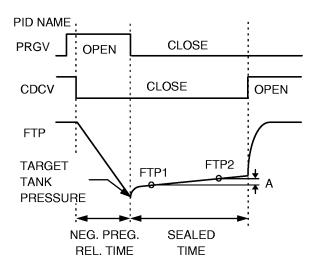
Difference in intake manifold pressure when the EGR is operated and when it is stopped is too large.

Catalyst system

Catalyst system efficiency below expected value (P0420) (Federal emission regulation applicable models)

- PCM compares the number of HO2S (middle) and HO2S (rear) inversions for a predetermined time. PCM monitors the number of inversions the rear side performs while the middle side inverts for a specified number of times when the following monitoring conditions are met. PCM detects the inversion ratio. If inversion ratio is below threshold, PCM determined that catalyst system has deteriorated.
 - Engine speed 1,250—2,500 rpm
 - Calculated load 16—60%(*1)
 - Vehicle speed 38—100 km/h {24—62 mph}

(*1): Maximum calculated load value varies depending on engine speed.


Warm-up catalyst system efficiency below expected value (P0421: RH, P0431:LH) (California emission regulation applicable models)

- PCM compares the number of HO2S (front) and HO2S (rear) inversions for a predetermined time. PCM
 monitors the number of inversions the rear side performs while the front side inverts for a specified number of
 times when the following monitoring conditions are met. PCM detects the inversion ratio. If inversion ratio is
 below threshold, PCM determined that catalyst system has deteriorated.
 - Engine speed 1,000—3,000 rpm
 - Calculated load 22—45%(*1)
 - Vehicle speed 39.5—96.0 km/h {24.5—59.5 mph}

(*1): Maximum calculated load value varies depending on engine speed.

Evaporative emission system Small leak detected (P0442)

 PCM measures the fuel tank pressure (ftp2), which is the vacuum when a specified period has passed after EVAP system is sealed. The PCM determines the pressure difference between ftp1 and ftp2. If pressure differential exceeds the threshold, PCM determines that the EVAP system has a small leak. This monitor can activate when the PCM determines that the CONSTANTLY LEAK DETECTED test results are passed.

YMU140SC4

[Monitoring Conditions]

- Target pressure: –2.16 kPa {–16.2 mmHg, –0.638 inHg}
- PCM monitors EVAP system when driving under following conditions:
 - Remaining fuel 15—18%
 - IAT at engine start above -10 °C {14 °F}
 - ECT at engine start -10.0—32.5 °C {14.0—90.5 °F}
 - Atmospheric pressure above 72.0 kPa {540 mmHg, 21.3 inHg}
 - Vehicle speed 39—130 km/h {25—80 mph}
 - Engine speed 1,100—3,400 rpm
 - Calculated load 7—80%
 - Throttle opening angle 3.1—12.5%
 - IAT during monitor –10—55 °C {14—131 °F}

Diagnostic hint note:

- This is an intermittent monitor (Evaporative leak monitor).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE and DIAGNOSTIC MONITORING TEST RESULTS are available.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Large leak or blockage detected (P0455)

PCM measures the fuel tank pressure (ftp1), which is the vacuum when a specified period has passed after
the tank pressure has reached the preprogrammed target pressure and purge solenoid valve has been closed
while monitoring conditions are met. If fuel tank pressure is below threshold, PCM determines that the EVAP
system is blocked or has a large leak.

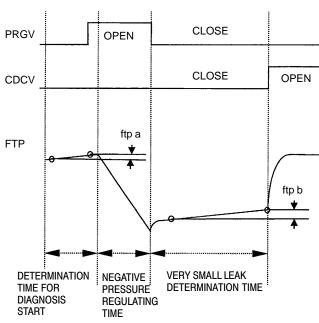
[Monitoring Condition]

Target pressure: -2.16 kPa {-16.2 mmHg, -0.638 inHg}

PCM monitors evaporative control system when driving under following conditions:

- Remaining fuel 15—85%
- IAT at engine start above –10 °C {14 °F}
- ECT at engine start –10.0—32.5 °C {14.0—90.5 °F}
- Atmospheric pressure above 72.0 kPa {540 mmHg, 21.3 inHg}
- Vehicle speed 39—130 km/h {25—80 mph}
- Engine speed 1,100—3,400 rpm
- Calculated load 7—80%
- Throttle opening angle 3.1—12.5%
- IAT during monitor –10—55 °C {14—131 °F}

Diagnostic hint note:


- This is an intermittent monitor (Evaporative leak monitor).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Very small leak (P0456)

PCM measures the fuel tank pressure which is the vacuum when a specified period has passed after EVAP system is sealed. PCM determines the pressure difference (ftp b) with correction (ftp a). If pressure difference exceeds the threshold, PCM determines that the EVAP system has a very small leak. This monitor can activate when the PCM determines that the CONSTANTLY LEAK DETECTED test results are passed and the following monitoring conditions are met at idle.

YMU140SCA

- ECT at engine start 32.5 °C {90.5 °F} or below
- Remaining fuel 35% or above
- ECT 79—121 °C {175—249 °F}
- Vehicle speed 11 km/h {6.8 mph} or below
- Throttle opening angle 1.4% or below

Excessive vacuum (P1450)

PCM monitors fuel tank pressure when monitoring conditions are met. If pressure is below -3.92 kPa {-29.4 mmHg, -1.16 in Hg} for 8 seconds, PCM determines the excessive vacuum.

[Monitoring Condition]

- Intake air temperature is above –10 °C {14 °F}.
- Engine coolant temperature is 105 °C {221 °F} or below.
- Vehicle speed is 95.2 km/h {59.0 mph} or below.
- Engine coolant temperature at engine start is below 35 °C {95 °F}.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition at first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Purge solenoid valve

Purge solenoid valve circuit malfunction (P0443)

• The PCM monitors the input voltages from purge solenoid valve while turning the ignition switch to ON (engine OFF). If the PCM terminal No.18 does not read B+ unless circuit is grounded during operation, the PCM determines that the purge solenoid valve circuit has malfunction.

Fuel tank pressure sensor

Fuel tank pressure sensor low stuck (P0451)

 Difference in fuel tank presure, which PCM monitors while operating evaporative leak monitor function or purge solenoid valve is intentionally closed, is too small or too large.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

CONTROL SYSTEM

Fuel tank pressure sensor circuit low input (P0452)

 PCM monitors input voltage from fuel tank pressure sensor when monitoring conditions are met. If input voltage is below 0.2 V for 2 seconds after engine is started. The PCM determines that fuel tank pressure sensor circuit is malfunctioning.

[Monitoring Condition]

- After 2 second after engine is started
- Engine coolant temperature is below 80 °C {176 °F}

Diagnostic hint note:

- This is a continuous CCM monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition at first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Fuel tank pressure sensor circuit high input (P0453)

PCM monitors input voltage from fuel tank pressure sensor when monitoring conditions are met. If input
voltage is above 4.8 V for 2 seconds after engine is started. PCM determines that fuel tank pressure sensor
circuit is malfunctioning.

[Monitoring Condition]

- After 2 second after engine is started
- Engine coolant temperature is below 80 °C {176 °F}

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above detection condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Fuel gauge sender unit

Fuel gauge sender unit circuit range/performance problem (P0461)

 PCM monitors fuel gauge sender unit input voltage difference before and after PCM-calculated fuel consumption has reached 25.0 liters {26.4 US qt, 22.0 Imp qt}. If fuel gauge sender unit operation reflects 5% less than PCM-calculated fuel consumption, PCM determines that fuel gauge sender unit signal range/performance is in error.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Fuel gauge sender unit circuit low input (P0462)

 The PCM monitors the voltage of the fuel gauge sender unit. If the input voltage at PCM terminal 63 is below 0.1 V for 5 seconds, the PCM determines that the fuel gauge sender unit circuit has malfunction.

Fuel gauge sender unit circuit high input (P0463)

• The PCM monitors the voltage of the fuel gauge sender unit. If the input voltage at PCM terminal 63 is above 4.9 V for 5 seconds, the PCM determines that the fuel gauge sender unit circuit has malfunction.

Fuel gauge sender unit circuit performance (slosh check) (P0464)

 PCM monitors fuel gauge sender unit input voltage while engine is running. If fuel gauge sender unit input voltage differences are above 1 V for 14 seconds while vehicle is stopped, PCM determines that fuel gauge sender unit signal is incorrect.

Diagnostic hint note:

- This is a continuous monitor (CCM).
- MIL illuminates if PCM detects the above malfunction condition in two consecutive drive cycles.
- PENDING CODE is available if PCM detects the above malfunction condition during first drive cycle.
- FREEZE FRAME DATA is available.

DTC is stored in the PCM memory.

Vehicle speed sensor (VSS)

VSS circuit malfunction (P0500)

- If input signal from VSS indicates 0 km/h during the following monitoring conditions:
 - D, 2, or 1 range switch ON
 - Engine coolant temperature above 60 °C
 - Turbine speed above 1,500 rpm

CONTROL SYSTEM

Idle air control (IAC) system

Idle speed lower than expected (P0506)

 Actual idle speed is lower than expected by 100 rpm for 14 seconds, when brake pedal is depressed (brake switch is ON) and steering wheel is held straight ahead (power steering pressure switch is OFF).

Idle speed higher than expected (P0507)

 Actual idle speed is higher than expected by 200 rpm for 14 seconds, when brake pedal is depressed (brake switch is ON) and steering wheel is held straight ahead (power steering pressure switch is OFF).

Power steering pressure (PSP) switch PSP switch circuit malfunction (P0550)

The PCM monitors input voltage from PSP switch. If input voltage is low (switch stays ON: power steering fully turned condition) for 1 minute when the VSS is above 60.1 km/h {37.3 mph} and ECT is above 60 °C {140 °F}, the PCM determines that PSP switch circuit has malfunction.

Brake switch

Brake switch circuit malfunction (P0703)

 PCM does not detected the brake switch input voltage changes at 10 times while accelerating and deceleration repeatedly.

Heated oxygen sensor (HO2S) heater (Front RH/LH)

HO2S heater circuit low input (P0031: Front RH, P0051: Front LH)

• PCM terminal (93: RH, 94: LH) voltage is low when HO2S heater conditions is OFF.

HO2S heater circuit high input (P0032: Front RH, P0052: Front LH)

PCM terminal (93: RH, 94: LH) voltage is high when HO2S heater conditions is ON.

Heated oxygen sensor (HO2S) heater (Middle/Rear) (Federal emission regulation applicable models) HO2S heater circuit low input (P0037: Middle, P0043: Rear)

PCM terminal (95: middle, 96: rear) voltage is low when HO2S heater conditions is OFF.

HO2S heater circuit high input (P0038: Front RH, P0044: Front LH)

PCM terminal (95: middle, 96: rear) voltage is high when HO2S heater conditions is ON.

Heated oxygen sensor (HO2S) heater (Rear RH/LH) (California emission regulation applicable models) HO2S heater circuit low input (P0037: Rear RH, P0057: Rear LH)

PCM terminal (95: RH, 96: LH) voltage is low when HO2S heater conditions is OFF.

HO2S heater circuit high input (P0038: Rear RH, P0058: Rear LH)

PCM terminal (95: RH, 96: LH) voltage is high when HO2S heater conditions is ON.

PRC solenoid valve

PRC solenoid valve circuit malfunction (P1250)

 The PCM monitors the input voltages from the PRC valve when the ignition switch is at ON position (engine OFF). If the PCM terminal No.44 does not read B+ unless circuit is grounded during operation, the PCM determines that the PRC valve circuit has malfunction.

Camshaft position (CMP) sensor

No SGC signal (P1345)

PCM monitors input voltage from the CMP sensor while the MAF is above 2.43 g/sec. {0.321 lb/min.}. If the
PCM does not receive input voltage from CMP sensor while the PCM receives input signal from CKP sensor,
PCM determines that CMP circuit is malfunctioning.

Canister drain cut valve (CDCV)

CDCV circuit malfunction (P1449)

The PCM monitors the input voltages from the CDCV when the ignition switch is at ON position (engine OFF).
 If the PCM terminal No.67 does not read B+ unless circuit is grounded during operation, the PCM determines that the CDCV circuit has malfunction.

EGR boost sensor solenoid valve

EGR boost sensor solenoid valve circuit malfunction (P1487)

 The PCM monitors the input voltages from the EGR boost sensor solenoid valve when the ignition switch is at ON position (engine OFF). If the PCM terminal 47 does not read B+ unless circuit is grounded during operation, the PCM determines that the EGR boost sensor solenoid valve circuit has malfunction.

EGR valve

EGR valve stepping motor coil circuit malfunction (P1496, P1497, P1498, P1499)

 The PCM monitors the input voltages from EGR valve coil control circuit while turn the ignition key to ON. If the PCM terminal 46, 56, 68 or 72 does not receive input signals unless circuit is grounded during operation. The PCM determines that the EGR valve circuit has malfunction.

Idle air control (IAC) valve

IAC valve circuit malfunction (P1504)

The PCM monitors the electrical current of the IAC valve circuit when IAC duty is above 18%. If the PCM detects IAC valve circuit electrical current is below 100 mA (at 25 °C {77 °F}) or above 4.5 A (at 25 °C {77 °F}) for 1 second, the PCM determines that the IAC valve circuit has malfunction.

IMRC actuator

Intake manifold runner control (IMRC) close stuck

The PCM monitors the voltage of IMRC monitor switch circuit. If the PCM terminal 3 voltage between 1.6 V and 4.9 V for 3.15 seconds when the IMRC valve is open. The PCM determines that the IMRC system has malfunction.

Intake manifold runner control (IMRC) open stuck

 The PCM monitors the voltages of IMRC monitor switch circuit. If the PCM terminal 3 voltage below 1.582 for 3.15 seconds when the IMRC valve change from open to close. The PCM determines that the IMRC circuit has malfunction.

Intake manifold runner control (IMRC) drive circuit malfunction

• The PCM monitors the voltages from IMRC circuit. If the PCM terminal 42 voltage is 3.0 V or below unless circuit is grounded during operation. The PCM determines that the IMRC circuit has malfunction.

PCM

PCM (keep alive memory) circuit malfunction (P1562)

The PCM monitors the voltage of battery positive terminal at PCM terminal 55. If the PCM detected battery
positive terminal voltage below 2.5 V for 2 seconds, the PCM determines that the backup voltage circuit has
malfunction.

Generator

Generator output voltage signal no electricity (P1631)

PCM detects the generator output voltage is below 8.5 V for 5 seconds while engine running.

Generator terminal B circuit open (P1634)

PCM detects that the generator output voltage above 17.0 V and battery positive voltage below 11.0 V for 5 seconds while engine running.

Battery

Battery overcharge (P1633)

PCM detects that the generator output voltage above 18.5 V or battery positive voltage above 16.0 V for 5 seconds while engine running.

Fail-safe Function

Detection Name	Fail-safe (value)
MAF sensor (circuit low input)	A divet charging officiancy to project valve
MAF sensor (circuit high input)	Adjust charging efficiency to preset valve
EGR boost sensor (circuit low input)	Cata harametria pressura to 101 2 kPa (760 mmHz 20 0 inHz)
EGR boost sensor (circuit high input)	Sets barometric pressure to 101.3 kPa {760 mmHg, 29.9 inHg}
IAT sensor (circuit low input)	Coto IAT to 20 °C (69 °F)
IAT sensor (circuit high input)	• Sets IAT to 20 °C {68 °F}
ECT sensor (circuit low input)	2 Cata FCT to 90 °C (476 °F)
ECT sensor (circuit high input)	Sets ECT to 80 °C {176 °F}
TP sensor (circuit low input)	Coto through a nariou and to wide ones through a solition
TP sensor (circuit high input)	Sets throttle opening angle to wide open throttle position
Knock sensor (circuit malfunction)	Sets knock correction (ESA control) to fixed value
HO2S (no activity)*1, *2	Chan for all and constraint final injection constraint
Closed loop	Stop feedback control of fuel injection control
Over charge	Stops generator control
CKP sensor	Stop fuel injection

^{*1:} HO2S (Front RH, LH) California emission regulation applicable models

^{*2 :} HO2S (Front) Federal emission regulation applicable models

SUSPENSION

02 SECTION

02–00	OUTLINE	
Reduced Wei Rigidity	NEW FEATURES 02–00– ght and Improved 02–00– ndling Stability and	
Driving Com	fort 02–00 –	1

SUSPENSION NEW FEATURES

YMU200S01

Reduced Weight and Improved Rigidity

- A pipe type front crossmember main frame has been adopted.
- A high rigidity, W-shaped, lower arm has been adopted.

Improved Handling Stability and Driving Comfort

- The front lower arm bushing (rear side) is installed vertically.
- Separate input type shock absorber mounts (front) have been adopted.
- Low-pressure gas charged shock absorber has been adopted.
- A torsion beam axle type rear suspension has been adopted. This type of suspension has minimal camber / toe change and offers stable handling irrespective of the load.

SUSPENSION SPECIFICATIONS

YMU200S02

W		Specification		
Item			2000MY	1998MY
WHEEL AL	IGNMENT (UNLOADED)*1			
	Maximum ataaring angla	Inner	37°6′±3°	40°45′±2°
	Maximum steering angle	Outer	32°0′±3°	31°50′±2°
	Total toe-in	(mm {in})	$2 \pm 4 \{0.08 \pm 0.16\}$	0 ± 4
Front	Total toe-III	(degree)	0°11′±0°22′	0°24′±18′
	Camber angle		-0°54′±1°	0°22′
	Caster angle		1°46′±1°	5°27′
Kingpin angle (Reference value)		11°12′	12°56′	
	Total toe-in	(mm {in})	3 ± 4 {0.12 \pm 0.16}	0 {0}
Rear	Total toe-in	(degree)	0°8′±11′	0°
	Camber angle		-1°±1°	0°
Cuananaiar	a tura	Front	Strut	←
Suspension	туре	Rear	Torsion beam	5 link
Shock absorber			Cylindrical, double-acting (low-pressure gas charged)	Cylindrical, double-acting (oil-filled)
Spring type		Coil spring	←	
Туре			Torsion bar	←
Stabilizer	Diameter (mm (in))	Front	18 {0.71}	34 {1.34}
	Diameter (mm {in})	Rear	34 {1.34}	24 {0.94}

^{*1 :} Engine coolant and engine oil are at specified levels. Spare tire, jack and tools are in designated position.

02-12 WHEELS AND TIRES

WHEELS AND TIRES OUTLINE 02–12–1 Wheel Specifications 02–12–1

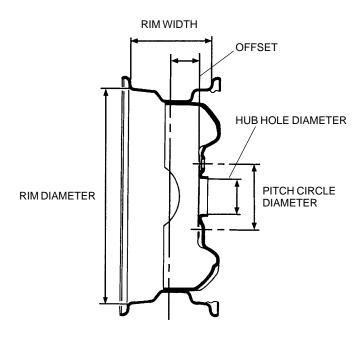
WHEEL CROSS-SECTIONAL VIEW ... 02-12-1

WHEELS AND TIRES OUTLINE

YMU212S01

 Construction of the wheels and tires are basically the same as the 1999MY Protegé. However, the following points have been changed:

Adoption of P215/60R 16 94H, P205/65 R15 92S tires


Wheel Specifications

(mm {in})

	RIM WIDTH	RIM DIAMETER	PITCH CIRCLE DIAMETER	HUB HOLE DIAMETER	OFFSET
15×6JJ Steel wheel	152.0 {6.0}	380.2 {15.0}	114.3 {4.50}	67.0 {2.64}	50 {1.97}
15×6JJ Aluminum wheel	152.0 {6.0}	380.2 {15.0}	114.3 {4.50}	67.0 {2.64}	50 {1.97}
16×6JJ Aluminum wheel	152.0 {6.0}	405.6 {16.0}	114.3 {4.50}	67.0 {2.64}	50 {1.97}

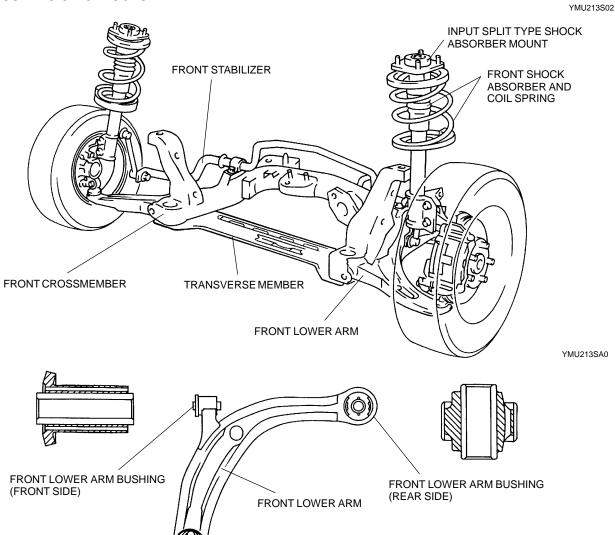
WHEEL CROSS-SECTIONAL VIEW

YMU212S02

YMU212SA0

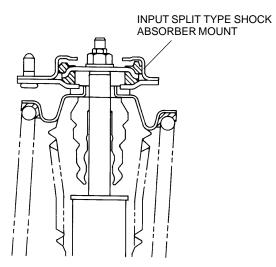
02-13 FRONT SUSPENSION

FRONT SUSPENSION OUTLINE 02-13-1


FRONT SUSPENSION OUTLINE

YMU213S01

YMU213SA1


 The front suspension is strut type. Construction and operation of the front suspension is the same as the 1999MY Protegé.

FRONT SUSPENSION STRUCTURAL VIEW

FRONT SUSPENSION

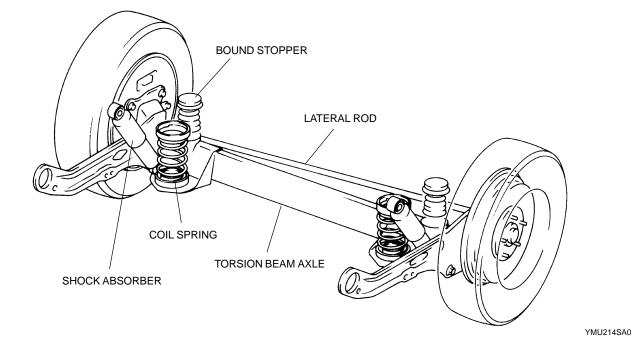
Shock Absorber Mount

YMU213SA2

An input split type mount with a separated plate that receives the reaction force of the coil spring and the
piston rod has been adopted. This construction enhances damping, which reduces road noise and jounce
transmitted to the vehicle.

02-14 REAR SUSPENSION

REAR SUSPENSION OUTLINE 02–14–1


REAR SUSPENSION OUTLINE

YMU214S01

• The rear suspension is a torsion beam axle type, which minimizes the change in the camber/toe, and provides stable handling irrespective of the load. Also, the coil spring and the shock absorber have been separated, and the coil spring has been offset from the trailing arm. This enables the shock absorber and the coil spring to be located closer together for a lower and flatter passenger cabin floor.

REAR SUSPENSION STRUCTURAL VIEW

YMU214S02

DRIVELINE/AXLE

		3
1		
5	SEC	TION

OUTLINE	REAR AXLE
03-00 OUTLINE DRIVELINE/AXLE ABBREVIATION 03-00-1 DRIVELINE/AXLE NEW FEATURES 03-00-1 Improved Durability 03-00-1 Reduced Vibration 03-00-1	DRIVELINE/AXLE SPECIFICATIONS 03-00-2
DRIVELINE/AXLE ABBREVIATION ATX Automatic transaxle	YMU300S01
DRIVELINE/AXLE NEW FEATURES Improved Durability Plastic drive shaft boot has been adopted. Reduced Vibration	YMU300S02

Adoption of rubber mount type joint shaft bracket.

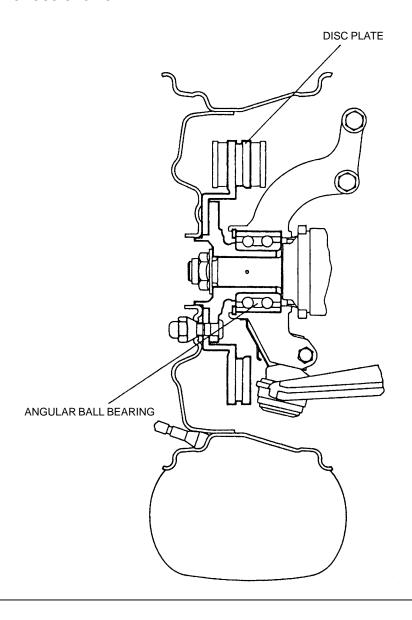
OUTLINE

DRIVELINE/AXLE SPECIFICATIONS

YMU300S03

	Item		2000MY	1998MY
Front axle		<u> </u>		·
Bearing type			Angular ball bearing	←
Rear axle				
Bearing type			Angular ball bearing	←
Drive shaft				·
loint type	Wheel side		Bell joint	N/A
Joint type	Transaxle si	de	Tripod joint	N/A
Shaft diameter		(mm {in})	24.0 {0.94}	N/A
Joint shaft				
Shaft diameter		(mm {in})	26.0 {1.02}	N/A
Differential				
Туре			N/A	Standard
Reduction gear			N/A	Hypoid gear
Reduction ratio			N/A	3.909
Differential gear			N/A	Straight-bevel gear
Ring gear size		(mm {in})	N/A	203.2 {8.0}
Oil	Grade		N/A	API Service GL-5, SAE80W-90
Oil	Capacity	(L {US qt, Imp qt})	N/A	1.5 {1.6, 1.3}

03-11 FRONT AXLE


FRONT AXLE OUTLINE

YMU311S01

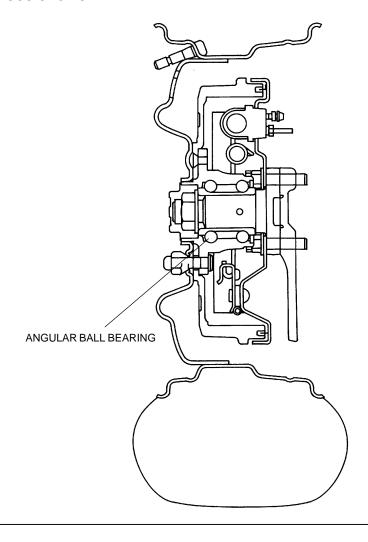
Construction of the front axle is the same as the 1999MY 626.

FRONT AXLE CROSS-SECTIONAL VIEW

YMU311S02

W6U311SA0

03-12 REAR AXLE


REAR AXLE OUTLINE

YMU312S01

• Construction of the rear axle is the same as the 1999MY 626 drum brake type.

REAR AXLE CROSS-SECTIONAL VIEW

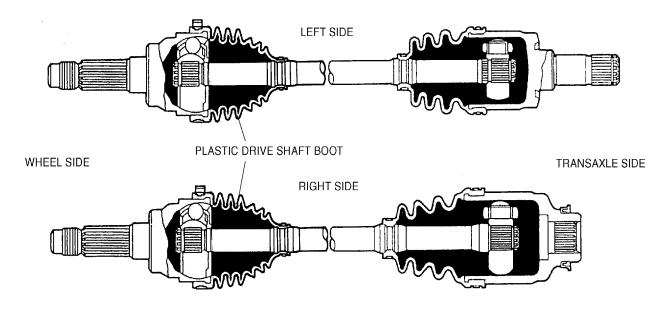
YMU312S02

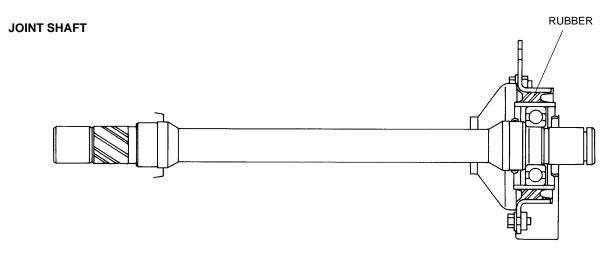
YMU312SA0

03-13 DRIVE SHAFT

DRIVE SHAFT OUTLINE

YMU313S01


 Construction of the drive shaft is basically the same as the 1999MY 626. However, by adopting a rubber type bracket to the support section of the joint shaft, vibration has been reduced.


DRIVE SHAFT CROSS-SECTIONAL VIEW

YMU313S02

DRIVE SHAFT

WHEEL SIDE TRANSAXLE SIDE

YMU313SA0

BRAKES

PARKING BRAKE SYSTEM ... 04-12 OUTLINE 04-00 **CONVENTIONAL BRAKE ANTILOCK BRAKE SYSTEM .. 04-13**

04-00 **OUTLINE**

BRAKES ABBREVIATIONS 04-00-	BRAKES SPECIFICATIONS 04-00-2
BRAKES NEW FEATURES 04-00-	1
Improved Reliability	1
Improved Serviceability04–00–	1

BRAKES ABBREVIATIONS

YMU400S01

ABS	Antilock brake system
СМ	Control module
EBP	Electronic brakeforce proportioning
HU	Hydraulic unit

LF	Left front
LR	Left rear
RF	Right front
RR	Right rear

BRAKES NEW FEATURES

YMU400S02

Improved Reliability

Adoption of integrated ABS control module (CM) and ABS hydraulic unit (HU)

Improved Serviceability

- Subdivided ABS DTCs
- Adoption of a four-digit service code indicator
- Adoption of a data monitor function
- Adoption of an active command mode function
- Adoption of Electronic Brakeforce Proportioning

BRAKES SPECIFICATIONS

YMU400S03

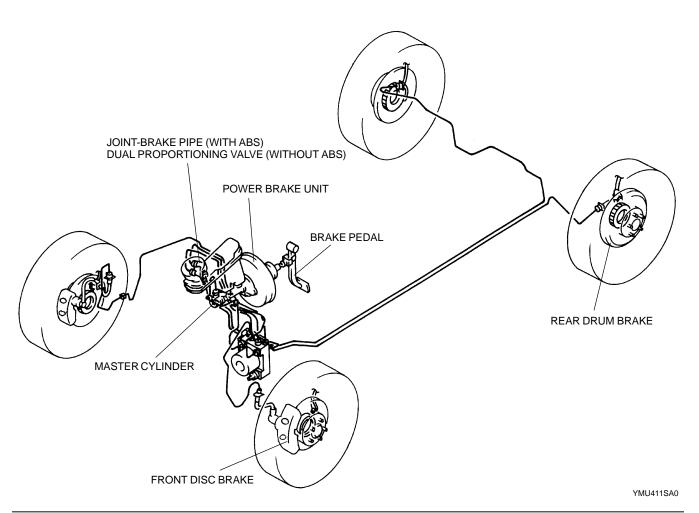
	Item	2000MY	1998MY
CONVENTIONA	L BRAKE SYSTEM		
	Туре	Suspended	←
Brake pedal	Pedal lever ratio	4.10	4.01
	Max. stroke (mm {in})	125 {4.92}	153 {6.02}
	Туре	Tandem (with level sensor)	
Master cylinder	Cylinder inner diameter (mm {in})	23.8 {0.94}	←
	Туре	Ventilated disc	←
	Cylinder bore (mm {in})	42.85 {1.69}×2	←
Front disc brake		5850 {9.36} × 10.5 {0.41}	6000 {9.60} × 9.5 {0.37}
	Disc plate dimensions (outer diameter × thickness) (mm {in})	274 × 28 {10.8 × 1.1}	276 × 28 {10.9 × 1.1}
	Туре	N/A	Ventilated disc
	Cylinder bore (mm {in})	N/A	41.3 {1.63}
Rear disc brake	Pad dimensions (area × thickness) (mm² {in²} × mm {in})	N/A	3300 {5.28} × 10 {0.39}
	Disc plate dimensions (outer diameter × thickness) (mm {in})	N/A	286 × 18 {11.25 × 0.71}
	Туре	Leading-trailing	N/A
	Wheel cylinder inner diameter (mm {in})	19.05 {0.75}	N/A
Rear drum brake		50.0 × 243.8 × 4.5 {1.97 × 9.60 × 0.18}	N/A
	Drum inner diameter (mm {in})	254 {10}	N/A
	Shoe clearance adjustment	Automatic adjuster	N/A
Power brake	Туре	Vacuum multiplier	←
unit	Diameter (mm (in))	293 {11.5}	213 + 240 {8.4 + 9.4}
Brake force control device	Туре	Electronic brakeforce proportioning control (with ABS) Dual proportioning valve (without ABS)	Load sensing proportioning valve
Brake fluid		SAE J1703 or FMVSS116 DOT3	←
PARKING BRAK	(E SYSTEM		
Parking brake	Туре	Mechanical rear-wheel control	←
i aikiiig biake	Operation system	Center lever	←

04-11 CONVENTIONAL BRAKE SYSTEM

CONVENTIONAL BRAKE SYSTEM OUTLINE

YMU411S01

Front brake


The construction and operation of the conventional front brake system is the same as the 1998MY MPV.

Rear brake

 The construction and operation of the conventional rear brake system is the same as the 1999MY 626 drum brake type.

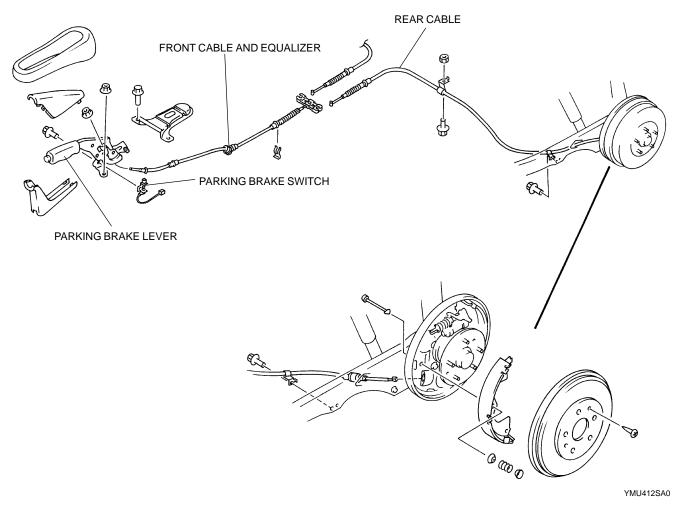
CONVENTIONAL BRAKE SYSTEM STRUCTURAL VIEW

YMU411S02

04-12 PARKING BRAKE SYSTEM

PARKING BRAKE SYSTEM OUTLINE . 04-12-1

PARKING BRAKE SYSTEM STRUCTURAL VIEW04-12-1


PARKING BRAKE SYSTEM OUTLINE

YMU412S01

• The parking brake system is a mechanical rear-wheel control, center lever type. The construction and operation is the same as the 1999MY Protegé.

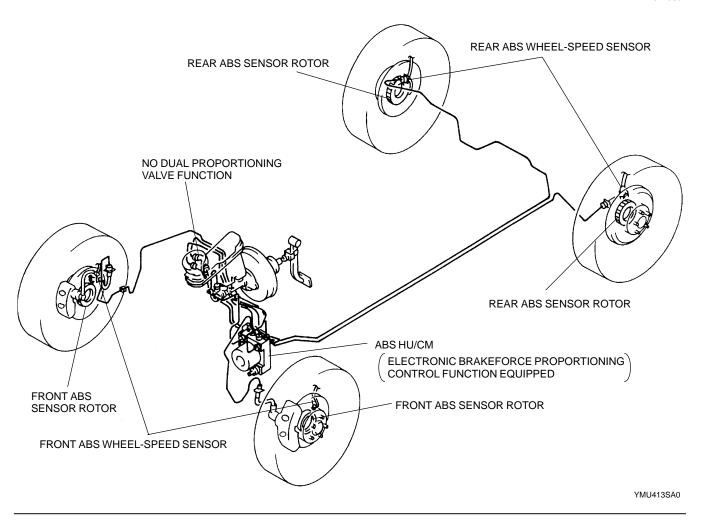
PARKING BRAKE SYSTEM STRUCTURAL VIEW

YMU412S02

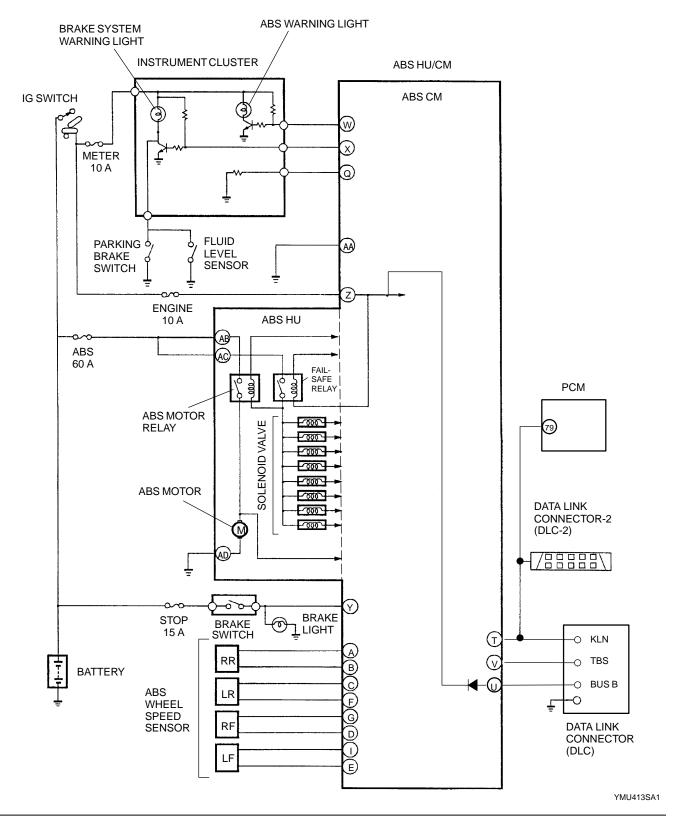
04-13 ANTILOCK BRAKE SYSTEM

ABS OUTLINEANTILOCK BRAKE SYSTEM	04–13–1	ON-BOARD DIAGNOSTIC SYSTEM DESCRIPTION04-13-8
STRUCTURAL VIEW		Self-diagnosis Function
ABS HYDRULIC LINE DIAGRAM ABS HU/CM DESCRIPTION	04–13–4	Function
Block Diagram	04–13–5	Abo no system inspection i unction : 04-13-14
Electronic Brakeforce Proportioning Control System Outline	ı (EBP)	

ABS OUTLINE

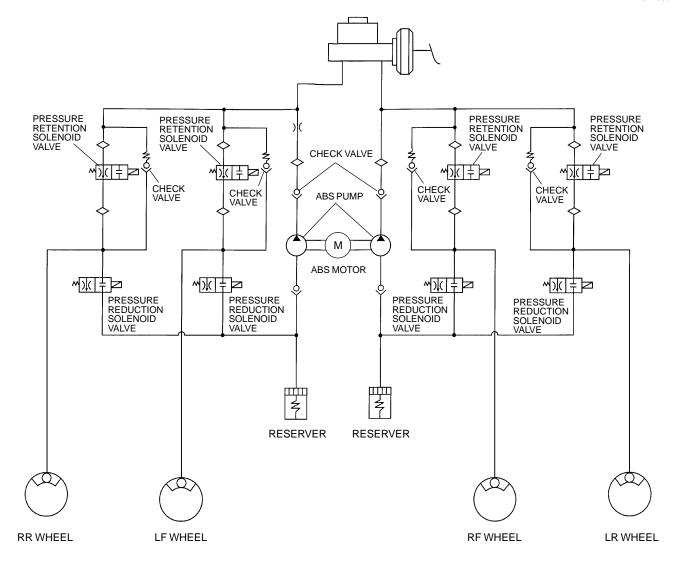

YMU413S01

 The integrated ABS Hydraulic Unit/Control Module (HU/CM) system is compact and lightweight, highly reliable.


- The Electronic Brakeforce Proportioning (EBP) control has been adopted in the ABS HU/CM instead of mechanical control, and the dual-proportioning valve has been eliminated.
- The integrated ABS HU/CM system controls the ABS and EBP. The ABS is an independent front wheel control, rear axle control (select low control), 4-sensor, 3-channel system same as the 1999MY 626. The EBP is an independent front wheel control, independent rear wheel control, 4-sensor, 4-channel system.
- The On-Board Diagnosis (OBD) system has been improved.
 - The PID/DATA monitor function is adopted.
 - The active command modes is adopted.
 - The serial communication is adopted.
 - The DTC function is modified.
- The NGS tester is used for diagnostics.

ANTILOCK BRAKE SYSTEM STRUCTURAL VIEW

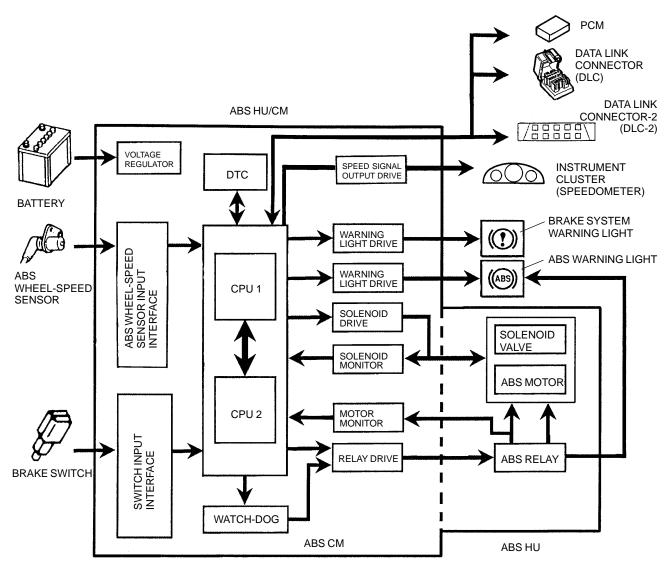
YMU413S02



ABS SYSTEM DIAGRAM

ABS HYDRULIC LINE DIAGRAM

YMU413S04

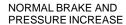

YMU413SB4

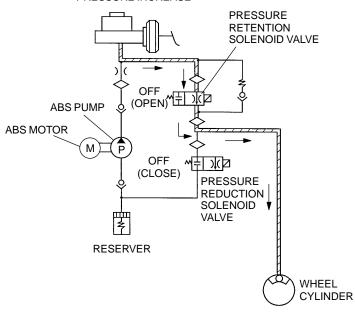
ABS HU/CM DESCRIPTION

YMU413S05

- The ABS HU/CM detects wheel-speed and driving conditions based on the ABS wheel-speed sensors. The ABS HU/CM converts this information to outputs on/off electronic signals to the pressure retention solenoid valves and pressure reduction solenoid valves to control the following functions.
 - 4 sensor, 3-channel.select low control ABS control
 - Electronic Brakeforce Proportioning (EBP) control uses a 4 sensor, 4-channel system
- CPU1 and CPU2 in the ABS HU/CM monitor each other for the ABS HU/CM safety. The function of CPU1 and CPU2 is as follows.
 - CPU1 controls the ABS operation by activating the pressure retention and pressure reduction solenoid valves based on the signals from each wheel-speed sensor.
 - CPU2 has a self-diagnosis function that monitors the system operation and input/output signals from CPU1. When CPU2 detects an abnormal condition, it stops the ABS operation.
- The ABS HU/CM constantly calculates the average value of the signals from the front ABS wheel-speed sensors, and sends a vehicle speed signal to the instrument cluster.
 - The ABS HU/CM constantly sends the average value of the two sensors on either side of front wheels. In
 case a malfunction occurs in one of the sensors, however, the ABS sends a value from only the normal
 sensor.

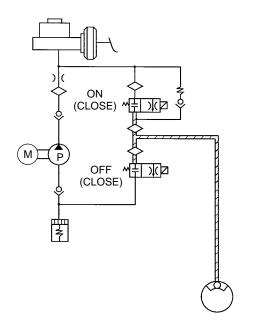
Block Diagram

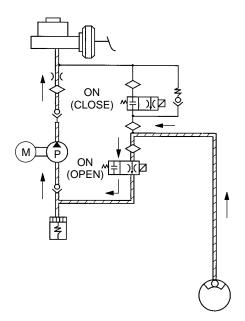



YMU413SA3

ANTILOCK BRAKE SYSTEM

ABS Control


- 4-sensor, 3-channel, select low control ABS control is the same as that on the 1999MY 626.
- The ABS HU/CM calculates wheel slip from the ABS wheel-speed sensor signals, and adjusts brake pressure.



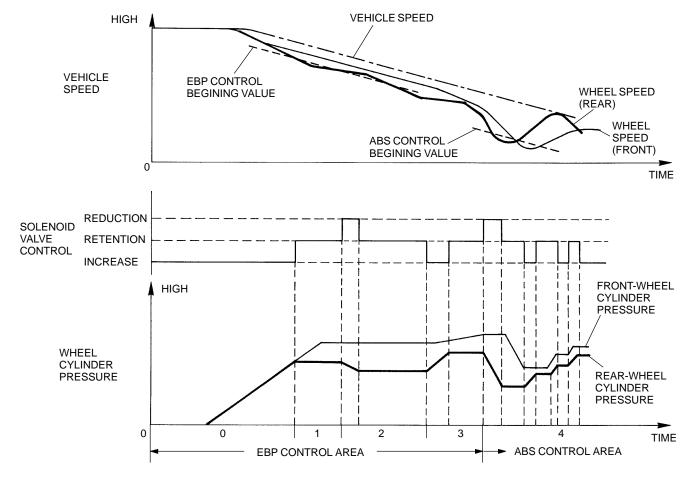
PRESSURE RETENTION

PRESSURE REDUCTION

YMU413SB5

	Pressure retention solenoid valve	Pressure reduction solenoid valve	ABS motor
Normal brake and Pressure increase	Off (open)	Off (close)	Stopped
Pressure retention	On (close)	Off (close)	Stopped
Pressure reduction	On (close)	On (open)	Operating

ANTILOCK BRAKE SYSTEM


Electronic Brakeforce Proportioning (EBP) Control System Outline

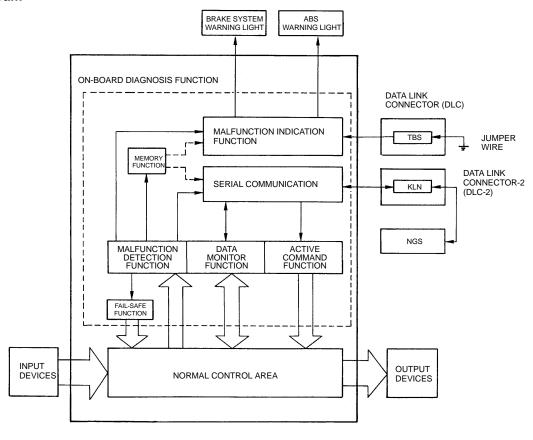
- The EBP control system measures front-vs-rear wheel slippage. When rear wheel slippage exceeds the
 present "proportional" limit (front to rear), the ABS HU/CM reduces brake fluid pressure to the rear wheel
 through the proportioning valve to maintain the estimated vehicle speed. (See chart below.)
- The chart and table below show condition under which the EBP control operates.

Control condition table

Condition	Rear wheel slip Electronic brakeforce proportioning control Rear brake fluid pres		Rear brake fluid pressure	Note	
0	No slip	No control	Increase	Normal brake	
1	a%-b%		Retention		
2	b% or more (During EBP control)	Control	Reduction/Retention	EBP control	
3	c% or less (During EBP control)		Reduction/Retention		
4	Front wheel slip d% or more	Stop control	Reduction/Retention/increase	ABS control	

Note: a, b, c and d are preset values.

YMU413SB8

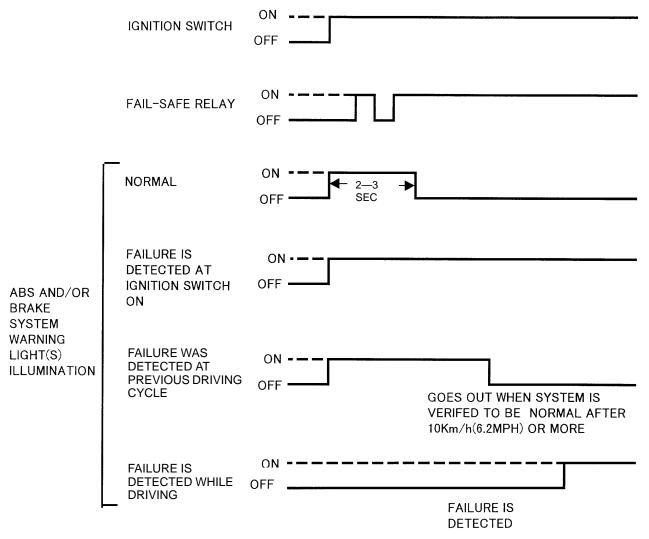

ON-BOARD DIAGNOSTIC SYSTEM DESCRIPTION

YMU413S06

The following on-board diagnostic functions are available.

Function Name	Detail function	Comparison of 1999MY 626
Failure detection function	 The failure detection function detects failure of input and output devices of the ABS HU/CM system. The failure detection function includes a self-diagnosis function, fail-safe function, and memory function 	 Adopted diagnosis system for EBP control Sub divided DTC Both 4-digit DTC (by using
Self-diagnosis function	 The input and output device self-diagnosis function is carried out when the ignition switch is at the ON position, include when driving. When a failure is detected, the diagnosis system warn the driver by illuminating the ABS warning light and/or BRAKE system warning light. 	NGS) and 2-digit DTC (by using ABS warning light) are available
Fail-safe function	When the failure is detected, ABS HU/CM limits ABS control and EBP control operate at a preset mode to ensure braking performance.	
Memory function	 The memory function stores malfunction as a DTC even after failure is solved. Because failed devices are memorized even after the ignition switch is turned to OFF, this function can be used to detect intermittent failure. The memory can be erased by using the NGS or by shorting TBS terminal of DLC to ground with the brake pedal is depressed 10 times with intervals of less than one second. 	
Failure indication function	 When a failure is detected, the indication function outputs the DTC DTC can be retrieved by using the NGS. DTC can also be retrieved by using ABS warning light by shorting the TBS terminal of DLC to ground 	
PID data monitoring function	By using the PID/Data monitor function of NGS, the input and output signals and calculated value of the ABS HU/CM can be monitored	Revised and added PID
Active command modes function	By using the active command modes function of NGS, output devices in ABS HU/CM can be operated regardless of the ABS HU/CM control (Same function at the SIMULATION TEST)	Revised and added active command modes function
Serial communication	Communicates with NGS via KLN of DLC-2.	Same function as 1999MY 626

Block diagram



YMU413SA4

ANTILOCK BRAKE SYSTEM

Self-diagnosis Function

- Diagnosis begins everytime the ignition key is turned from "OFF" to "ON".
- "ABS" and "BRAKE" system warning light illuminate during self-diagnosis and stay illuminate **2—3 seconds** after diagnosis is complete and no problem is found.
 - When an ABS control failure is detected, only the "ABS" warning light remains illuminated. (during initial start or driving)
 - When an EBP control failure is detected, the "ABS" and "BRAKE" warning light remain illuminated. (during initial start or driving)
 - Vehicle speed of 10 km/h {6.2 mph} is required from a previous drive cycle to detect a failure in the wheel speed sensors, solenoid valve and/or ABS motor.
- When the failure related to the ABS control is detected while driving, ABS warning light will be illuminated.
 When the failure related to the EBP control is detected while driving, ABS and BRAKE system warning lights remain illuminated.

YMU413SB9

ANTILOCK BRAKE SYSTEM

Fail-safe, Memory, and Failure indication Function DTC retrieve and clear procedure

- Two-digit DTCs can be displayed according to the number of flashes of the ABS warning light after shorting (to ground) the TBS terminal at the data link connector (test mode). The two-digit display is read and erased in the same way as in the 1999MY Protegé. Two digit DTCs are displayed only by the ABS warning light; the brake system warning light is not used.
- Four-digit DTCs can be displayed on the NGS tester display by connecting the NGS to the data link connector-2. The DTCs are read and erased the same as the 1999MY 626.

DTC comparison list

The following DTCs are divided to improve serviceability.

x: Available

		2000MY MPV			1999MY 626		
	D-	ГС					
Part Name	NGS tester display	ABS warning light	Detection condition	Memory	DTC	Detection condition	Memory
	C1145	11	Abnormal input is detected.	×	C1145	When open circuit is detected in sensor system	×
Right front wheel-speed sensor and/or	C1148	41	ABS wheel-speed signal is out of specification when the vehicle is starting move.	×		When short to ground is detected	
sensor rotor	C1234	45	ABS wheel-speed signal malfunction (distortion/sudden change/noise) is detected during driving.	×	C1148	in sensor system. While speed signal is out of specification	×
	C1155	12	Abnormal input is detected.	×	C1155	When open circuit is detected in sensor system	×
Left front wheel-speed sensor and/or	C1158	42	ABS wheel-speed signal is out of specification when the vehicle is starting move.	×		When short to ground is detected	
sensor rotor	C1233	46	ABS wheel-speed signal malfunction (distortion/sudden change/noise) is detected during driving.	×	C1158	in sensor system. While speed signal is out of specification	×
	C1165	13	Abnormal input is detected.	×	C1165	When open circuit is detected in sensor system	×
Right rear wheel-speed sensor and/or	C1168	43	ABS wheel-speed signal is out of specification when the vehicle is starting move.	×	When short to ground is detec		
sensor rotor	C1235	47	ABS wheel-speed signal malfunction (distortion/sudden change/noise) is detected during driving.	×	C1168	in sensor system. While speed signal is out of specification	×
	C1175	14	Abnormal input is detected.	×	C1175	When open circuit is detected in sensor system	×
Left rear wheel-speed sensor and/or	C1178	44	ABS wheel-speed signal is out of specification when the vehicle is starting move.	×	C1178 When short to ground is detected in sensor system. While speed signal is out of specification		
sensor rotor	C1236	48	ABS wheel-speed signal malfunction (distortion/sudden change/noise) is detected during driving.	×			×

			2000MY	MPV			1999MY 626		
Don't Name	DTC								
Part Name	NGS tester display	ABS warning light	Dete	ction condition	Memory	DTC	Detection condition	Memory	
For right front brake control	C1210	22	Pressure reduction			C1210			
solenoid valve	C1214	23	Pressure retention		×	C1214			
For left front	C1194	24	Pressure reduction			C1194			
brake control solenoid valve	C1198	25	Pressure retention	Solenoid monitor signal does not track	×	C1198	Solenoid monitor signal does not		
For light rear	C1246	26	Pressure reduction	in response to solenoid ON/OFF command		C1246	track in response to solenoid ON/OFF command	×	
brake control solenoid valve	C1254	27	Pressure retention	- Gommand	×	C1254			
For left rear	C1242	28	Pressure reduction		.,	C1242			
brake control solenoid valve	C1250	29	Pressure retention		×	C1250			
Fail-safe relay	C1186	51		y in ABS HU/CM stuck nition switch is turned relay ON is	×	C1266	Three or more solenoid valves are detected to be	×	
T all-Sale relay	C1266	52	ON when ign	y in ABS HU/CM stuck ition switch is turned e relay OFF is	×	01200	faulty among eight solenoid valves	^	
ABS motor and/or motor	C1095	54	is started or o	tuck ON when vehicle during ABS operation, PFF is commanded	×	C1095	Motor monitor signal does not track in response	×	
relay	C1096	53	is started or o	tuck OFF when vehicle during ABS operation, N is commanded	×	01033	to motor relay ON/OFF command		
	C1140	30	left front and	nd left rear wheels, or right rear wheels lock uring ABS operation.	×	N/A	N/A	N/A	
ABS HU/CM	C1510	32				N/A	N/A	N/A	
(HU system)	C1511	33		detected during ABS		N/A	N/A	N/A	
	C1512	34	operation (prince).	essure reduction	×	N/A	N/A	N/A	
	C1513	35				N/A	N/A	N/A	
ABS HU/CM	B1342	61	The on-board diagnostic function detects computer malfunction.		×	B1342	The on-board diagnostic system detects a control module malfunction	×	
Battery and/or generator	B1318	63		Z terminal of ABS HU/CM ow 9 V when driving		B1318	ABS control module detects low voltage	×	
Brake switch	N/A	N/A		N/A	N/A	B1484	When open circuit detected in the following harness: Brake switch— ABS CM ABS CM-brake light	×	
Wheel-speed sensor and sensor rotor	N/A	N/A		N/A	N/A	C1222	Wheel speed signal is out of specification	×	

Fail-safe function

• If a failure is detected during self-diagnosis function, the fail-safe illuminates the ABS and/or brake system warning light to notify the driver. When the failure is detected, the ABS HU/CM controls the ABS and electronic brakeforce proportioning (EBP) based on preprogramed fail-safe function shown in the table below. The fail-safe function ensures normal braking even when ABS or EBP control stops, as shown in the figure.

Fail-safe function table

	D	TC.	Fail-safe function							
	וט	10	Warning light illun	nination condition	Control	condition				
Malfunction location	NGS ABS tester display light		ABS warning light	Brake system warning light (when parking brake is released)	ABS control	EBP control				
	C1210	22								
	C1214	23								
	C1194	24								
Solenoid valve	C1198	25	Illuminated*1,2	Illuminated*1,2	Ston	Stop*3				
system	C1246	26	illuminated ',-	illuminated ',2	Stop	Stop 9				
	C1254	27								
	C1242	28								
	C1250	29								
Fail aafa ralay	C1266	52	Illuminated	Not illuminated	Cton	Available				
Fail-safe relay	C1186	51	Illuminated	Illuminated	Stop	Stop				
ABS motor and motor relay	C1096	53	Illuminated*1	Not illuminated	Stop	Available				
system	C1095	54	illuminated" i	140t illuminateu	Оюр	/ (valiable				
	C1145	11								
	C1155	12	Illuminated							
	C1165	13	Illuminated							
	C1175	14								
	C1148	41		Not illuminated*4						
ABS	C1158	42			04	A : ! - ! - ! * 5				
wheel-speed sensor system	C1168	43			Stop	Available*5				
	C1178	44	111							
	C1234	45	Illuminated*1							
	C1233	46								
	C1235	47								
	C1236	48								
Power supply system	B1318	63	Illuminated*6	Illuminated*6	Available	Available				
ABS HU/CM (CM)	B1342	61	Illuminated	Illuminated	Stop	Stop				
	C1510	32		Not illuminated		Avoilabla				
	C1511	33		Not illuminated		Available				
ABS HU/CM (HU)	C1512	34	Illuminated	III. marine = 4 = -1	Stop					
(110)	C1513	35		Illuminated		Available*5				
	C1140	30		Not illuminated		Available				

^{*1 :} If a malfunction was detected during the previous driving mode, the light remains illuminated until the system is verified to be normal when the vehicle is driven at a speed of 10 km/h {6.2 mph} or more.

^{*2 :} The warning light does not illuminate during a front solenoid valve OFF malfunction (pressure retention solenoid valve is stuck open; pressure reduction solenoid valve is stuck closed).

^{*3 :} Control continues only during a front solenoid valve OFF malfunction (pressure retention solenoid valve is stuck open; pressure reduction solenoid valve is stuck closed).

^{*4 :} Illuminates during rear wheel malfunction.

^{*5 :} Stops control when there is a malfunction in both rear wheels.

^{*6:} The light will go out when the failure is resolved.

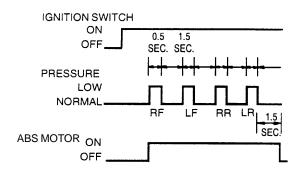
DATA monitor function

This function allows access to certain data values, input signal, calculated values, and system status information.

PID/DATA monitor table

PID name	Input/output part	Operation/unit (Tester display)
ABSLAMP	ABS warning light driver control signal in ABS HU/CM	ON/OFF
ABSLF I	LF ABS pressure retention valve control signal in ABS HU/CM	ON/OFF
ABSLF O	LF ABS pressure reduction valve control signal in ABS HU/CM	ON/OFF
ABSLR I	LR ABS pressure retention valve control signal in ABS HU/CM	ON/OFF
ABSLR O	LR ABS pressure reduction valve control signal in ABS HU/CM	ON/OFF
ABSRF I	RF ABS pressure retention valve control signal in ABS HU/CM	ON/OFF
ABSRF O	RF ABS pressure reduction valve control signal in ABS HU/CM	ON/OFF
ABSRR I	RR ABS pressure retention valve control signal in ABS HU/CM	ON/OFF
ABSRR O	RR ABS pressure reduction valve control signal in ABS HU/CM	ON/OFF
B+	System battery voltage value	V
BOO ABS	Brake switch input	ON/OFF
BRKLAMP	Brake system warning right control signal in ABS HU/CM	
CCNTABS	Number of continuous DTC	_
LF WSPD	LF wheel-speed sensor input	KPH or MPH
LR WSPD	LR wheel-speed sensor input	KPH or MPH
PMPSTAT	ABS motor state	ON/OFF
PMP MTR	ABS motor relay control signal in ABS HU/CM	ON/OFF
RF WSPD	RF wheel-speed sensor input	KPH or MPH
RR WSPD	RR wheel-speed sensor input	KPH or MPH
VLV CTR	Fail-safe relay control signal in ABS HU/CM	ON/OFF

Active command modes function


This function allows control of devices through the NGS tester

Active command modes table

NGS di	splay	Output part	Operation
Menu	Command name	Output part	Operation
	PMP MOTR	ABS motor	ON/OFF
	LF INLET	LF ABS pressure retention solenoid valve	ON/OFF
ABS OUTPUT CONTROL	LF OUTLET	LF ABS pressure reduction solenoid valve	ON/OFF
	RF INLET	RF ABS pressure retention solenoid valve	ON/OFF
	RF OUTLET	RF ABS pressure reduction solenoid valve	ON/OFF
ABS OUTFUT CONTROL	LR INLET	LR ABS pressure retention solenoid valve	ON/OFF
	LR OUTLET	LR ABS pressure reduction solenoid valve	ON/OFF
	RR INLET	RR ABS pressure retention solenoid valve	ON/OFF
	RR OUTLET	RR ABS pressure reduction solenoid valve	ON/OFF
	VPWR RLY	Fail-safe relay	ON/OFF

ABS HU System Inspection Function

• By shorting the TBS terminal of the DLC to body ground with the ignition switch OFF and then turning the ignition switch ON with the brake pedal depressed, the brake fluid pressure to each wheel cylinder is reduced as shown in the figure below. Operation of the ABS HU can be inspected using this function.

U3U41304

05

TRANSMISSION/TRANSAXLE

AUTOMATIC TRANSAXLE SHIFT AUTOMATIC TRANSAXLE 05-17

OUTLINE 05-00

TRANSMISSION/TRANSAXLE	
ABBREVIATIONS	. 05–00–1
TRANSMISSION/TRANSAXLE	
NEW FEATURES	. 05-00-2
ATX	. 05-00-2

AUTOMATIC TRANSAXLE

TRANSMISSION/TRANSAXLE ABBREVIATIONS

YMU500S01

ATF	Automatic transaxle fluid
ATX	Automatic transaxle
BARO	Barometric pressure
B+	Battery positive voltage
ССМ	Comprehensive component monitor
CDCV	Canister drain cut valve
CKP	Crankshaft position
CL	Closed loop
DC	Drive cycle
DLC	Data link connector
DTC	Diagnostic trouble code(s)
ECT	Engine coolant temperature
EC-AT	Electronically controlled automatic transaxle
EGR	Exhaust gas recirculation
HO2S	Heated oxygen sensor
IAC	Idle air control
MAF	Mass air flow
MIL	Malfunction indicator lamp

O/D	Overdrive
OBD	On-board diagnostic
PCM	Powertrain control module
PID	Parameter identification
PRC	Pressure regulator control
PSP	Power steering pressure
SGC	Signal crank
TCC	Torque converter clutch
TFT	Transaxle fluid temperature
TP	Throttle position
TR	Transaxle range
VSS	Vehicle speed sensor
1GR	First gear
2GR	Second gear
3GR	Third gear
4GR	Fourth gear
IAT	Intake air temperature
IG	Ignition

TRANSMISSION/TRANSAXLE NEW FEATURES

YMU500S02

ATX

Improved shift quality

- The column shift type selector lever is adopted.
- The leaf spring type detent spring is adopted.

Improved durability

- The four-pinion gear type differential is adopted.
- The baffle plate is adopted.
- The auxiliary air-cooling type oil cooler and water-cooling type oil cooler are adopted.

Adopted EEC system

PCM controls ATX.

Simplified structure

- The electrical shift lock system is adopted.
- The shift-lock release lever is used and the shift-lock solenoid is eliminated.

AUTOMATIC TRANSAXLE SPECIFICATIONS

YMU500S03

	Item	2000MY MPV	1999MY 626		
Transaxle type		GF4/	∖-EL		
Engine type		GY	KL		
	1GR	2.800	←		
	2GR	1.540	←		
Gear ratio	3GR	1.000	←		
	4GR	0.700	←		
	Reverse	2.333	←		
Final gear ratio		4.375	4.157		
Speedometer gear ratio (Number o	of drive/driven gear teeth)	1.25 (25/20)	1.190 (25/21)		
ATF	Туре	ATF M-III or equivalent (e.g. Dexron®II)	←		
	Capacity (L {US qt, Imp qt})	←			
Torque converter stall torque ratio		2.00:1	2.05:1		
	Forward clutch	3/3	←		
	Coasting clutch	2/3	←		
Hydraulic system (Number of drive/driven plates)	3-4 clutch	4/4	←		
(Number of drive/driver plates)	Reverse clutch	2/2	←		
	Low and reverse brake	4/4	←		
Band servo (mm {in})	Servo diameter (Piston outer dia./retainer inner dia.)	78.0/40.0 {3.07/1.57}	←		
	Large sun gear	36	←		
	Small sun gear	30	←		
Number of planetary gear teeth	Long pinion gear	24	←		
	Short pinion gear	22	←		
	Internal gear	84	←		
Number of output gear teeth		16	19		
Number of idler gear teeth		37	42		
Number of ring gear teeth		70	79		

AUTOMATIC TRANSAXLE OUTLINE 05–17–2 Comparison of 2000MY MPV and 1999MY 626	OUTPUT GEAR, IDLER GEAR DESCRIPTION 05–17–14 Outline 05–17–15 TORQUE CONVERTER DESCRIPTION 05–17–15 Outline 05–17–16 O/D OFF SWITCH DESCRIPTION 05–17–16 SHIFT CONTROL DESCRIPTION 05–17–16 Outline 05–17–16 Range and Position 05–17–16 Gear Position and Solenoid Valve
RELATIONSHIP CHART 05–17–8 POWERTRAIN DESCRIPTION 05–17–9 Outline 05–17–9 Structure 05–17–10 Gear Position and Operation of Featured Parts Parts 05–17–11 PARKING MECHANISM DESCRIPTION 05–17–12 Outline 05–17–13 Outline 05–17–13 Outline 05–17–13	DESCRIPTION 05–17–18 Block Diagram 05–17–18 DTC Comparison Lists 05–17–19 Failure Detection Function 05–17–20 Memory Function 05–17–21 Fail-safe Function 05–17–21 Parameter Identification (PID) Access 05–17–22 Monitor Item Table 05–17–22 Simulation Test 05–17–23 COOLING SYSTEM DESCRIPTION 05–17–24 Oil Cooler 05–17–24

AUTOMATIC TRANSAXLE OUTLINE

YMU517S01

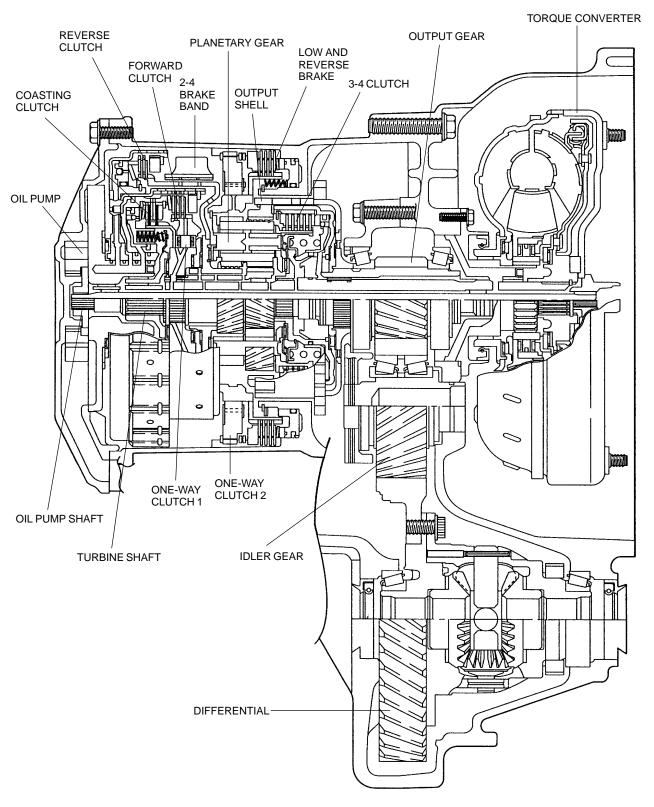
- The construction and operation of the automatic transaxle is basically the same as 1999MY 626 GF4A-EL. The following are the major difference between 1999MY 626 and 2000MY MPV.
 - The differential pinion gear has been changed from a two-pinion type to a four-pinion type to cope with the high torque engine.
 - Surface treatment of the differential ring gear, output gear, and idler gear has been made stronger to accommodate higher engine torque.
 - Increasing the capacity coefficient during normal driving reduces the slip of the torque converter, thereby improving driveability and fuel economy.
 - A baffle plate has been installed in the converter housing to reduce friction in the differential gear.
 - The detent spring in the parking mechanism has been changed from a coil spring type to a leaf spring type due to column shift application.
 - Due to the change of detent spring type, the oil pipe on the converter housing has been miniaturized.

Comparison of 2000MY MPV and 1999MY 626

Item		Model					
	item	2000MY MPV	1999MY 626				
Mechanical	Forward clutch	Equipped					
component	Reverse clutch	Equipped					
	3-4 clutch	Equipped					
	Coasting clutch	Equipped					
	2-4 brake band	Equipped					
	Low and reverse brake	Equipped	←				
	Number of one-way clutches	Two					
	Planetary gear	Ravigneaux type					
	Output gear	Equipped					
	Idler gear	Equipped					
	Differential	Equipped (four-pinion type)	Equipped (two-pinion type)				
Electronic control	Line pressure control	 Pressure control solenoid (duty type) adjusts line pressure according to engine load condition and vehicle driving condition 					
	Shift control	Detects throttle valve opening angle and reverse and forward drum revolution speed. Switches to the most suitable gear position according to the preset shift diagram					
	TCC control	TCC control solenoid valve switches the paths for the line pressure applied to the TCC shift valve	←				
	Engine-transaxle total control	Temporarily lowers engine output torque during shift to improve shift feel					
	Slope mode control	Changes the shift point to prevent frequent up/down shifting when climbing or descending hills					
	OBD system	Detects and/or memorizes failure of input/output part and transaxle condition					

05

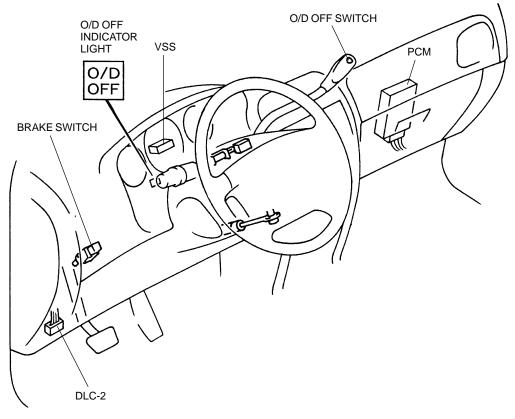
AUTOMATIC TRANSAXLE

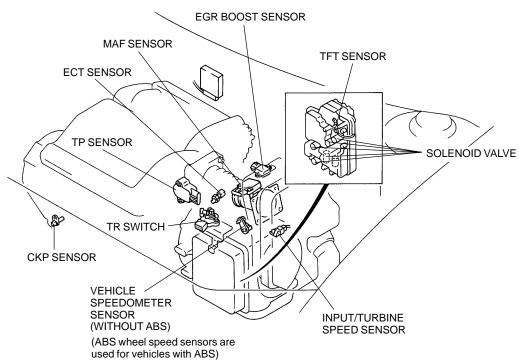

EC-AT Operation Chart

										2- bra	ke							
Range	O/D OFF switch position	Mode		Gear position		Forward clutch	Coasting clutch	3–4 clutch	Reverse clutch	Applied	Released	Low and reverse brake	One-way clutch 1 (Sprag type)	One-way clutch 2 (Roller type)	Shift solenoid A	Shift solenoid B	Shift solenoid C	
Р	_	_		_													×	
			se	Below approx. 4 km/h {2.5 mph}	Yes				×			×				×	×	
R	_	_	Reverse	Above approx. 6 km/h {3 mph}	Yes				×			×						
			Ä.	Above approx. 30 km/h {19 mph}	No				×						×		Ш	
l _N	_	_	_	Below approx. 4 km/h {2.5 mph}													×	
				Above approx. 6 km/h {3 mph}	_										×			
			1GR		No	×							×	×		×	×	
	O/D OFF		2GR	Below approx. 10 km/h {6.2 mph}	Yes	×	×			×			×		×	×		
	switch			Above approx. 10 km/h (6.2 mph)	No	×				×			×		×	×	×	
	OFF	*1*2Normal/	3GR		Yes	×	×	×		\otimes	×		×		×			
D		Slope/	4GR		Yes	×		×		×			0		×		×	
		Power 1GR			No	×							×	×		×	×	
	O/D OFF	/D OFF switch ON		2nd	Below approx. 10 km/h {6.2 mph}	Yes	×	×			×			×		×	×	
					2110	2110	Above approx. 10 km/h (6.2 mph)	No	×				×			×		×
			※3G	%3GR		×	×	×		\otimes	×		×		×			
2	_	_	2GR		Yes	×	×			×			×		×	×		
1	_	_	1GR		Yes	×	×					×	X	×		×		

- × : Operating
- $\otimes \;$: Operating but not contributing to transaxle power
- ⊚ : Clutch is freewheeling and does not transmit power
- $\ensuremath{\,\times\,}$: Engine overspeed protection
- *1 : The PCM automatically switches between NORMAL and SLOPE modes according to the engine load and vehicle acceleration.
- *2 : The PCM automatically switches between POWER and NORMAL modes according to the speed at which the accelerator pedal is depressed.

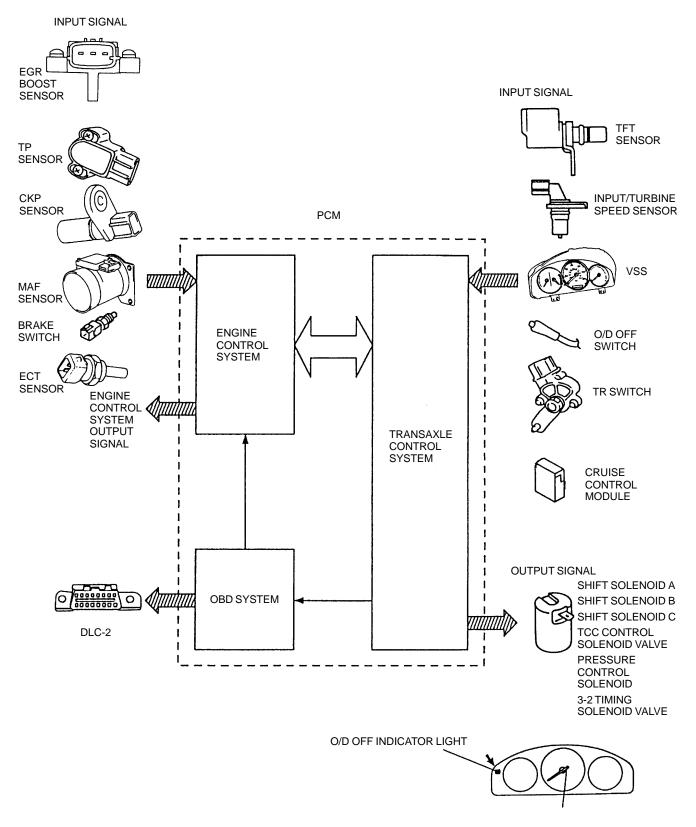
AUTOMATIC TRANSAXLE CROSS-SECTIONAL VIEW


YMU517S02



ELECTRONIC CONTROL SYSTEM STRUCTURAL VIEW

YMU517S03


• The PCM controls the engine and automatic transaxle operations. The PCM outputs a control signal to the engine and the transaxle according to the signal from other sensors and/or switches.

AUTOMATIC TRANSAXLE BLOCK DIAGRAM

YMU517S04

Electronic Control Item and Control

Control item	Contents
Auto power control	When driving in D range, the transaxle automatically switches between POWER and NORMAL modes depending on driving conditions.
Shift control	Detects engine load condition and vehicle speed. Shifts to the best gear position according to the programmed automatic shift diagram.
Line pressure control	Generates line pressure matching the engine load condition and driving conditions. Optimizes line pressure for each shift. When the ATF temperature is low, automatically optimizes line pressure for quick clutch engagement.
Timing control	Turning the 3-2 timing solenoid valve ON and OFF controls the operation of the 2-4 brake band and the 3-4 clutch.
TCC control	Controls TCC according to the programmed TCC points
Engine-transaxle total control (Torque reduction control)	Temporarily lowers engine torque during shift (up and down) to improve shift feel
Engine-transaxle total control (N-D/R select control)	When a driving range is selected from P/N, the fuel injection amount is controlled to prevent fluctuation in engine speed.
Slope mode control	Changes the shift point to prevent frequent shifting up/down when climbing or descending hills
OBD system	Detects and/or memorizes failure of input/output part and transaxle condition

Component Description (Electronic Control)

	Part n	ame	Function				
Input system	put system O/D OFF switch		Selects driving modes (O/D OFF) and changes shift patterns				
	TR switch		Detects selector lever ranges/positions				
	TP sensor		Detects throttle valve opening angle				
	Input/turbine	speed sensor	Detects reverse and forward drum revolution speed				
	VSS		Detects vehicle speed				
	Brake switch)	Detects braking condition				
	TFT sensor		Detects the ATF temperature				
	Cruise contrasignal)	ol module (4GR inhibit	When the cruise control is in use, the signal detects when the difference between the target speed and actual speed exceeds specification				
	CKP sensor		Detects engine speed				
	EGR boost sensor		Detects barometric pressure				
	ECT sensor		Detects the engine coolant temperature				
	MAF sensor		Detects the intake air amount				
Output system	ON/OFF type	Shift solenoid A	Switches ON and OFF based on electric signals from the PCM, changes hydraulic circuit to control shifting				
		Shift solenoid B	Switches ON and OFF based on electric signals from the PCM, changes hydraulic circuit to control shifting				
		Shift solenoid C	Switches ON and OFF based on electric signals from the PCM, changes hydraulic circuit to control shifting				
		TCC control solenoid valve	Switches ON and OFF based on electric signals from the PCM to control TCC				
		3-2 timing solenoid valve	Switches ON and OFF based on electric signals from the PCM, changes hydraulic circuit to control shift timing				
	Duty type	Pressure control solenoid	Switches ON and OFF based on electric signal (duty signals) from the PCM adjusts line pressure to match driving conditions				
	O/D OFF inc	licator light	Illuminates to indicate that the transaxle is in O/D OFF mode Flashes when failure is detected by diagnosis function				

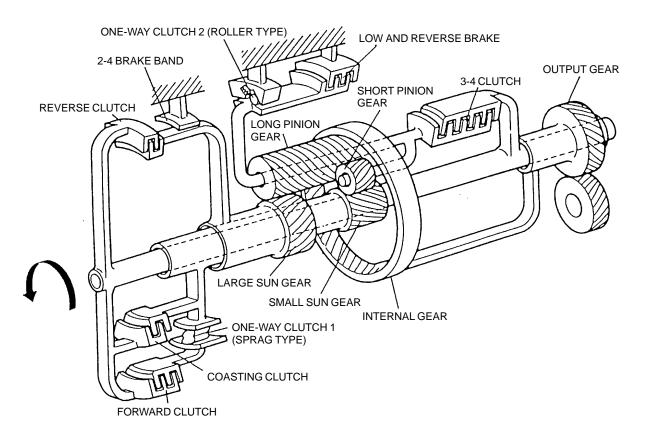
AUTOMATIC TRANSAXLE DEVICE RELATIONSHIP CHART

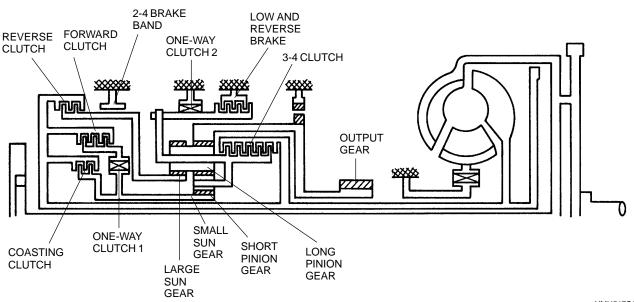
YMU517S05

		Control item									
Component	01.16	Line	Timing control	T00	Engine-transaxle total control		Slope	000			
Component	Shift control	pressure control		TCC control	Torque reduction control	N-D/R select control	mode control	OBD system			
Input											
O/D OFF switch	×	×	×	×							
TR switch	×	×	×	×	×	×	×	×			
TP sensor	×	×	×	×	×	×	×	×			
Input/turbine speed sensor	×	×	×	×	×	×	×	×			
VSS	×*1	×*1	×*1	×*1	×*1	×*1	×*1	×			
Brake switch				×	×		×	×			
TFT sensor	×	×	×	×	×		×	×			
Cruise control module (4GR inhibit signal)	×										
CKP sensor	×	×	×	×	×	×	×	×			
EGR boost sensor	×	×						×			
MAF sensor					×		×	×			
ECT sensor				×	×		×	×			
Output	•	•		•			•				
Shift solenoid A	×		×					×			
Shift solenoid B	×		×					×			
Shift solenoid C	×		×					×			
TCC control solenoid valve				×				×			
3-2 timing solenoid valve	×		×					×			
Pressure control solenoid		×						×			

× : Available
*1 : Back up

POWERTRAIN DESCRIPTION


YMU517S06


Outline

• In the powertrain system, the hydraulic pressure transported by the control valve operates the clutch, and brake, and the planetary gear changes the gear ratio according to the driving conditions.

Structure

 The powertrain system consists of four pairs of clutches, brake, brake band, two pairs of one-way clutches, and ravigneaux type planetary gears.

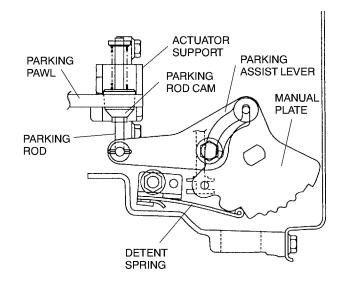
Operation Component description

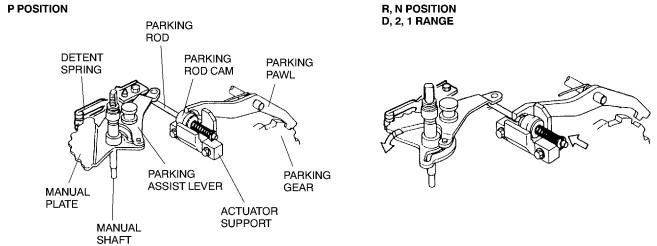
Component	Function
Forward clutch	Transmits rotation of reverse and forward drum to small sun gear
Coasting clutch	Transmits rotation of reverse and forward drum to small sun gear (for engine braking)
3-4 clutch	Transmits rotation of 3-4 clutch drum to planetary carrier
Reverse clutch	Transmits rotation of reverse and forward drum to large sun gear
2-4 brake band	Prevents rotation of 2-4 brake drum and prevents rotation of large sun gear
Low and reverse brake	Prevents rotation of low and reverse brake hub
One-way clutch 1	Transmits rotation of reverse and forward drum to small sun gear only during driving
One-way clutch 2	Locks clockwise rotation of planetary carrier

NoteAll rotations are viewed from the oil pump.

Gear Position and Operation of Featured Parts

										2- bra ba	ke			
Range	O/D OFF switch position	Mode		Gear position	Engine braking effect	Forward clutch	Coasting clutch	3–4 clutch	Reverse clutch	Applied	Released	Low and reverse brake	One-way clutch 1 (Sprag type)	One-way clutch 2 (Roller type)
Р	_	_		_	_									
		Se		Below approx. 4 km/h {2.5 mph}	Yes				×			×		
R	_	_	Reverse	Above approx. 6 km/h {3 mph}	Yes				×			×		
			R.	Above approx. 30 km/h {19 mph}	No				×					
l _N	_	_	_	Below approx. 4 km/h {2.5 mph}	_									
				Above approx. 6 km/h {3 mph}	_									
			1GR		No	×							×	×
	O/D OFF		2GR	Below approx. 10 km/h {6.2 mph}	Yes	×	×			×			×	
	switch		2011	Above approx. 10 km/h (6.2 mph)	No	×				×			×	
	OFF	*1*2Normal/	3GR		Yes	×	×	×		\otimes	×		×	
D		Slope/	4GR		Yes	×		×		×			0	
	a /= a ==	Power	1GR		No	×							×	×
	O/D OFF switch		2nd	Below approx. 10 km/h {6.2 mph}	Yes	×	×			×			×	
	ON			Above approx. 10 km/h (6.2 mph)	No	×				X			X	
			※3G	R	Yes	×	×	×		\otimes	×		×	
2	_	_	2GR		Yes	×	×			×			×	
1	_	_	1GR		Yes	×	×					×	×	×

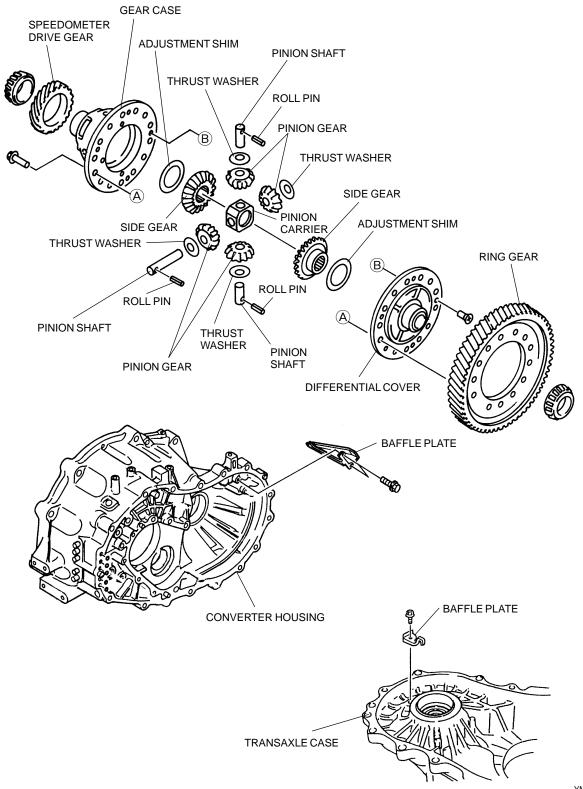

- $\times\,\,$: Operating
- $\otimes \;$: Operating but not contributing to transaxle power
- ⊚ : Clutch is freewheeling and does not transmit power
- ※ : Engine overspeed protection
- *1 : The PCM automatically switches between NORMAL and SLOPE modes according to the engine load and vehicle acceleration.
- $^{\star 2}$: The PCM automatically switches between POWER and NORMAL modes according to the speed at which the accelerator pedal is depressed.


PARKING MECHANISM DESCRIPTION

YMU517S15

Outline

• The detent spring in the parking mechanism has been changed from a coil spring type to a leaf spring type due to column shift application.

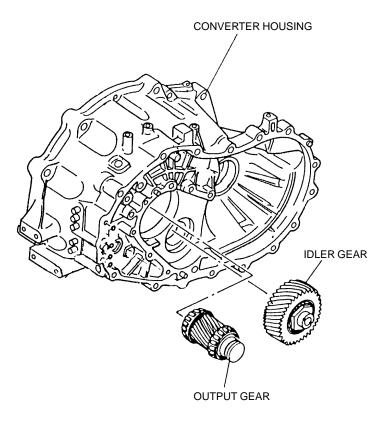

YMU517AB0

DIFFERENTIAL DESCRIPTION

YMU517S07

Outline

- The differential ring gear surface treatment has been made stronger to accommodate higher engine torque.
- Changing from a two-pinion type to a four-pinion type differential increases torque dispersion and pinion gear durability.
- A baffle plate has been installed in the converter housing and transaxle case to reduce friction in the differential gear.

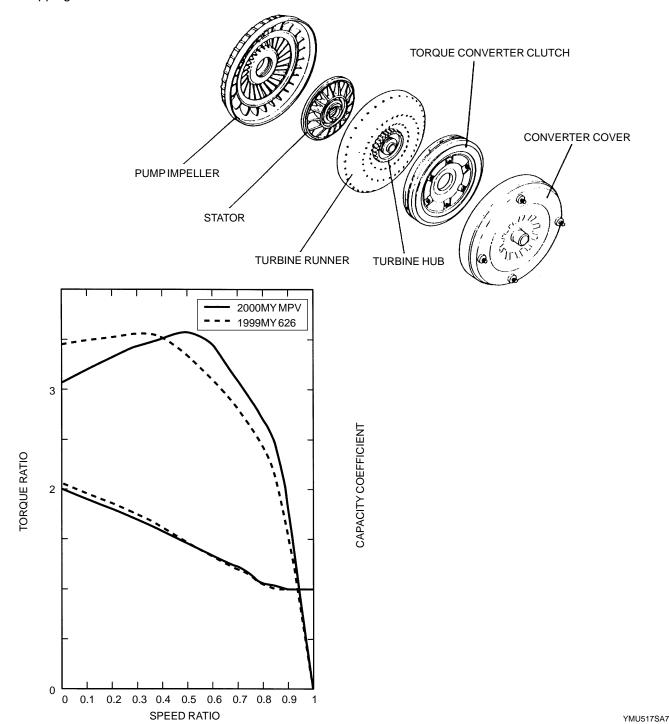


OUTPUT GEAR, IDLER GEAR DESCRIPTION

YMU517S08

Outline

 Surface treatment of the output gear and idler gear has been made stronger to accommodate higher engine torque.



TORQUE CONVERTER DESCRIPTION

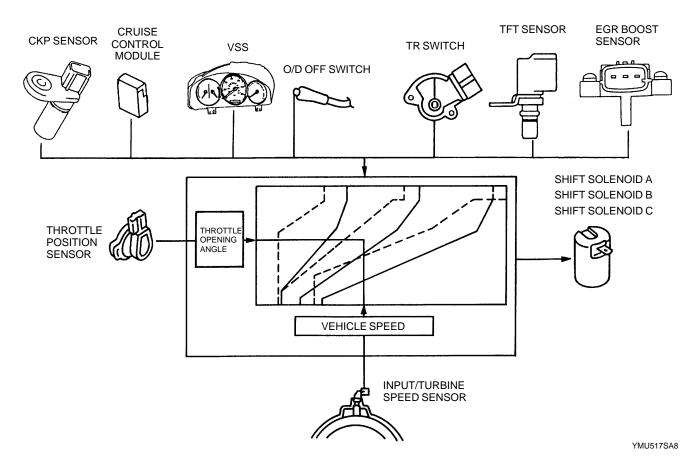
YMU517S09

Outline

- The GF4A-EL uses a three-element, single-gear, two-phase torque converter with torque converter clutch (TCC) mechanism.
- The torque converter efficiently matches the output characteristic of GY engine.
- By matching the output characteristics of the engine in order to optimize the configuration of the impellers, the
 torque converter increases the capacity coefficient in the practical range, thereby improving drivability and fuel
 economy.
- The TCĆ mechanism under certain conditions transmits the drive force by automatically connecting the pump impeller with the turbine runner as opposed to using fluid. Therefore it prevents the torque converter from slipping.

O/D OFF SWITCH DESCRIPTION

YMU517S10


A momentary type O/D OFF switch is attached to the selector lever knob.

SHIFT CONTROL DESCRIPTION

YMU517S11

Outline

• The PCM selects the shift pattern based on the current mode and range. The PCM then reads the reverse and forward drum speed (vehicle speed) and throttle valve opening angle, and sends a signal to the solenoid valve to set the gear position.

Range and Position

Range/Position	Gear	Gear ratio	Shift	TCC	Engine brake
Р	Neutral	_			
R	Reverse	2.333			×
N	Neutral	_			
	1GR	2.800	A		
	2GR	1.540	X		
D	3GR	1.000	X	× (O/D OFF mode)	×
	4GR	0.700	₩	×	×
	2GR	1.540	A		×
2	3GR* ¹	1.000	A		×
	4GR* ¹	0.700			×
1	1GR	2.800	A		×
1	2GR* ¹	1.540			×

^{×:} TCC or engine braking is available.

^{*1:} Engine overspeed protection

Gear Position and Solenoid Valve Operation

			Solenoid valve (ON/OFF type)					
Range/Position	Mode	Gear	Shift solenoid A	Shift solenoid B	Shift solenoid C	TCC control solenoid		
Р	_	Neutral	OFF	OFF	ON	OFF		
R	_	Reverse	OFF	OFF	OFF	OFF		
N	_	Neutral	OFF	OFF	ON	OFF		
		1GR	OFF	ON	ON	OFF		
	POWER* ¹ / NORMAL/ SLOPE* ⁴	2GR	ON	ON	ON	OFF		
D		3GR	ON	OFF	OFF	OFF		
		3GR (TCC ON)*5	ON	OFF	OFF	ON		
		4GR	ON	OFF	ON	OFF		
		4GR (TCC ON) *2	ON	OFF	ON	ON		
		2GR	ON	ON	OFF	OFF		
2	_	3GR* ³	ON	OFF	OFF	OFF		
		4GR* ³	ON	OFF	ON	OFF		
1		1GR	OFF	ON	OFF	OFF		
1	_	2GR* ³	ON	ON	OFF	OFF		

^{*1 :} The PCM automatically switches between POWER and NORMAL modes according to accelerator pedal depressing speed.

DRIVING MODE DETERMINATION DESCRIPTION

YMU517S12

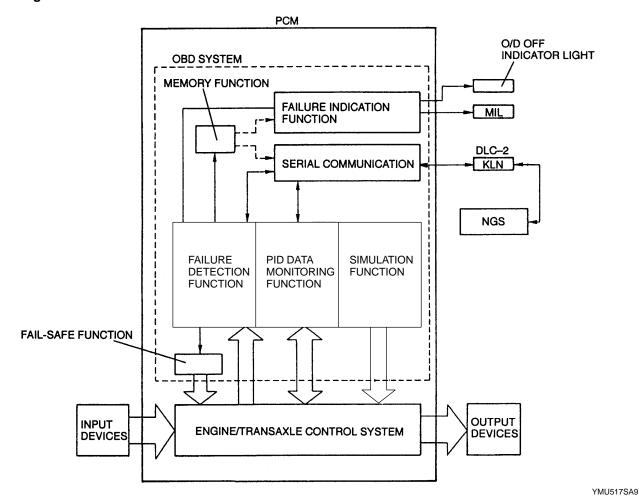
D Range

- Driving modes (O/D OFF) can be selected by switching the O/D OFF switch ON or OFF.
- When the vehicle speed and the accelerator pedal depressing speed is above the preset value, the driving mode is automatically switched to POWER mode which shifts the shift point to the high speed side.
- When the ATF temperature is high or low, each shift pattern switches automatically: when the ATF temperature is high (above 135 °C {275 °F}), the TCC point is shifted to low speed side, and when the engine coolant temperature is low (below 40 °C {104 °F}), the shift point is shifted to high speed side.
- When the engine coolant temperature is below 60 °C {140 °F}, the TCC is restricted.

^{*2 :} Performs TCC operation in NORMAL mode and SLOPE mode

^{*3 :} Engine overspeed protection

^{*4 :} The PCM automatically switches between NORMAL and SLOPE modes according to the engine load and vehicle acceleration.


^{*5 :} Performs TCC operation in O/D OFF mode

ON-BOARD DIAGNOSTIC (OBD) SYSTEM DESCRIPTION

YMU517S13

- The OBD system has the following functions:
 - (1) Failure detection function: detects failure of the input/output devices and system components of the ATX.
 - (2) Memory function: memorizes the DTC when a failure is detected.
 - (3) Fail-safe function: fixes the output device function and input value of the sensors/switches to ensure minimum vehicle drivability when a failure is detected.
 - (4) PID data monitoring function: monitors the input/output signals and calculated values of the PCM and sends the monitoring data to the scan tool (NGS tester).

Block Diagram

DTC Comparison Lists

The following codes are divided to improve serviceability.

Part Name DTC		2000MY MPV	1999MY 626	
Part Name	DIC	Definition	Definition	
	P0705	Circuit malfunction (short)	,	
TR switch	P0706	Circuit malfunction (open)	←	
	P1705	N/A	Out of self-test range	
TFT sensor	P0710	Circuit malfunction (open/short)	,	
TET Sellson	P0711	Circuit malfunction (stuck)	←	
Input/turbine speed sensor	P0715	Circuit malfunction (open/short)	Insufficient input from TSS sensor	
Incorrect 1GR ratio	P0731	Incorrect 1GR ratio		
Incorrect 2GR ratio	P0732	Incorrect 2GR ratio		
Incorrect 3GR ratio	P0733	Incorrect 3GR ratio		
Incorrect 4GR ratio	P0734	Incorrect 4GR ratio		
Torque converter	P0740	Circuit malfunction		
TCC control solenoid valve	P0743	Circuit malfunction (open/short)	←	
Pressure control solenoid	P0745	Circuit malfunction (open/short)		
Shift solenoid A	P0750	Circuit malfunction (open/short)		
Shift solenoid B	P0755	Circuit malfunction (open/short)		
Shift solenoid C	P0760	Circuit malfunction (open/short)		
3-2 timing solenoid valve	P1765	Circuit malfunction (open/short)		
O/D OFF switch	P1780	N/A	Circuit malfunction (open/short)	
VSS	P0500	Circuit malfunction (open/short)	Sensor malfunction	

Failure Detection Function

- The failure detection function compares input/output devices and system components operation to normal condition values pre-programmed in the PCM.
- If a failure is detected, the O/D OFF indicator light flashes or illuminates to warn the driver of a malfunction in the powertrain system components or sensors/switches. (Also, MIL will be illuminated except for DTC P0745 and/or P1765)
- The stored DTCs in the PCM are retrieved using the NGS tester.
- The failures are detected according to the following detection concepts. Detection concepts of the TP sensor malfunction (P0122, P0123) are mentioned in the ENGINE section. (Refer to 01–40 ON-BOARD DIAGNOSTIC SYSTEM DESCRIPTION.)

Transaxle range (TR) switch short circuit (P0705)

• Two or more input signals from the TR switch to the PCM terminals 6, 9, 7, 32, and 64 when engine speed is above 530 rpm during failure detection period.

Transaxle range (TR) switch open circuit (P0706)

• Input voltage from TR switch to PCM terminal 6, 9, and 7 maintains 0 V when engine speed is above 530 rpm and vehicle speed is above 20 km/h {12 mph} during failure detection period.

Transaxle fluid temperature (TFT) sensor open or short (P0710)

- Input voltage from TFT sensor to PCM terminal 37 maintains 0.2 V when vehicle speed is above 20 km/h {12 mph} during failure detection period.
- Input voltage from TFT sensor to PCM terminal 37 maintains 4.9 V when vehicle speed is above 20 km/h {12 mph} during failure detection period.

Transaxle fluid temperature (TFT) sensor stuck (P0711)

• Fluctuation value of TFT sensor output voltage to PCM terminal 37 is below 20 °C {68 °F} (above 3.6 V) when vehicle speed is above 60 km/h {37 mph} in normal condition during failure detection period.

Input/turbine speed sensor circuit malfunction (P0715)

No input/turbine speed sensor signal to PCM terminals 23 and 84 when vehicle speed is above 41 km/h {25 mph} and selector lever position is at D, 2, or 1 during failure detection period.

Vehicle speed sensor (VSS) circuit malfunction (P0500)

No VSS signal is input to PCM terminal 58 when engine coolant temperature is above 60 °C {140 °F} and input/turbine speed sensor signal is above 1,500 rpm and selector lever position is at D, 2, or 1 range during failure detection period.

Shift or pressure control solenoid valve circuit malfunction

If there is still voltage in the solenoid valve control terminal of the PCM when solenoid valve operates
according to the PCM calculation, OBD system judges "circuit malfunction".

Shift solenoid A (P0750)

• If there is still voltage in shift solenoid A control terminal 27 of the PCM when the solenoid valve operates according to PCM calculation.

Shift solenoid B (P0755)

• If there is still voltage in shift solenoid B control terminal 1 of the PCM when the solenoid valve operates according to PCM calculation.

Shift solenoid C (P0760)

• If there is still voltage in shift solenoid C control terminal 70 of the PCM when the solenoid valve operates according to PCM calculation.

Torque converter clutch (TCC) control solenoid valve (P0743)

 If there is still voltage in TCC control solenoid valve control terminal 82 of the PCM when the solenoid valve operates according to PCM calculation.

3-2 timing solenoid valve (P1765)

If there is still voltage in 3-2 timing solenoid valve control terminal 28 of the PCM when the solenoid valve
operates according to PCM calculation.

Pressure control solenoid (P0745)

 If there is still voltage in pressure control solenoid control terminal 81 of the PCM when the solenoid valve operates according to PCM calculation.

Gear incorrect (P0731, P0732, P0733, P0734)

If the RPM difference between the input/turbine speed sensor signal and VSS signal exceeds or falls below
the pre-programmed RPM difference in the PCM while driving in each gear, the OBD system judges "gear
incorrect" malfunction.

Gear 1 incorrect (P0731)

• Revolution ratio of input/turbine speed sensor to VSS signal is below 72 while in 1GR.

Gear 2 incorrect (P0732)

Revolution ratio of input/turbine speed sensor to VSS signal is below 42 or above 72 while in 2GR.

Gear 3 incorrect (P0733)

• Revolution ratio of input/turbine speed sensor to VSS signal is below 28 or above 42 while in 3GR.

Gear 4 incorrect (P0734)

Revolution ratio of input/turbine speed sensor to VSS signal is above 28 while in 4GR.

Memory Function

- When a failure is detected, DTCs are stored in the PCM memory. The memories are not erased even if the ignition switch is turned off (LOCK position).
- To clear the memorized failure information, disconnect the negative battery cable or use the NGS tester.
 However, DTCs will be stored in the memory again if the failures are still present.

Fail-safe Function

• In the fail-safe function, minimum vehicle drivability is obtained.

DTC	Definition	Fail-safe	тсс	O/D OFF mode selection
P0102	MAF circuit low input	Normal shift pattern is performed.	Inhibit	Available
P0103	MAF circuit high input	Normal shift pattern is performed.	Inhibit	Available
P0117	ECT sensor circuit low input	Normal shift pattern is performed	Inhibit	Available
P0118	ECT sensor circuit high input	Normal shift pattern is performed.	Inhibit	Available
P0122	TP sensor circuit low input	 The throttle valve opening angle is constantly assumed to be 1/2 and the VSS signal is used to determine shift. The automatic shift diagram used in this function is different from the normal pattern. If any of the shift solenoids A, B, or C also fails, minimum drivability will be assured using the 	Inhibition	Release
P0123	TP sensor circuit high input	 remaining good solenoid valves. If the VSS system fails in addition to the above, operation of all solenoid valves will be suspended. While in D and 2 ranges, gear position is fixed in 3GR; while in 1 range, gear position is fixed in 1GR. No shifting will occur. 	Inhibition	Release
P0107	EGR boost sensor circuit low input	Normal shift pattern is performed.	Available	Available
P0108	EGR boost sensor circuit high input	Normal shift pattern is performed.	Available	Available
P0340 P1345	SGC signal malfunction	Normal shift pattern is performed.	Inhibition	Release
P0500	VSS malfunction	 Performs normal shift determination If any of the shift solenoids A, B, or C also fails, operation of all solenoid valves will be suspended. While in D and 2 ranges, gear position is fixed in 3GR; while in 1 range, gear position is fixed in 1GR No shifting will occur. 	Inhibition	Release
P0705	TR switch circuit malfunction (short circuit)	 Gear position is fixed in 1GR when driving at under 6 km/h {3.7 mph} or in 3GR when driving at over 6 km/h {3.7 mph} if either of the following conditions arises: 	Available	Available
P0706	TR switch circuit malfunction (open circuit)	 The R position switch and the D, 2, or 1 range switch are on at the same time. The TR switch does not output any signals. 	Available	Available
P0710	TFT sensor circuit malfunction (open/short)	The ATF temperature is assumed to be at 135 °C {275 °F} and normal shift pattern is performed.	Available	Available
P0711	TFT sensor circuit malfunction (stuck)	Normal shift pattern is performed.	Available	Available
P0715	Input/turbine speed sensor circuit malfunction	 VSS signals are used for shifting. The automatic shift diagram used in this function is different from the normal pattern. If any of the shift solenoids A, B, or C also fails, the minimum drivability will be assured using the remaining good solenoid valves. If the VSS system fails in addition to the above, operation of all solenoid valves will be suspended. While in D and 2 ranges, gear position is fixed in 3GR; while in 1 range, gear position is fixed in 1GR. 	Inhibition	Release
P0731	Gear 1 incorrect		Available	Available
P0732	Gear 2 incorrect	Normal shift nattorn is performed	Available	Available
P0733	Gear 3 incorrect	Normal shift pattern is performed.	Available	Available
P0734	Gear 4 incorrect		Available	Available
P0740	TCC system	Normal shift pattern is performed.	Inhibition	Available

DTC	Definition	Fail-safe	тсс	O/D OFF mode selection
P0745	Pressure control solenoid malfunction (open/short)	If the pressure control solenoid system fails, operation of the solenoid valve will be suspended; and line pressure will be maximized to enable vehicle driving.	Inhibition	Release
P0750	Shift solenoid A malfunction (open/short)	If any of the shift solenoids A, B, or C fails, minimum drivability will be assured using the remaining good solenoid valves.	Inhibition	Release
P0755	Shift solenoid B malfunction (open/short)	 If all the solenoid valves fail, operation of all solenoid valves will be suspended. While in D and 2 ranges, gear position is fixed in 3GR; while in 1 range, gear position is fixed in 1GR. 	Inhibition	Release
P0760	Shift solenoid C malfunction (open/short)	 If any of the shift solenoids A, B, or C fails, the 3-2 timing solenoid valve will be OFF in D or 2 range, and ON in 1 range. 	Inhibition	Release
P0743	TCC control solenoid valve malfunction (open/short)	If the TCC control solenoid valve system fails, operation of the solenoid valve will be suspended and normal shift pattern will be performed.	Inhibition	Release
P1765	3-2 timing solenoid valve malfunction	If the 3-2 timing solenoid valve fails, operation of the solenoid valve will be suspended.	Inhibition	Release

Parameter Identification (PID) Access
The PID mode allows access to certain data values, analog and digital input and output, calculated values, and system condition information.

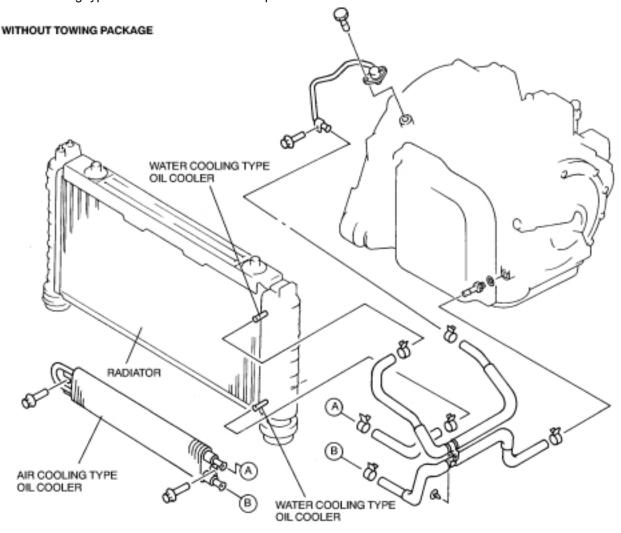
Monitor Item Table

Display on the NGS tester	Definition	Unit/Condition	PCM terminal
1GR	Calculated gear range in PCM (1st gear)	ON/OFF	27, 1, 70
2GR	Calculated gear range in PCM (2nd gear)	ON/OFF	27, 1, 70
3-2 TIME	3-2 timing solenoid valve control signal in PCM	ON/OFF	28
3GR	Calculated gear range in PCM (3rd gear)	ON/OFF	27, 1, 70
4GR	Calculated gear range in PCM (4th gear)	ON/OFF	27, 1, 70
ATFT	ATF temperature	°C or °F	37
ATFT V	ATF temperature signal voltage	V	37
B+	Battery voltage	V	71, 97
D SW	TR switch (D range switch)	ON/OFF	6
LSW	TR switch (1 range switch)	ON/OFF	7
LINE	Pressure control solenoid control signal in PCM	%	81
LINE DES	Calculated line pressure	KPA	81
O/DFLP	O/D OFF indicator control signal in PCM	ON/OFF	43
O/DF SW	O/D OFF switch	ON/OFF	29
R SW	TR switch (R position switch)	ON/OFF	32
S SW	TR switch (2 range switch)	ON/OFF	9
SHIFT A	Shift solenoid A control signal in PCM	ON/OFF	27
SHIFT B	Shift solenoid B control signal in PCM	ON/OFF	1
SHIFT C	Shift solenoid C control signal in PCM	ON/OFF	70
TCC CON	TCC control solenoid valve control signal in PCM	ON/OFF	82
TP V	Throttle position opening angle signal voltage	V	89
TURBINE	Turbine speed	RPM	23, 84
VS	Vehicle speed	KPH/MPH	58

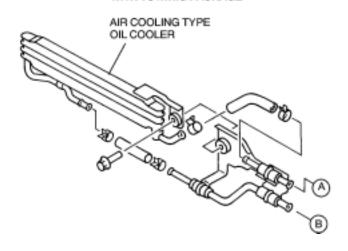
Simulation Test

Using the SIMULATION TEST function (NGS tester), output devices can be operated regardless of the PCM control while the ignition switch is on or the engine is running.

Simulation	Applicable component	Operation	Test co	ndition	PCM terminal	
item	Applicable component	licable component Operation		Idle	PCIVI terminai	
3-2 TIME	3-2 timing solenoid valve	ON/OFF	×		28	
LINE	Pressure control solenoid	Actuated at any duty value (0—100%)	×	×	81	
SHIFT A	Shift solenoid A	ON/OFF	×		27	
SHIFT B	Shift solenoid B	ON/OFF	×		1	
SHIFT C	Shift solenoid C	ON/OFF	×		70	
TCC CON	TCC control solenoid valve	ON/OFF	×		82	


 $[\]times$: Applied

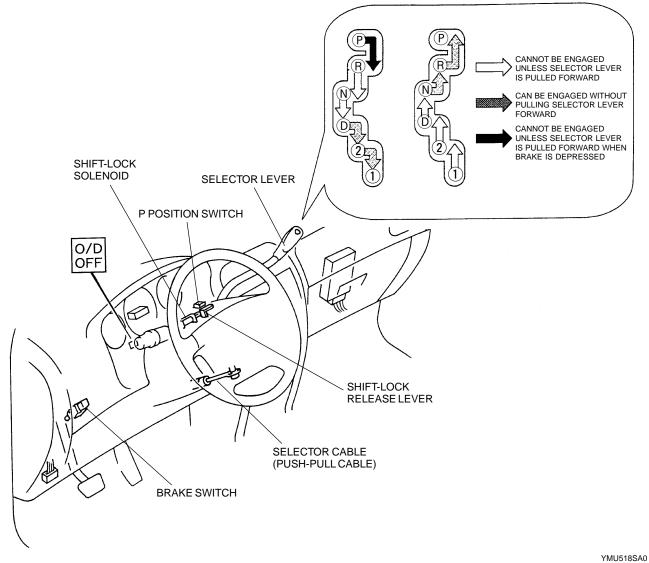
COOLING SYSTEM DESCRIPTION


YMU517S14

Oil Cooler

- A water cooling type ATX oil cooler is adopted and installed in the radiator. The oil cooler cools the ATF heated in the ATX body.
- An air cooling type ATX oil cooler is also adopted.

WITH TOWINIG PACKAGE


05-18 AUTOMATIC TRANSAXLE SHIFT MECHANISM

AUTOMATIC TRANSAXLE SHIFT	KEY INTERLOCK SYSTEM	
MECHANISM OUTLINE 05–18–1	DESCRIPTION	05–18–4
SHIFT-LOCK SYSTEM DESCRIPTION . 05-18-2	Outline	05–18–4
Outline	2 Structure	05–18–4
Structure	Operation	05–18–4
Operation	· ·	

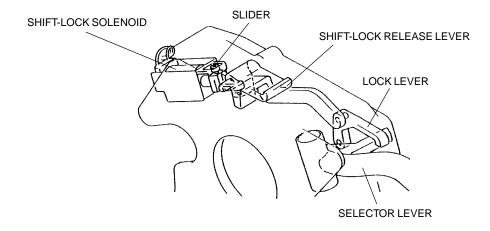
AUTOMATIC TRANSAXLE SHIFT MECHANISM OUTLINE

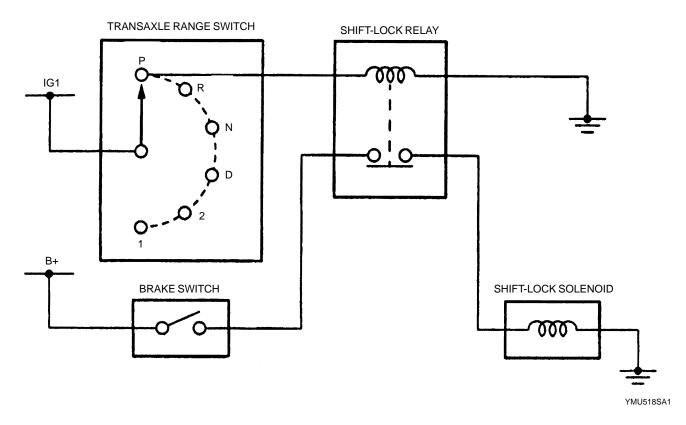
YMU518S01

- Remote column shifting operates a push-pull cable.
- The selector lever is attached to the steering column and operates on the same axis as the steering shaft. The selector lever, which is made of resin, has an O/D OFF switch installed on its end.
- A key interlock device and a shift lock device have been adopted. A shift-lock release lever, mounted on the steering column cover, makes operation of the vehicle possible even if the battery becomes discharged and the shift lock cannot be unlocked.

11000000

SHIFT-LOCK SYSTEM DESCRIPTION

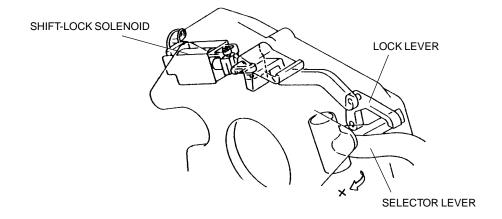

YMU518S02


Outline

- The shift-lock system prevents the selector lever from being shifted out of Park unless the brake pedal is depressed.
- The locked selector lever can be manually released by operating the shift-lock release lever.

Structure

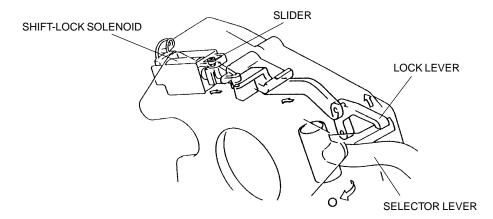
• The shift-lock system consists of the shift-lock relay, brake switch, shift-lock solenoid, transaxle range switch, and selector lever component.


Operation

Shift-lock release conditions

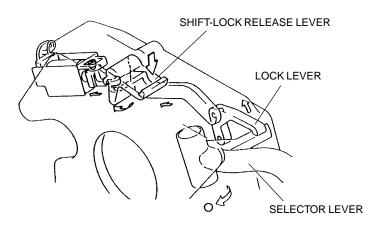
• The shift-lock is released when the transaxle range switch at P position, ignition key is at ON position and the brake pedal is depressed.

Shift-lock (when the shift-lock conditions are not satisfied)


 When the shift-lock conditions are not satisfied, electrical current does not flow to the shift-lock solenoid from the shift-lock relay. The lock lever therefore mechanically restricts the movement of the selector lever, preventing shifts out of P position.

YMU518SA2

Shift-lock release (when the shift-lock conditions are satisfied)


 When the shift-lock conditions are satisfied, electrical current flows to the shift-lock solenoid from the shift-lock relay. The slider therefore moves toward the shift-lock solenoid and the lock lever moves to a position in which it does not restrict movement of the selector lever, allowing shifts out of P position.

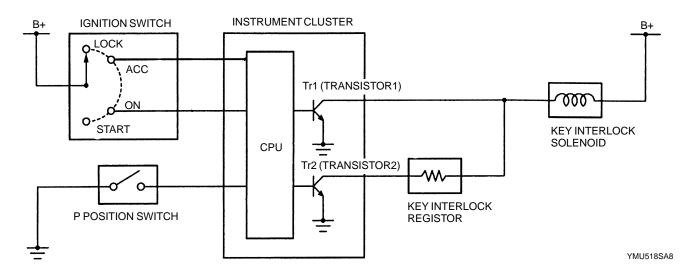
YMU518SA3

Shift-lock release (when the shift-lock release lever is operated)

 By pushing the shift-lock release lever down, the lock lever is pushed up to a position where it does not restrict movement of the selector lever.

YMU518SA4

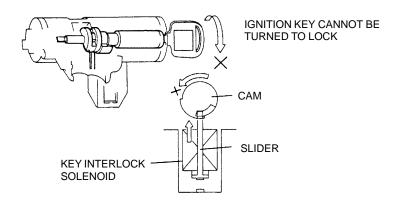
KEY INTERLOCK SYSTEM DESCRIPTION


YMU518S03

Outline

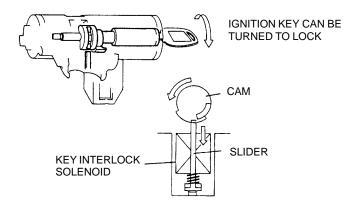
The key interlock system allows the ignition key to be removed only when the selector lever is in P position.

Structure


• The key interlock system consists of the ignition switch, P position switch, key interlock registor, steering lock, key interlock solenoid, and instrument cluster.

Operation

Positions other than P position (key interlock is operating)


- When the selector lever is in a position other than P position with the ignition switch at ON or ACC position, Tr1 and Tr2 are turned on by the CPU in the instrument cluster and then the key interlock solenoid is energized. Because the slider moves toward the cylinder and the cam contacts the slider, the ignition key cannot be turned to LOCK position.
- When the key interlock solenoid is turned on and approximately two seconds pass, Tr1 goes off and the key interlock solenoid is turned on only by Tr2.

YMU518SA5

P position (key interlock is not operating)

When the ignition switch is at LOCK position or selector lever is in P position, Tr1 and Tr2 are turned off by the CPU in the instrument cluster, and then the key interlock solenoid goes off. Because the slider is released from the cam by the return spring, the ignition key can be turned to LOCK position.

YMU518SA6

STEERING

06 SECTION

06-00 OUTLINE

STEERING ABBREVIATION 06-00-1 STEERING NEW FEATURES 06-00-1 STEERING SPECIFICATIONS 06-00-1

STEERING ABBREVIATION

YMU600S01

ATF Automatic transaxle fluid

STEERING NEW FEATURES

YMU600S02

Improved driveability

• The steering gear mounting on the gear housing side has been modified.

Improved response

• The steering gear ratio has been modified.

Improved straight-ahead stability

• Steering effort and steering angle have been modified.

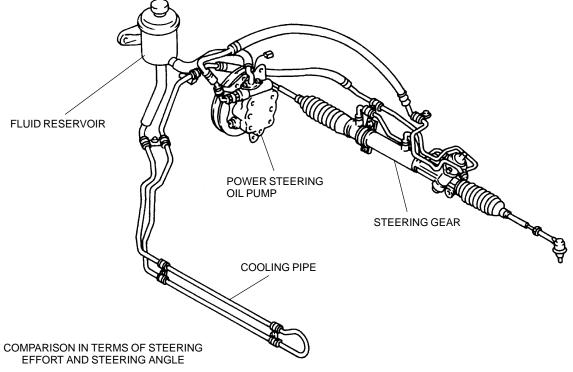
STEERING SPECIFICATIONS

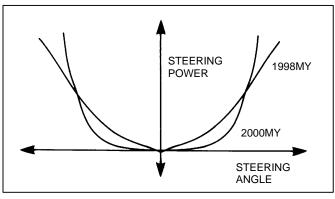
YMU600S03

		Item		2000MY	1998MY
Engine speed s	ensing p	ower steeri	ng		
Steering wheel	Outer diameter (mm {in})		(mm {in})	380 {15.0} [4-spoke]	←
Steering wheel	Lock-to	-lock	(turns)	3.3	3.6
Stooring goar	Туре			Rack-and-pinion	←
Steering gear	Rack stroke (mm {in})		(mm {in})	147.2 {5.8}	136.0 {5.4}
Steering column and	Shaft ty	/pe		Collapsible	←
shaft	Joint ty	ре		2-cross joint	←
	Power a	assist type		Engine speed sensing	←
Power steering	Fluid	Туре		ATF M-III or equivalent (e.g Dexron®II)	←
		Capacity	(L {Usqt, lpm qt})	1.05 {1.11, 0.92}	0.91 {0.96, 0.80}

06–12 ENGINE SPEED SENSING POWER STEERING

 ENGINE SPEED SENSING POWER
STEERING STRUCTURAL VIEW 06-12-1


ENGINE SPEED SENSING POWER STEERING OUTLINE


YMU612S01

- Rack-and-pinion steering system with engine speed sensing power steering has been adopted. The
 construction and operation of the steering system is basically the same as the 1998MY MPV, however, the
 following points are different.
 - (1) A steering gear mounting part has been attached to the gear to increase the mounting rigidity.
 - (2) To improve steering response, the steering gear ratio has been changed.
 - The gear ratio has been changed from 20.3:1 to 19:1.
 - (3) To improve straight-ahead stability, the relationship between steering power and steering gear angle has been changed.
 - The gear ratio near the steering center has been increased.

ENGINE SPEED SENSING POWER STEERING STRUCTURAL VIEW

YMU612S02

YMU612SA0

HEATER, VENTILATION & AIR CONDITIONING (HVAC)

07 SECTION

OUTLINE 07–00	BASIC SYSTEM 07-11
REFRIGERANT SYSTEM 07-10	CONTROL SYSTEM07-40

07-00 OUTLINE

HVAC ABBREVIATIONS

YMU700S01

A/C	Air conditioning
AMP	Amplifier
HI	High
HVAC	Heater, ventilation, and air conditioning

LO	Low
М	Motor
REC	Recirculate

HVAC NEW FEATURES

YMU700S02

Increased filtration

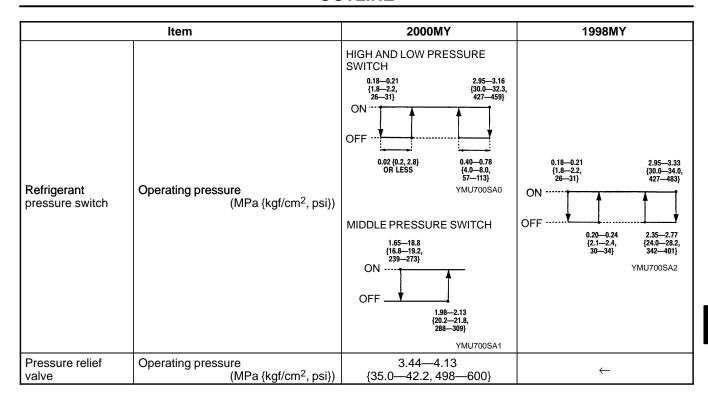
Added cabin air filter

Improved air conditioning performance

- Adopted sub-cooling system to multiflow condenser
- Added middle pressure switch to refrigerant pressure switch

Improved visibility

Added front defroster control system to prevent window clouding


OUTLINE

HVAC SPECIFICATIONS

YMU700S03

	Item		2000MY	1998MY
REFRIGERANT S	YSTEM			
	Туре		R-134a	←
Refrigerant	Regular amount	Twin A/C	850 {30.0}	1,000 {35.3}
	(g {oz})	Single A/C	650 {22.9}	900 {31.8}
BASIC SYSTEM				
Heating capacity	(kW {kcal/h})	Front	5.000 {4,300}	4.651 {4,000}
Tleating capacity	(KVV {KCai/Ti})	Rear	3.256 {2,800}	2.907 {3,900}
Cooling capacity	(kW {kcal/h})	Front	5.814 {5,000}	4.535 {2,500}
Cooling capacity	(KVV {KCai/Ti})	Rear	1.163 {1,000}	2.326 {2,000}
	Туре		Swash plate	←
	Discharge capacity (ml {cc, fl oz} /rev)	177 {177, 5.98}	←
A/C compressor	Max. allowable spee	d (rpm)	6,000	←
		Туре	ND-OIL 8	←
	Lubricating	Sealed volume (ml {cc, fl oz})	160 {160, 5.41}	←
Condenser	Туре		Multiflow (sub-cooling system)	Multiflow
Condenser	Radiated heat	(kW {kcal/h})	15.27 {13,100}	13.72 {11,800}
Receiver/drier	Capacity	(ml {cc, fl oz})	250 {250, 8.45}	300 {300, 10.1}
Receiver/uner	Desiccant		XH-9	←
Expansion valve	Туре		External pressure equalizer	Internal pressure equalizer
Evaporator	Туре		Drawn cup	←
CONTROL SYSTE	EM			
Airflow volume (during heater	Blower motor	Front	343	350
operation)	(m ³ /h)	Rear	200	225
Electricity consumption	Blower motor (W)	Front	233	200
(during heater operation)	Diewer meter (**)	Rear	100	50
Airflow volume (during air	Blower motor	Front	530	510
conditioner operation)	(m ³ /h)	Rear	220	200
Electricity consumption	Blower motor (W)	Front	316	265
(during air	Siewer motor (VV)	Rear	100	105
conditioner operation)	Magnetic clutch	(W)	40	←
Magnetic clutch	Clearance	(mm {in})	0.35—0.65 {0.014—0.025}	←
Blower motor	Fan type		Sirocco fan	←
Temperature contro	ol		Reheat full air mix type	←

OUTLINE

07-10 REFRIGERANT SYSTEM

REFRIGERANT SYSTEM OUTLINE ... 07-10-1

REFRIGERANT SYSTEM

 DESCRIPTION
 07–10–1

 System Parts
 07–10–1

 System Service Tools
 07–10–1

REFRIGERANT SYSTEM OUTLINE

YMU710S01

The refrigerant system is the same as the 1998MY MPV.

REFRIGERANT SYSTEM DESCRIPTION

YMU710S02

System Parts

Part	Description
Refrigerant	Hydrofluorocarbon-134a (HFC-134a) (CH ₂ FCF ₃)
Compressor oil	Polyalkylene glycol oil (PAG oil)
O-ring	Rubber in behalf of R-134a (RBR)
Joint nuts	Metric threads
Charging valve	Quick-connect type: HI: 16 mm {0.6 in} diameter LO: 13 mm {0.5 in} diameter

System Service Tools

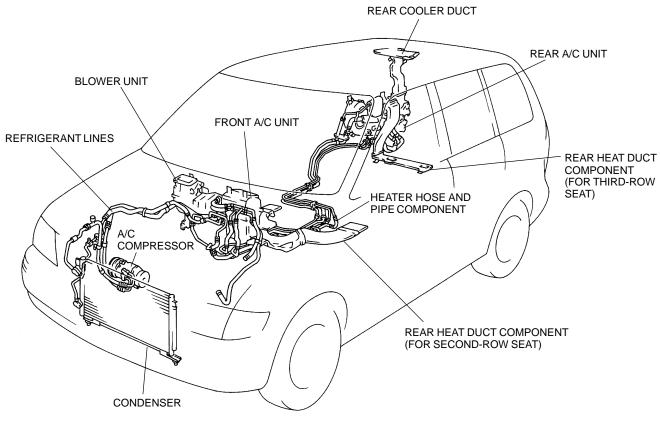
Part	Description
Tool joints	Metric threads
Charging valve joints	Quick-connect type: HI: 16 mm {0.6 in} diameter LO: 13 mm {0.5 in} diameter
Manifold gauge	High-pressure side maximum reading: 3.5 MPa {35 kgf/cm², 500 psi}
Gas leak tester	Electric type

BASIC SYSTEM

07-11 BASIC SYSTEM

BASIC SYSTEM OUTLINE 07-11-1	FRONT A/C UNIT DESCRIPTION	07–11–4
BASIC SYSTEM STRUCTURAL VIEW . 07-11-1	Air Mix Door Operation	07-11-4
BLOWER AIR FLOW DIAGRAM 07–11–2	Airflow Mode Door Operation	07-11-5
Front	REAR A/C UNIT DESCRIPTION	07-11-6
Rear	Air Mix Door Operation	07-11-6
AIR FILTER DESCRIPTION 07–11–4	Airflow Mode Door Operation	07-11-7
	CONDENSER DESCRIPTION	07-11-8

BASIC SYSTEM OUTLINE

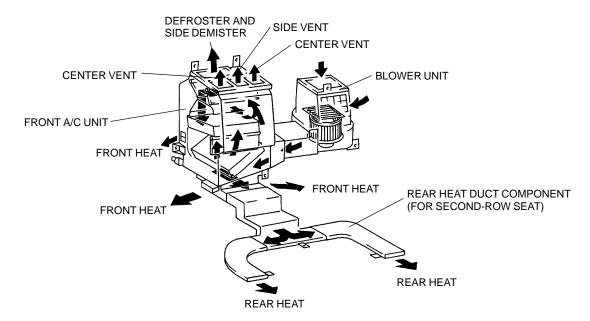

YMU711S01

- An air filter has been installed in the blower unit to remove airborne dust and pollen.
- The front A/C unit integrates the cooling and heater units.
- The rear A/C unit integrates the blower, cooling, and heater units.
- A sub-cooling system multi-flow condenser is used for improved cooling.

BASIC SYSTEM STRUCTURAL VIEW

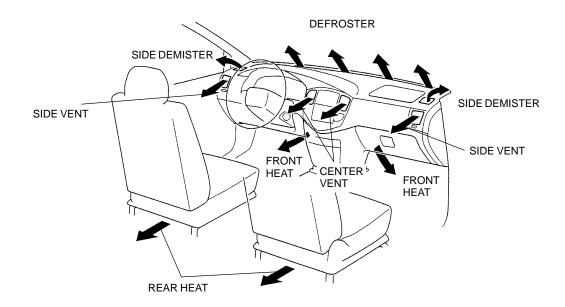
YMU711S02

07



YMU711SA0

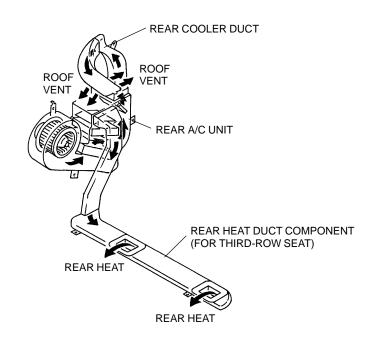
BLOWER AIR FLOW DIAGRAM


Front

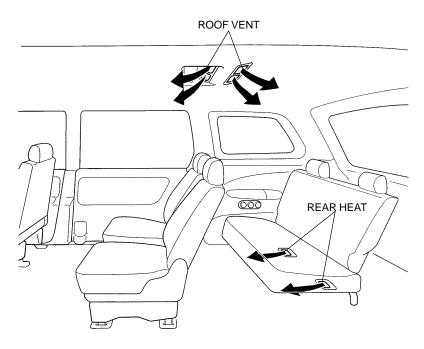
- When the A/C is turned on, the air that passes through the air filter and front blower motor is cooled, dehumidified and filtered by the front evaporator, then heated by the front heater core.
- The ventilation of the second-row seat is improved using rear heat duct.
- The side windows are defrosted by ventilation from the side demister.

YMU711SA1

YMU711S03



YMU711SA2

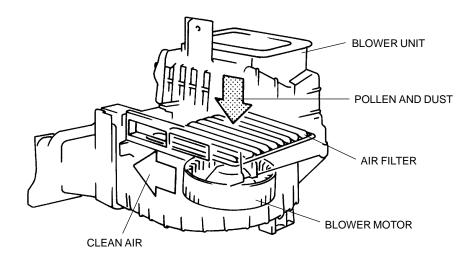

BASIC SYSTEM

Rear

• When the A/C is turned on, the air that passes through the rear blower motor is cooled, dehumidified and filtered by the rear evaporator, then heated by the rear heater core.

YMU711SA3

YMU711SA4


AIR FILTER DESCRIPTION

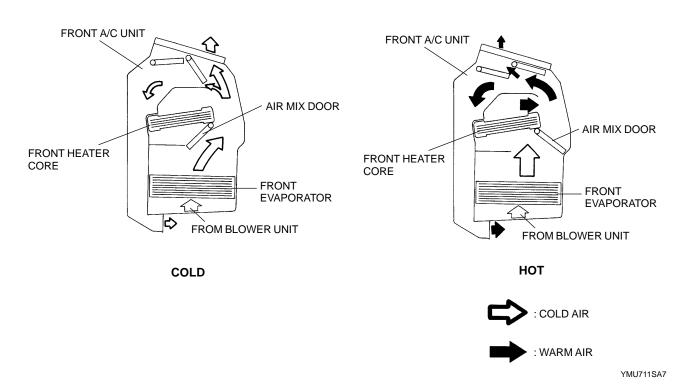
YMU711S04

 The air filter removes pollen, grains, and dust from the air so that the air supplied to the passenger compartment is clean.

Replace the air filter:

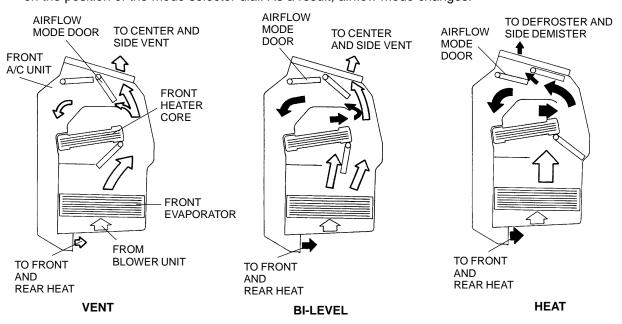
Once a year or after every 20,000 km {12,400 miles}

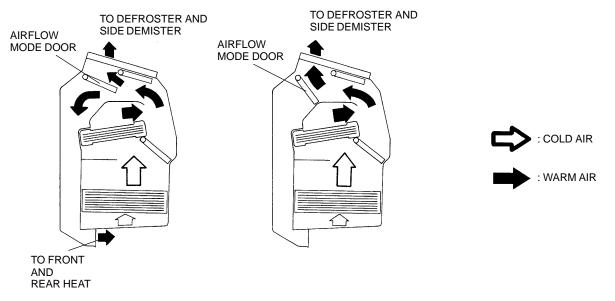
YMU711SA5


FRONT A/C UNIT DESCRIPTION

YMU711S05

The front A/C unit, which integrates the cooling and heater unit, is used.


Air Mix Door Operation


• The air mix door, installed in the front A/C unit, controls HOT or COLD position, using the air mix actuator motor. As a result, airflow distribution changes, and the airflow temperature is controlled.

Airflow Mode Door Operation

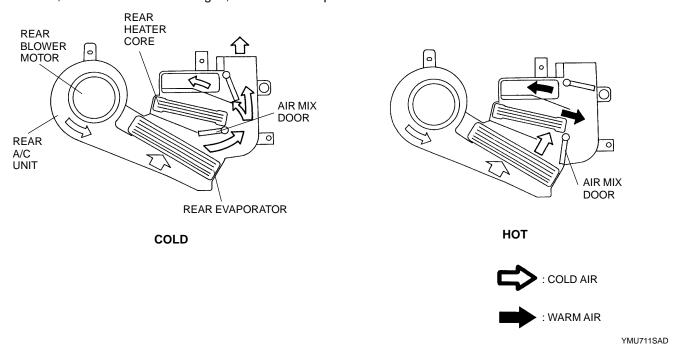
• The airflow mode doors move to VENT, BI-LEVEL, HEAT, HEAT/DEF, or DEFROSTER position, depending on the position of the mode selector dial. As a result, airflow mode changes.

HEAT/DEF DEFROSTER

YMU711SA8

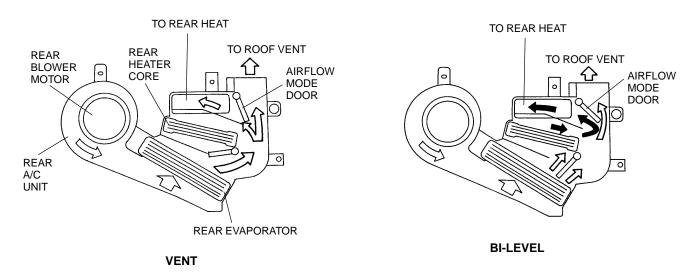
Airflow distribution

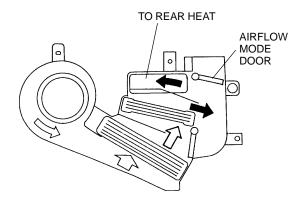
Airflow mode	Distribution (%)				
Airilow illode	Center and side vent	Front and rear heat	Defroster and side demister		
VENT	90	10	0		
BI-LEVEL	50	50	0		
HEAT	0	85	15		
HEAT/DEF	0	50	50		
DEFROSTER	0	0	100		


REAR A/C UNIT DESCRIPTION

YMU711S06

• The rear A/C unit, which integrates the blower, cooling and heater unit, has been used.


Air Mix Door Operation

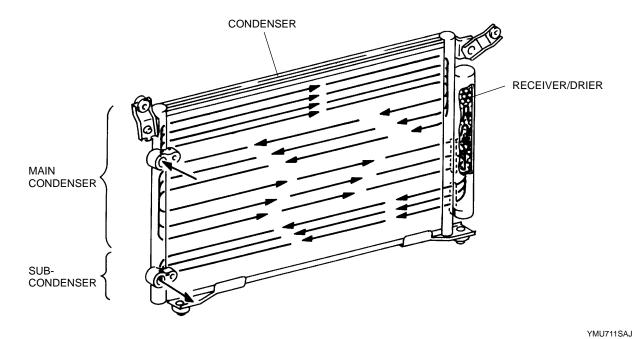

• The air mix door moves to HOT or COLD position, depending on the position of the mode selector dial. As a result, airflow distribution changes, and airflow temperature is controlled.

Airflow Mode Door Operation

• The airflow mode doors, installed in the rear A/C unit control VENT, BI-LEVEL, or HEAT position, using the airflow mode actuator motor. As a result, airflow mode changes.

HEAT

YMU711SAF


Airflow distribution

Airflow mode	Distribution (%)		
Airilow mode	Roof vent	Rear heat	
VENT	85	15	
BI-LEVEL	60	40	
HEAT	0	100	

CONDENSER DESCRIPTION

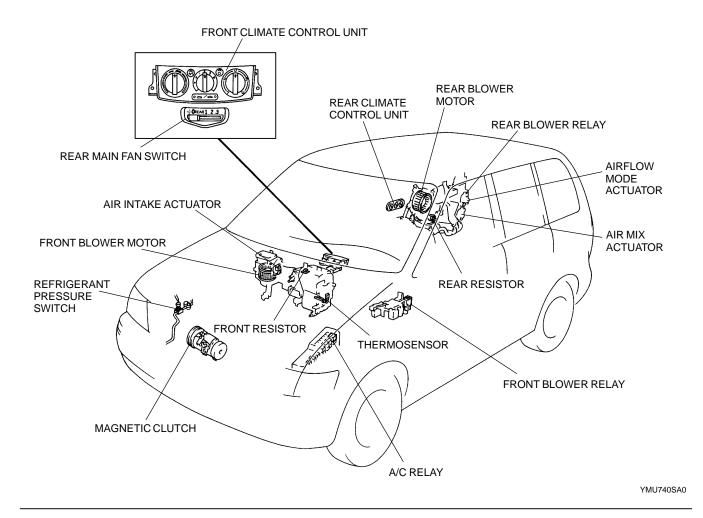
YMU711S07

- The receiver/drier, main condenser, and sub-condenser are integrated into the sub-cooling system multi-flow condenser.
- The sub-cooling system multi-flow condenser sends refrigerant cooled in the main condenser to the receiver/drier and re-cools it in the sub-condenser for a more efficient cooling process.

CONTROL SYSTEM

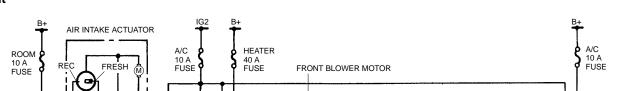
07-40 CONTROL SYSTEM

CONTROL SYSTEM OUTLINE CONTROL SYSTEM STRUCTURAL	07–40–1	AIRFLOW MODE ACTUATOR DESCRIPTION	
VIEW	07-40-2	System Wiring Diagram	07-40-6
CONTROL SYSTEM WIRING		Operation	07-40-6
DIAGRAM	07-40-3	AIR MIX ACTUATOR DESCRIPTION	07-40-7
Front	07-40-3	System Wiring Diagram	07-40-7
Rear	07-40-3	Operation	
REFRIGERANT PRESSURE SWITCH	•	THERMOSENSOR DESCRIPTION	
DESCRIPTION	07-40-4	Operation	07-40-8
Middle Pressure Switch Operation	07-40-4	CLIMATE CONTROL UNIT	
AIR INTAKE ACTUATOR		DESCRIPTION	07-40-8
DESCRIPTION	07-40-5	Front Climate Control Unit	07-40-8
System Wiring Diagram	07-40-5	Rear Main Fan Switch	07-40-9
Operation		Rear Climate Control Unit	07-40-10


CONTROL SYSTEM OUTLINE

YMU740S01

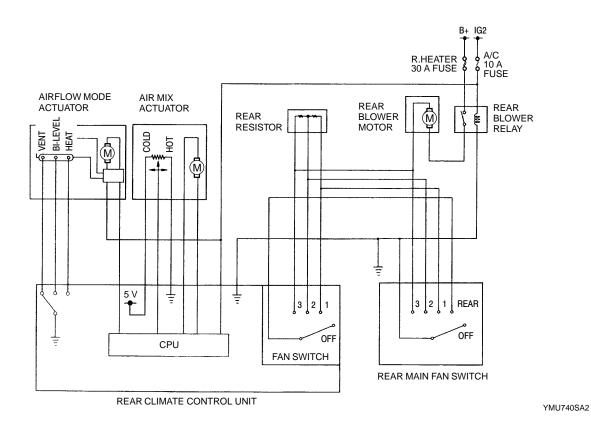
- A middle pressure switch has been adopted to the refrigerant pressure switch. The middle pressure switch controls the cooling fan while the A/C is operating.
- An air intake actuator installed in the blower unit electrically controls ventilation.
- An airflow mode actuator and air mix actuator installed in the rear A/C electrically controls mode changes and the rear A/C temperature regulation.
- A thermosensor integrated with an amplifier is used.
- A wire and logic type front climate control unit is used.
- A front defroster control in the front climate control unit improves defogging of the windshield and front door glasses.
- Ā rear main fan switch in the center of the dashboard allows the driver to control the rear A/C airflow.
- A logic type rear climate control unit is used.


CONTROL SYSTEM STRUCTURAL VIEW


YMU740S02

CONTROL SYSTEM WIRING DIAGRAM

Front



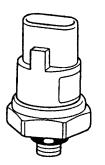
FRONT CLIMATE CONTROL UNIT

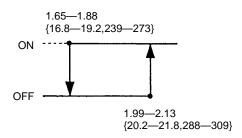
YMU740SA1

YMU740S03

Rear

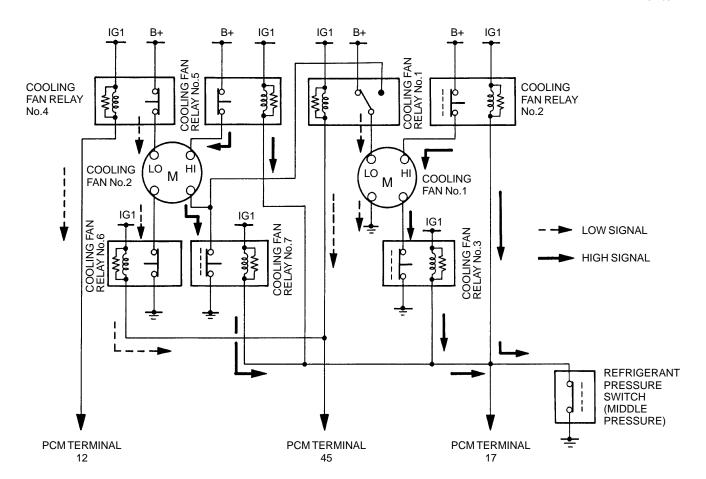
07-40-3


REFRIGERANT PRESSURE SWITCH DESCRIPTION


YMU740S04

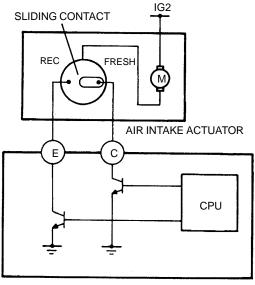
Middle Pressure Switch Operation

- When the refrigerant pressure exceeds approximately 2.06 MPa {21.0 kgf/cm², 299 psi}, the contact point goes on, and the operation of cooling fan is changed from low speed to high speed.
- In regard to the details of cooling fan control, refer to 01–40 ELECTRIC FAN CONTROL DESCRIPTION.


REFRIGERANT PRESSURE SWITCH

MPa {kgf/cm², psi}

YMU740SAF

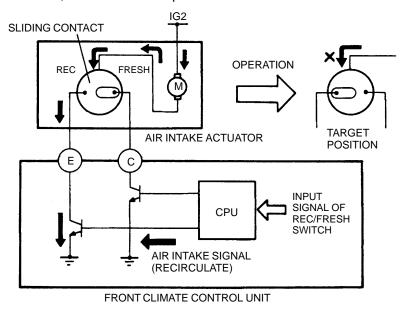

YMU740SAG

AIR INTAKE ACTUATOR DESCRIPTION

YMU740S05

- The air intake actuator is operated by signals from the front climate control unit, and thereby opens and closes the air intake door.
- The air intake actuator has a built-in sliding contact that is linked to the motor.

System Wiring Diagram

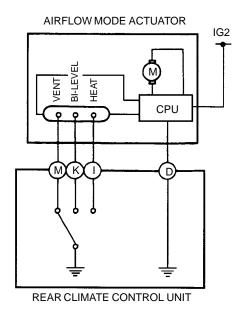


FRONT CLIMATE CONTROL UNIT

YMU740SA3

Operation

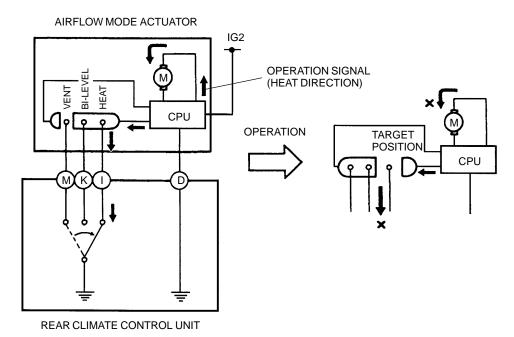
- 1. The front climate control unit CPU sends an air intake signal based on the input signal of the REC/FRESH switch and turns the transistor on.
- 2. The air intake actuator motor operates until the sliding contact rotates to a target position.
- 3. When the motor has rotated to the target position, the sliding contact opens.
- 4. The motor drive circuit is cut, and the motor stops.


YMU740SA4

AIRFLOW MODE ACTUATOR DESCRIPTION

YMU740S06

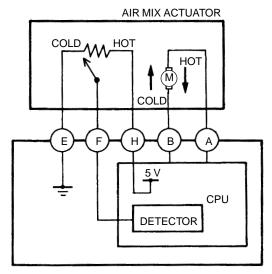
- The airflow mode actuator contains a CPU.
- The CPU controls the rotation direction of the motor according to the position of the airflow mode dial on the rear climate control unit.


System Wiring Diagram

YMU740SA5

Operation

- 1. When the airflow mode dial on the rear climate control unit is turned, the signal from the CPU is shorted to ground.
- 2. When the circuit from the CPU to ground is completed, the CPU sends a signal to the motor to start operating.
- 3. When the motor has rotated to the target position, the sliding contact opens and the motor is stopped.

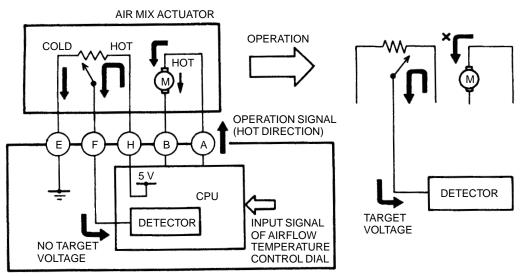

YMU740SA6

AIR MIX ACTUATOR DESCRIPTION

YMU740S07

- The air mix actuator is operated by signals from the rear climate control unit, and opens and closes the air mix
 doors
- The air mix actuator is equipped with a potentiometer that is linked to the motor.

System Wiring Diagram



REAR CLIMATE CONTROL UNIT

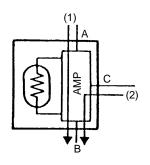
YMU740SA7

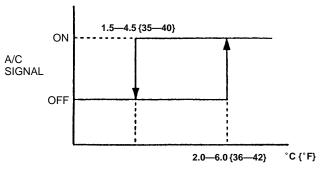
Operation

- 1. The CPU of the rear climate control unit decides the voltage of the target based on the input signal of the airflow temperature control dial.
- 2. When the voltage of the target is high compared with the detected voltage, the CPU rotates the motor of the air mix actuator in the direction of HOT. On the other hand, when the voltage is low, the CPU rotates the motor in the direction of COLD.
- 3. When the CPU detects the target voltage, the motor is stopped.

REAR CLIMATE CONTROL UNIT

YMU740SA8


THERMOSENSOR DESCRIPTION

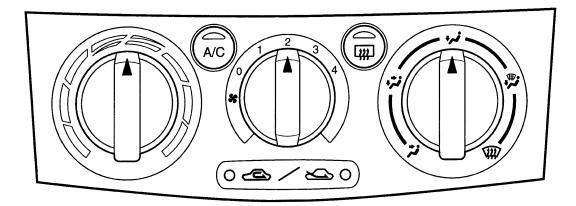

YMU740S08

- The thermosensor is installed in the cooling unit.
- If the evaporator temperature is below specification, the thermosensor cuts the A/C signal to the PCM, and the PCM stops the A/C compressor.

Operation

• Current (1) supplies power to the AMP. If the evaporator temperature is above 1.5—2.7 °C {34.7—36.8 °F}, current (2) flows, and causes the magnetic clutch to operate. This keeps the evaporator surface temperature within the specified range, and prevents the evaporator from freezing while the A/C switch is turned on.

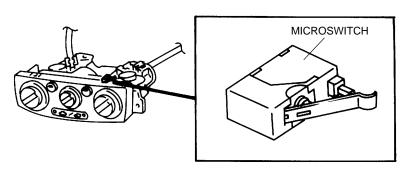
THERMOSENSOR OPERATION


YMU740SA9

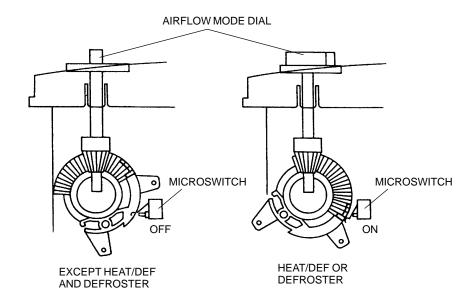
CLIMATE CONTROL UNIT DESCRIPTION

YMU740S09

Front Climate Control Unit


- A wire and logic type front climate control unit is used.
- The front defroster control prevents window fogging.
- The front climate control unit contains a microswitch, which controls operation of the front defroster.

YMU740SAA


Microswitch

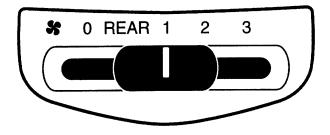
- When the airflow mode dial on the front climate control unit is turned to HEAT/DEF or DEFROSTER, the microswitch turns on.
- When the microswitch turns on, the front defroster control switches air intake to FRESH mode, and switches A/C to ON.

YMU740SAB

CONTROL SYSTEM

YMU740SAH

Front defroster control operation


 To improve defogging when the climate control unit's airflow mode dial is turned to HEAT/DEF or DEFROSTER, the front defroster control switches air intake to FRESH mode, and switches A/C to ON.

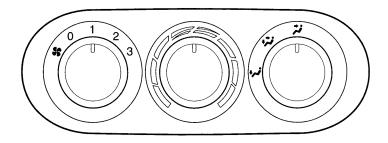
×: Available

				A. Available
Airflow mode	Air intake mode (REC/FRESH switch pushed)	A/C ON/OFF (A/C switch pushed)		Front defroster control
		A/C	A/C illumination	
VENT	REC↔FRESH	OFF	OFF	N/A
VENI	REC↔FRESH	ON	ON	1 IN/A
BI-LEVEL	REC↔FRESH	OFF	OFF	- N/A
		ON	ON	
HEAT	REC↔FRESH	OFF	OFF	N/A
neai		ON	ON] IN/A
HEAT/DEF	FRESH	ON	ON↔OFF	×
DEFROSTER	FRESH	ON	ON↔OFF	×

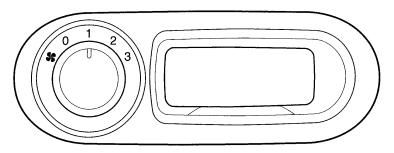
Rear Main Fan Switch

- The rear main fan switch allows the driver to control airflow of the rear A/C.
- Airflow adjustment of the rear climate control unit can be controlled by moving the rear main fan switch to REAR.

YMU740SAD


CONTROL SYSTEM

Rear Climate Control Unit


- A logic type rear climate control unit is used.

 The rear climate control unit adjusts the temperature and airflow of the rear A/C, and switches modes.
- Airflow adjustment of the rear climate control unit can be stopped by turning the rear main fan switch located on the dashboard to a position other than REAR.

WITH REAR A/C

WITH REAR HEATER OR COOLER ONLY

YMU740SAE

RESTRAINTS

08 SECTION

OUTLINE	08–00	SEAT BELT	
AIR BAG SYSTEM	08_10		

08-00 OUTLINE

RESTRAINTS ABBREVIATIONS

YMU800S01

ACC	Accessories
DLC	Data link connector
DTC	Diagnostic trouble code
ELR	Emergency locking retractor

IG	Ignition
OFF	Switch off
ON	Switch on
SAS	Sophisticated air bag sensor

RESTRAINTS NEW FEATURES

YMU800S02

Improved Safety

- Adopted load limiter mechanisms to front seat belt
- Added side air bag to front seat

Improved Serviceability

- Added past malfunction diagnosis of air bag system
- Additional DTCs (22, 25, 26, 32, 35, and 37) to detect air bag malfunction

08-10 AIR BAG SYSTEM

AIR BAG SYSTEM OUTLINE Driver-side Air Bag Module Passenger-side Air Bag Module Side Air Bag Module Side Air Bag Sensor Clock Spring SAS Control Module Deployment Authorization Procedure	08-10-1 08-10-1 08-10-1 08-10-1 08-10-1 08-10-1	AIR BAG SYSTEM STRUCTURAL VIEW AIR BAG SYSTEM WIRING DIAGRAM AIR BAG SYSTEM DESCRIPTION Side Air Bag Module Side Air Bag Sensor SAS Control Module, Side Air Bag Sensor	. 08–10–3 . 08–10–4 . 08–10–4 . 08–10–7
Deployment Authorization Procedure .	00-10-1	Side All Day Selisoi	. 00-10-1

AIR BAG SYSTEM OUTLINE

YMU810S01

- A driver-side air bag module and a passenger-side air bag module are standard equipment.
- A side air bag module is equipped as an option.
- The comparison with the 1998MY MPV is indicated below.

Driver-side Air Bag Module

• The module has been changed to a rounded design.

Passenger-side Air Bag Module

 The placement of the passenger-side air bag module is changed. The module is located in the top of the dashboard.

Side Air Bag Module

A side air bag module has been added.

Side Air Bag Sensor

A side air bag sensor has been added.

Clock Spring

The design has been changed and uses the 1999MY Protegé type.

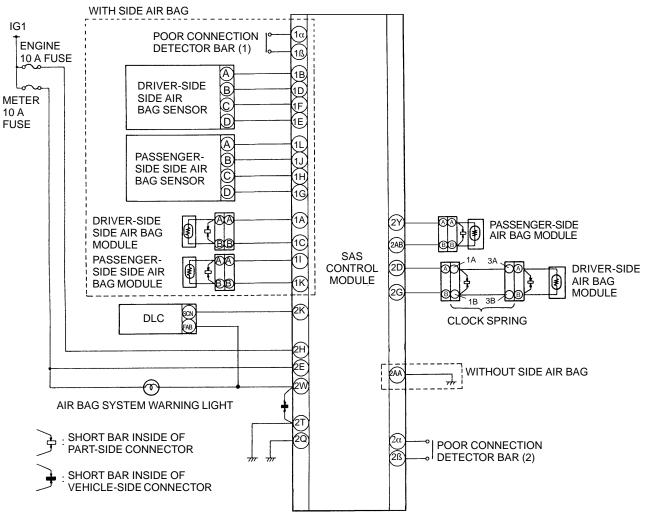
SAS Control Module

- The past malfunction diagnosis memory has been added to the on-board diagnostic function.
- The DTCs for poor connection in the SAS control module connector (DTC 1) and for malfunctions in SAS control module (DTC 2) have been added instead of illuminating continuously. They are the same as the 1999MY Protegé.
- DTCs for the side air bag system and the air bag system warning light circuit have been added.

Deployment Authorization Procedure

- The deployment authorization procedure for the SAS control module is the same as the 1999MY Protegé.
- A deployment authorization procedure for the side air bag sensor has been added.

AIR BAG SYSTEM STRUCTURAL VIEW


YMU810S02

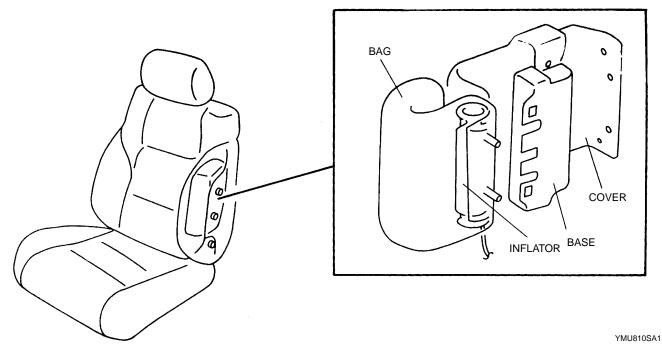
YMU810SAS

YMU810S03

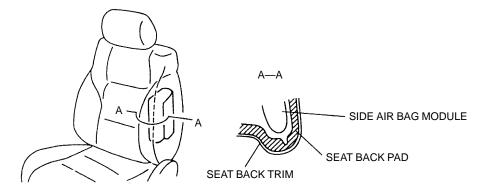
AIR BAG SYSTEM WIRING DIAGRAM

YMU810SA0

AIR BAG SYSTEM DESCRIPTION

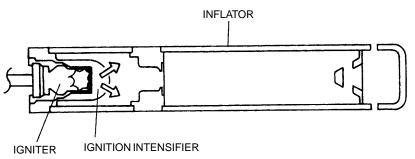

YMU810S04

YMU810SA2

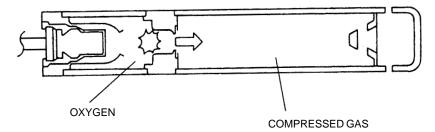

Side Air Bag Module

Structure

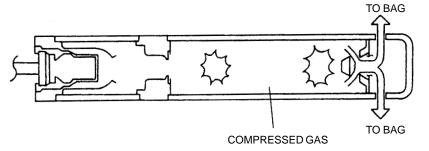
• The side air bag module is composed of the following parts.


• The bag comes out from the seat back pad. The outside seat back trim separates during inflation.

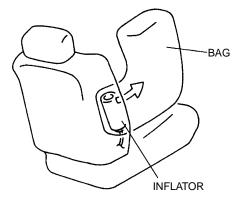
AIR BAG SYSTEM


Activation

1. The igniter is activated by electrical current from the SAS control module. This activation heats the ignition intensifier.


YMU810SA3

2. The ignition intensifier burns due to the surrounding oxygen, and breaks the compressed gas chamber wall igniting the compressed gas.


YMU810SA4

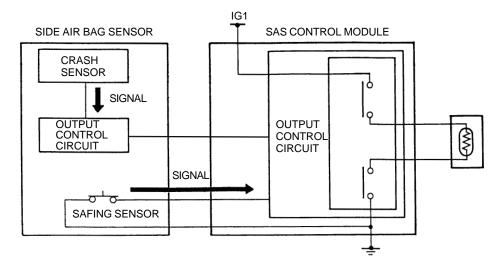
3. The compressed gas raises chamber pressure forcing the gas through the outlet.

YMU810SA5

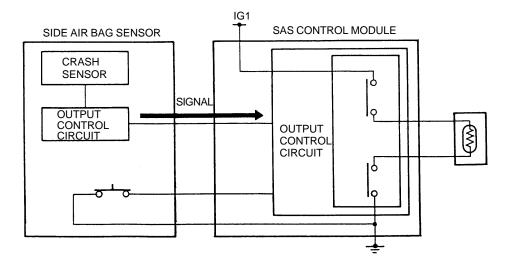
4. In the outlet chamber, the bag swells from being instantaneously injected with gas and deploys, absorbing the collision impact from the driver or passenger.

YMU810SA6

AIR BAG SYSTEM

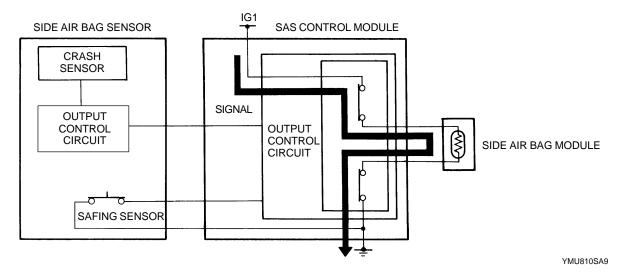

Operation

- 1. When the vehicle is involved in a lateral (side) collision, the impact is detected by the side air bag sensor. Each side air bag sensor contains:
 - Safing sensor
 - Crash sensor
 - Output control circuit

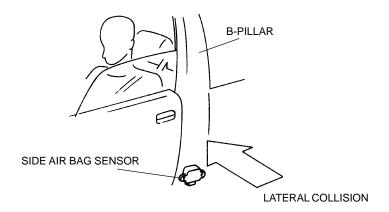

Safing sensor — This sensor activates during impact and sends an air bag operation (deployment) signal to the SAS control module's output control circuit.

Crash sensor — This sensor calculates the force of the impact and sends a corresponding electrical signal to the side air bag sensor's output control circuit.

Output control circuit — This circuit receives the electrical signal from the crash sensor and compares the signal to a preset value. When the electrical signal exceeds the preset value, the side air bag sensor sends an air bag operation (deployment) signal to the SAS control module's output control circuit.


YMU810SA7

YMU810SA8


AIR BAG SYSTEM

2. When the SAS control module's output control circuit receives two (2) signals (one from the safing sensor and one from the side air bag sensor's output control circuit), the air bag ignition circuit is completed and the side air bag is deployed.

Side Air Bag Sensor

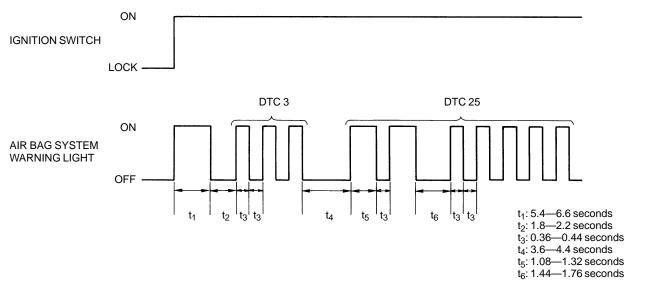
• The side air bag sensor is built into the B-pillar and senses a lateral collision.

YMU810SAA

SAS Control Module, Side Air Bag Sensor Outline

Inside the SAS control module and side air bag sensor is the on-board diagnostic system. This system has the following two functions:

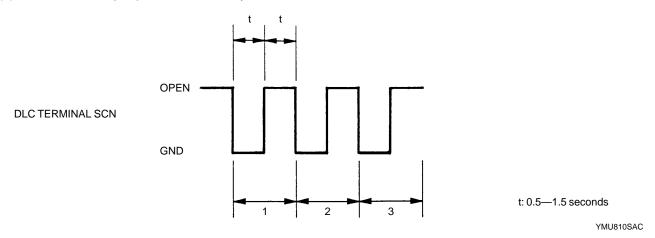
- Memory function
 - The SAS control module and the side air bag sensor store the DTCs of detected malfunctions in their memories.
 - The stored DTCs will not be erased even if the negative battery cable is disconnected.
- Self diagnosis function
 - The self diagnosis function consists of present malfunction diagnosis and past malfunction diagnosis.
 Because a past malfunction is memorized, the function can diagnose a malfunction that occurred in the past, as well as a malfunction occurring at the time.


Present malfunction diagnosis

- When a malfunction that is not intermittent occurs, a DTC is stored in the SAS control module present memory. Multiple malfunction DTCs are stored numerically.
- When a DTC is repaired, it is stored as a "past" malfunction.
- If the malfunction is intermittent, a DTC may also be stored as a past malfunction.

Past malfunction diagnosis

- By shorting the DLC terminal SCN to body GND using a jumper wire and turning the ignition switch to the ON position, you can display DTCs of past malfunctions stored in the memory function. (A present malfunction DTC can be displayed by only turning the ignition switch to the ON position.)
- As with present malfunction diagnosis, when multiple malfunctions have been stored, the DTCs are displayed in numerical order.
- Once a past malfunction is stored, the DTCs can not be erased by any means.


Output pattern

YMU810SAB

Past malfunction code display cancellation operation procedure

- 1. Turn the ignition switch to the ON position.
- 2. Wait until the air bag system warning light illuminates for approximately 6 seconds and goes off.
- 3. Perform the following both steps alternately three times each at 0.5—1.5 seconds intervals.
 - (1) Use a jumper wire to short the DLC terminal SCN to body GND.
 - (2) Disconnect the jumper wire from body GND.

Malfunction diagnosis procedure

Note

- While performing the inspection for past malfunction codes, the new DTCs may be added to memory by removing or disconnecting the related parts. Inspect only the DTCs that were indicated before inspecting.
- When DTCs stored in present malfunction are no longer output after present and/or past malfunctions have been repaired, be sure to perform past malfunction display cancellation to prevent repeat repair attempts.

AIR BAG SYSTEM

DTC table

- DTCs shown below can be both present and past malfunction diagnosis.
- DTC 0 has been changed to DTC 2 because the SAS control module has changed.

Note

- When DTCs not shown in the DTC table are displayed, replace the SAS control module.
- When installing a new SAS control module, the air bag system warning light continuously flashes after the
 ignition switch is turned to the ON position. This is the deployment authorization standby code output by
 the SAS control module. Perform the deployment authorization and restore the system to an operational
 state. (Refer to MPV Workshop Manual 1647–10–99C.)
- If the air bag system warning light does not illuminate or remains illuminated when the ignition switch is turned to the ON position, inspect and repair the air bag system warning light circuitry and then confirm that the air bag system warning light is operational.

x: Available

DTC	2000MY	1998MY	Output pattern	Malfunction location
0		×	Remains on	SAS control module
1	×		ON OFF YMU810SAD	SAS control module connector poor connection
2	×		ON OFF YMU810SAE	SAS control module
3	×	×	ON OFF YMU810SAF	Power supply of SAS control module
6	×	×	ON OFF YMU810SAG	Driver-side air bag module system
7	×	×	ON OFF YMU810SAH	Passenger-side air bag module system
22	×		ON OFF YMU810SAK	Driver-side side air bag sensor system (Internal circuit abnormal)
25	×		ON OFF YMU810SAL	Driver-side side air bag sensor system (Low voltage of power supply)
26	×		ON OFF YMU810SAM	Driver-side side air bag module system
32	×		ON OFF YMU810SAN	Passenger-side side air bag sensor system (Internal circuit abnormal)
35	×		ON OFF YMU810SAO	Passenger-side side air bag sensor system (Low voltage of power supply)
37	×		ON OFF YMU810SAP	Passenger-side side air bag module system
91	×		ON OFF YMU810SAQ	Air bag system warning light system
	×		Continuously flashes	Deployment authorization standby code

AIR BAG SYSTEM

Deployment authorization procedure After replacing side air bag sensor

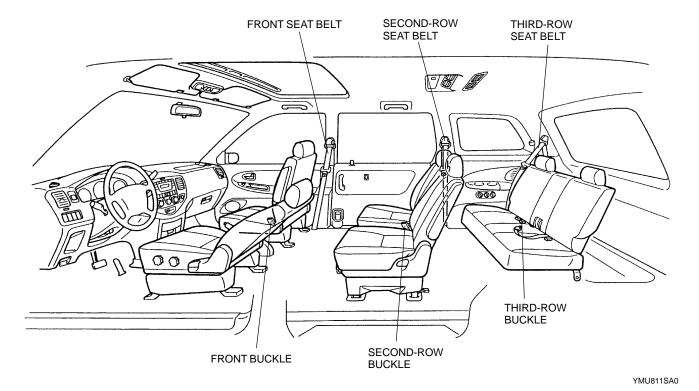
Note

- When replacing both the SAS control module and side air bag sensor together, if deployment authorization is performed for the SAS control module, the side air bag sensor will also be made operational at the same time.
- 1. Turn the ignition switch to ON position.
- 2. Verify that the air bag system warning light illuminates for approximately 6 seconds then goes off.
- 3. If it does not operate properly, perform the deployment authorization procedure again.

SEAT BELT

08-11 SEAT BELT

SEAT BELT OUTLINE 08–11–1	LOAD LIMITER RETRACTOR	
SEAT BELT STRUCTURAL VIEW 08-11-1	DESCRIPTION	08–11–2
	Operation	08–11–2


SEAT BELT OUTLINE

YMU811S01

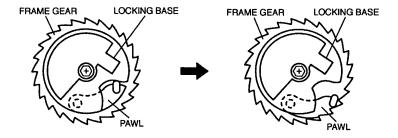
- The seat belt warning system (light and buzzer) reminds the driver to use the seat belt. The operation is the same as the 1999MY Protegé.
- The front seat belts incorporate load limiter mechanism that reduces the force of the belt against the occupants when the belts lock and the force applied to belt exceeds a preset level.

SEAT BELT STRUCTURAL VIEW

YMU811S02

LOAD LIMITER RETRACTOR DESCRIPTION

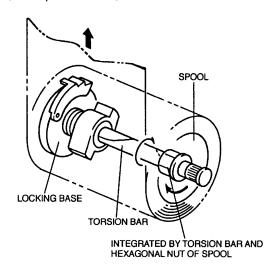
YMU811S03


Warning

When the load limiter operates, the belt and anchor rub against each other strongly leaving a
trace of wear. If the seat belt is used in this state, the seat belt will not function to its designed
effect and there is the possibility of serious injury to passengers. Be sure to replace the seat belt
once the load limiter operates.

Operation

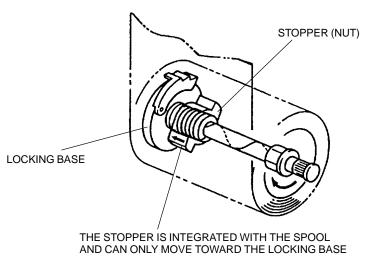
1. ELR (Emergency Locking Retractor) locks


When the belt is extracted, the ELR lock mechanism is activated, and the pawl engages the frame gear. This
locks the locking base as well as the torsion bar and spool integrated to the locking base.

YMU811SA1

2. Torsion bar twists

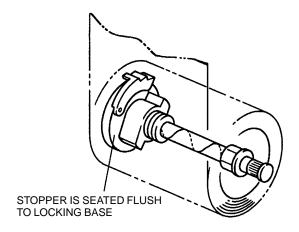
 When the locking base is locked and a load large enough to cause an injury to the chest is applied against the seat belt, the torsion bar twists, the spool rotates, and the belt is extracted.



YMU811SA2

SEAT BELT

3. Stopper (nut) rotates and moves


• The stopper on the thread of the locking base moves toward the locking base as it rotates with the spool.

YMU811SA3

4. Stopper (nut) is seated flush to locking base

• The stopper stops rotating when it is seated flush to the locking base, the spool also stops rotating, and belt extraction is stopped.

YMU811SA4

09

BODY & ACCESSORIES

09 SECTION

OUTLINE	SUNROOF
BODY PANELS 09–10	LIGHTING SYSTEMS 09-18
DOORS AND LIFTGATE 09-11	WIPER/WASHER SYSTEMS 09-19
GLASS/WINDOWS/MIRRORS . 09-12	ENTERTAINMENT 09-20
SEATS09-13	INSTRUMENTATION/DRIVER
SECURITY AND LOCKS 09–14	INFO 09–22

09-00 OUTLINE

BODY & ACCESSORIES	Improved Safety	09-00-1
ABBREVIATIONS	Improved Security	09-00-1
BODY & ACCESSORIES	Improved Serviceability	09-00-1
NEW FEATURES	•	

BODY & ACCESSORIES ABBREVIATIONS

YMU900S01

YMU900S02

ABS HU/CM	ABS hydraulic unit and control module
ACC	Accessories
ATX	Automatic transaxle
DRL	Daytime running light
DTC	Diagnostic trouble code
HI	High
IG	Ignition
INT	Intermittent
LCD	Liquid crystal display
LED	Light emitting diode

LO	Low
М	Motor
NVH	Noise, vibration, and harshness
OFF	Switch off
ON	Switch on
PCM	Powertrain control module
SAS	Sophisticated air bag sensor
SST	Special service tool
SW	Switch
TNS	Tail number side lights

BODY & ACCESSORIES NEW FEATURES

Improved Safety

Adopted triple H structure on body shell

Improved Security

- Adopted theft-deterrent function of keyless entry security system
- Added immobilizer system

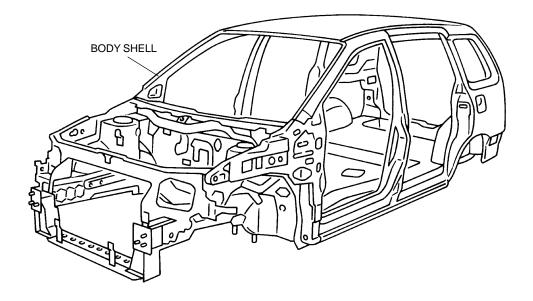
Improved Serviceability

Added instrument cluster input/output check mode

09

09-10 BODY PANELS

Crushable Zone	CARRIER OUTLINE 09–10–3 CARRIER STRUCTURAL 09–10–4 CARRIER DESCRIPTION 09–10–5 09–10–5
----------------	--

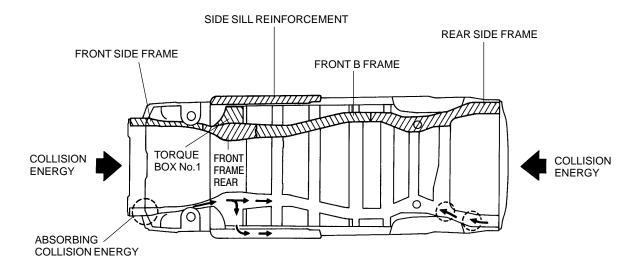

BODY PANEL OUTLINE

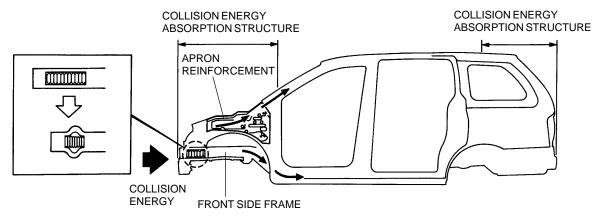
YMU910S01

- The floor of the vehicle is made flat to provide a more comfortable ride and to allow for multiple seating arrangements.
- To increase collision protection:
 - The frame is sectional (front, center and rear) to distribute the impact.
 - Several crossmembers and torque boxes have been arranged laterally.
 - Construction has been designed to efficiently absorb and disperse impact forces.
- Approximately half of the parts in the body shell are made of high-tensile steel for a lighter yet stronger body.
- The front overhang has been reduced to improve vehicle maneuverability.

BODY SHELL STRUCTURAL VIEW

YMU910S02

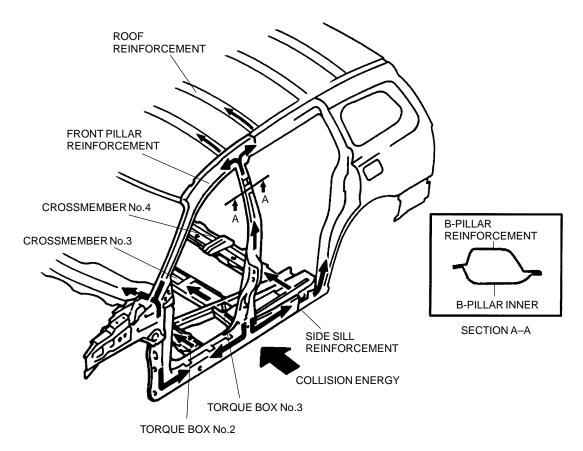

YMU910SA0


BODY SHELL DESCRIPTION

YMU910S03

Crushable Zone

• To reduce cabin damage, the front and rear of the frame are designed to deform when incurring shock, and effectively absorb/disperse energy from a collision.



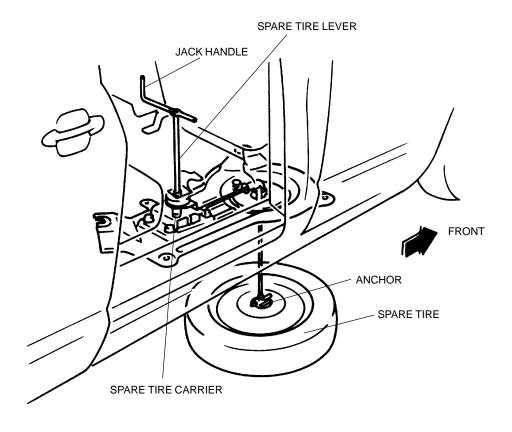
YMU910SA1

BODY PANELS

Cabin

- To protect passengers in collisions from various directions, the passenger cabin is constructed as follows:
 - The B-pillar inner and B-pillar reinforcement are thicker.
 - The pillar configuration is designed to prevent pillar intrusions into the cabin during a collision. A thicker pillar has increased its strength.

YMU910SA2

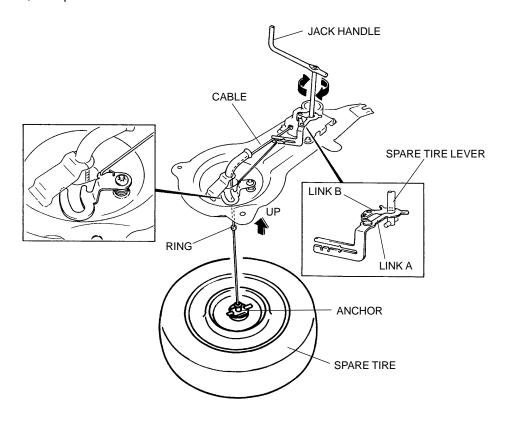

SPARE TIRE CARRIER OUTLINE

YMU910S04

- The spare tire carrier is designed to secure the spare tire under the vehicle until it is needed.
- The spare tire carrier prevents the tire from hitting the ground, and the anchor from hitting the fuel tank or exhaust pipes.
- The carrier design incorporates safe guards which prevent the spare tire lever from being removed when:
 - The spare tire is installed on the carrier up-side down.
 - A tire other than the spare tire is installed on the carrier.
 - The spare tire carrier anchor is not completely raised.
- If the spare tire carrier's cable breaks, the carrier's hook is designed to lock the anchor and prevent the spare tire from falling.

SPARE TIRE CARRIER STRUCTURAL VIEW

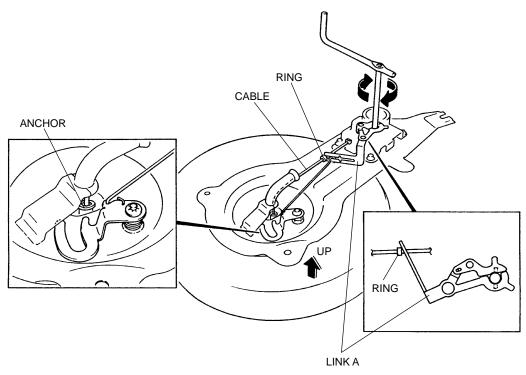
YMU910S05



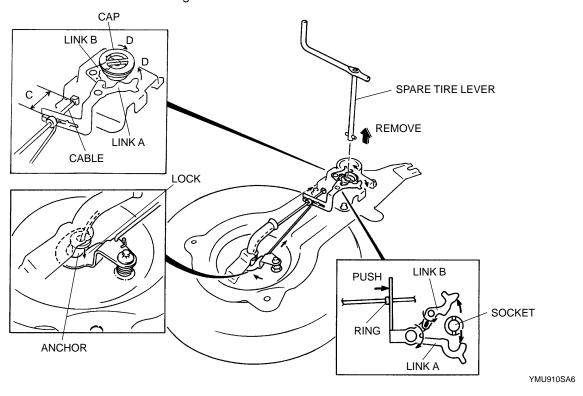
YMU910SA3

SPARE TIRE CARRIER DESCRIPTION

Operation


1. When the jack handle is rotated, the cable is wound clockwise and the spare tire is raised. Until the anchor is completely seated, the spare tire lever is held between links A and B and cannot be removed.

YMU910SA4


YMU910S06

2. When the cable is wound until just before the tire is secured, the ring attached to the cable contacts link A.

YMU910SA5

3. The spare tire lever can be removed when the anchor is completely seated, and links A and B are connected and pushed outward, locking the anchor and tire in place. If the cable should break in the section marked C, the cap prevents links A and B from moving in the directions marked D.

09

09-11 DOORS AND LIFTGATE

DOORS AND LIFTGATE OUTLINE 09–11–1	FUEL-FILLER LID/SLIDING DOOR CANCEL
DOORS AND LIFTGATE STRUCTURAL	SYSTEM STRUCTURAL VIEW 09-11-4
VIEW 09–11–1	FUEL-FILLER LID OPEN CANCEL
SLIDING DOOR DESCRIPTION 09-11-2	FUNCTION DESCRIPTION 09–11–5
SLIDING DOOR CIRCUIT CONTACT	Fuel-filler Lid Cancel Operation 09–11–5
DESCRIPTION	Fuel-filler Lid Open Operation 09–11–6
REAR DOOR CATCHER PIN	SLIDING DOOR CANCEL FUNCTION
DESCRIPTION	DESCRIPTION
IMPACT BAR DESCRIPTION 09-11-3	Sliding Door Cancel Operation 09–11–7
FUEL-FILLER LID/SLIDING DOOR CANCEL SYSTEM OUTLINE	

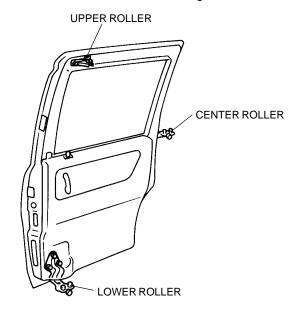
DOORS AND LIFTGATE OUTLINE

YMU911S01

- The rear door is a sliding design with three rails.
- Sliding door circuit contacts are installed on the sliding door and the body for supply power (the power window system and the power door lock system) to the sliding door.
- An impact bar and a rear door catcher pin are used in the sliding door to improve passenger safety in the
 event of a side collision.
- To prevent the sliding door from hitting the fuel-filler lid, the sliding door cannot be opened when the fuel-filler lid is open.

DOORS AND LIFTGATE STRUCTURAL VIEW

YMU911S02

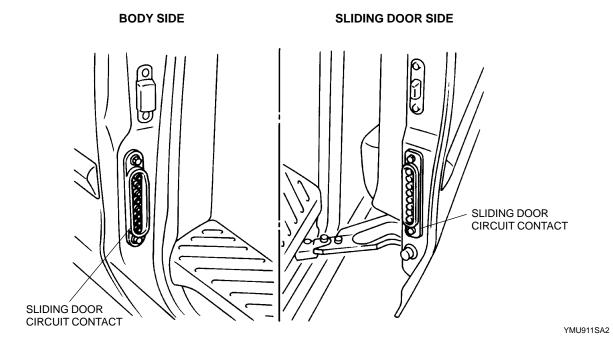


YMU911SA0

SLIDING DOOR DESCRIPTION

YMU911S03

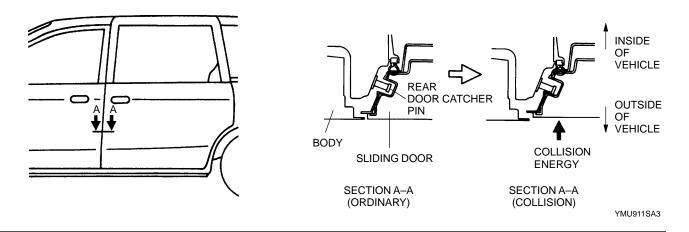
• The sliding door is equipped with three rollers for a more stable sliding action.



YMU911SA1

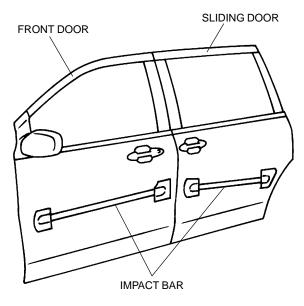
SLIDING DOOR CIRCUIT CONTACT DESCRIPTION

YMU911S04


 When the sliding door is closed, the sliding door circuit contacts on the body and the sliding door are connected and the power for the power window system and the power door lock system is supplied to the sliding door.

REAR DOOR CATCHER PIN DESCRIPTION

YMU911S05

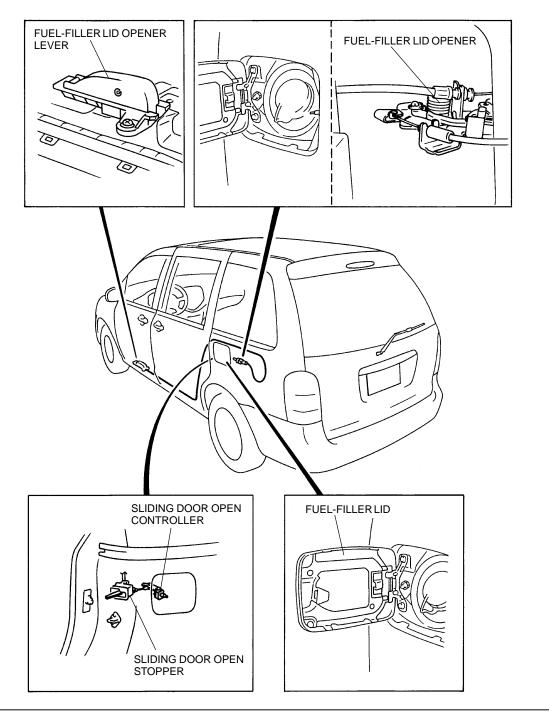

• The rear door catcher pin is designed to prevent the door from collapsing inward during a collision.

IMPACT BAR DESCRIPTION

YMU911S06

 The impact bar improves door rigidity, thereby preventing the door from deforming and intruding into the passenger compartment in a collision.

YMU911SA4

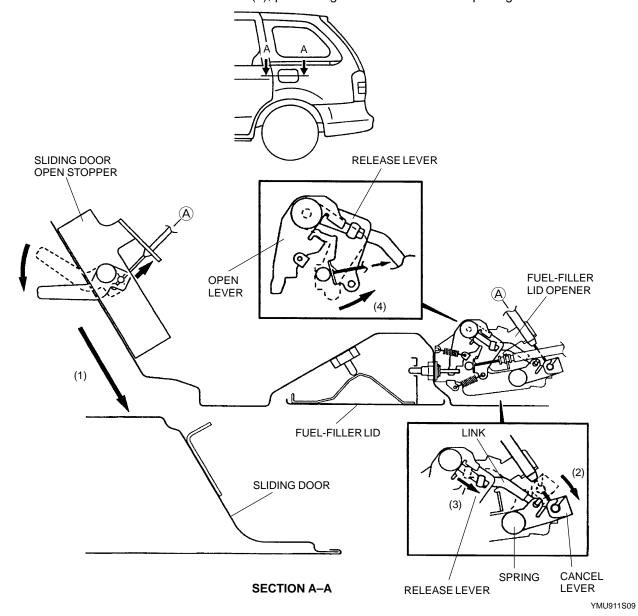

FUEL-FILLER LID/SLIDING DOOR CANCEL SYSTEM OUTLINE

YMU911S07

- The fuel-filler lid system has the following functions:
 - Prevents the fuel-filler lid from being opened while the driver-side sliding door is open (even when the fuel-filler lid opener is operated).
 - Prevents the sliding from hitting the fuel-filler lid. The driver-side sliding door will not open when the fuel-filler lid is open.

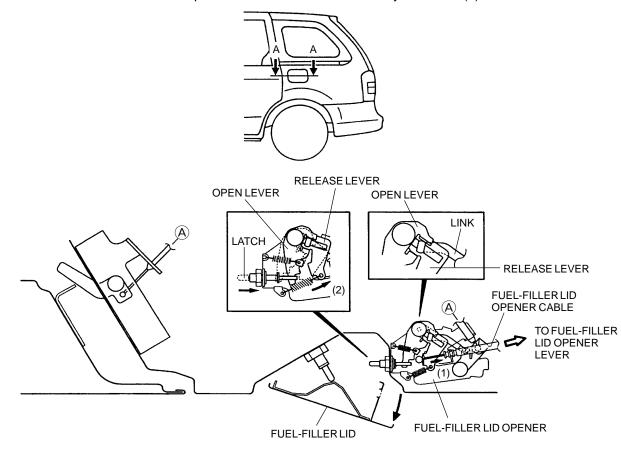
FUEL-FILLER LID/SLIDING DOOR CANCEL SYSTEM STRUCTURAL VIEW

YMU911S08


YMU911SA5

FUEL-FILLER LID OPEN CANCEL FUNCTION DESCRIPTION

YMU911S09

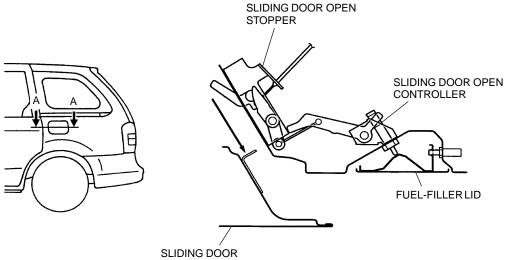

Fuel-filler Lid Cancel Operation

- 1. When the driver-side sliding door is opened (1), a spring returns the cancel lever to its original position (2).
- 2. The movement of the cancel lever causes the end of the link to slide through the hole in the release lever (3).
- 3. The end of the link comes apart from the contact of the open lever. (The release lever and the open lever come apart.)
- 4. This cuts off the motion of the release lever (4), preventing the fuel-filler lid from opening.

DOORS AND LIFTGATE

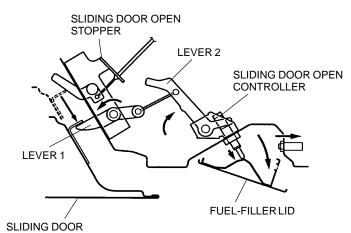
- Fuel-filler Lid Open Operation
 1. The fuel-filler lid opener lever is cable operated (1).
 2. The cable moves the release and open lever in the direction shown by the arrow (2).

SECTION A-A


YMU911SA7

SLIDING DOOR CANCEL FUNCTION DESCRIPTION

YMU911S10


Sliding Door Cancel Operation

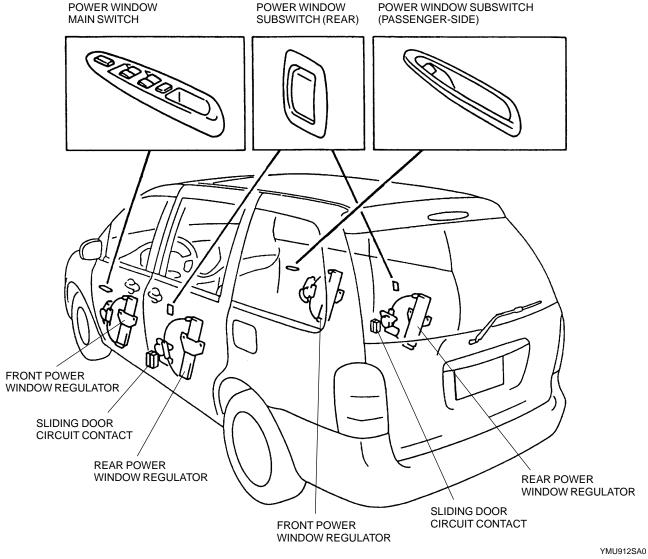
 When the fuel-filler lid is opened, lever 1 rises and pulls lever 2. Lever 2 prevents the driver-side sliding door from opening further.

SECTION A-A (CLOSE FUEL-FILLER LID)

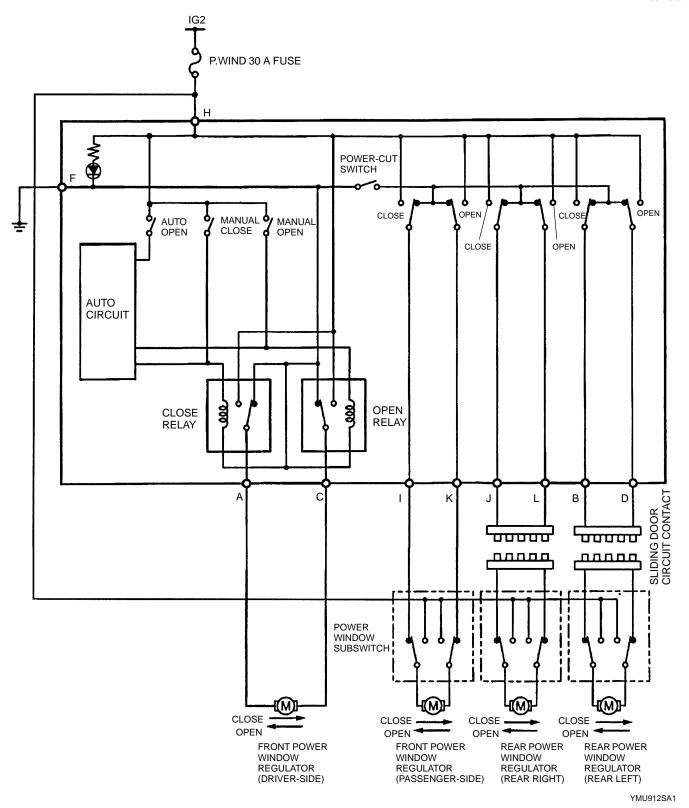
SECTION A-A (OPEN FUEL-FILLER LID)

YMU911SA8

09-12 **GLASS/WINDOWS/MIRRORS**


POWER WINDOW SYSTEM OUTLIN	E . 09-12-1	REAR WINDOW DEFROSTER SYS	STEM
POWER WINDOW SYSTEM		WIRING DIAGRAM	09–12–4
STRUCTURAL VIEW	09–12–1	REAR WINDOW DEFROSTER	
POWER WINDOW SYSTEM		DESCRIPTION	09–12–4
WIRING DIAGRAM	09–12–2	Timer Operation	09–12–4
REAR WINDOW DEFROSTER		Timing Chart	09–12–4
OUTLINE	09–12–3	OUTSIDE MIRROR OUTLINE	09–12–5
REAR WINDOW DEFROSTER			
STRUCTURAL VIEW	09-12-3		

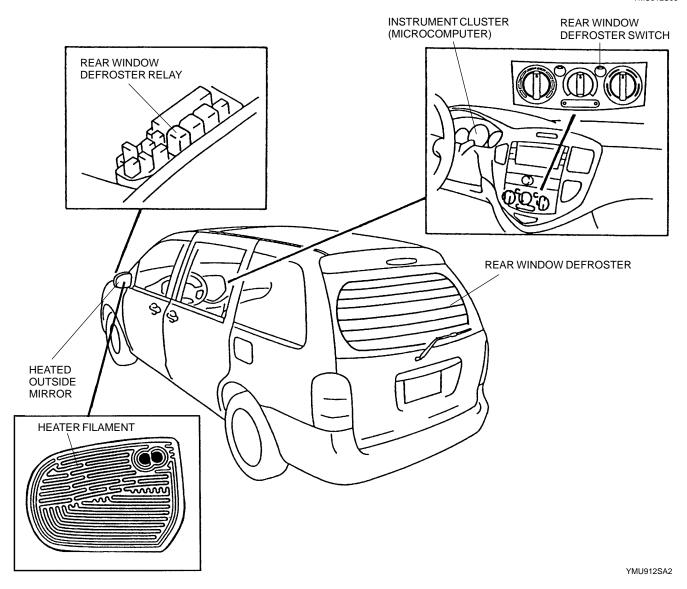
POWER WINDOW SYSTEM OUTLINE


YMU912S01

- The construction and operation, which has manual close/open, auto open, and power-cut functions, is basically the same as the 1998MY MPV. The following are the major differences between the 2000MY and 1998MY MPV.
 - A sliding door circuit contact, which joins harnesses in the sliding door and the body, has been added. (Refer to 09-11-2 SLIDING DOOR CIRCUIT CONTACT DESCRIPTION.)

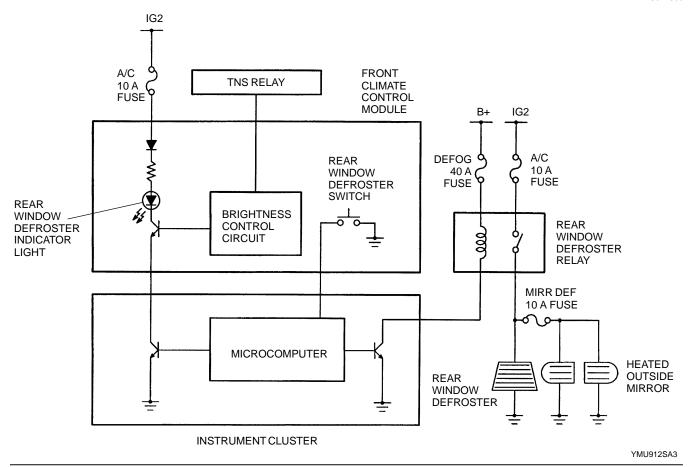
POWER WINDOW SYSTEM STRUCTURAL VIEW

POWER WINDOW SYSTEM WIRING DIAGRAM


GLASS/WINDOWS/MIRRORS

REAR WINDOW DEFROSTER OUTLINE

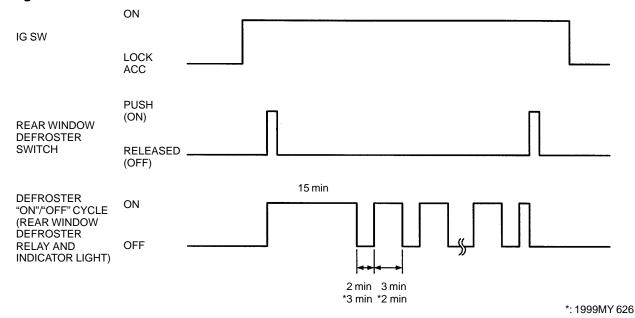
YMU912S04


- The construction and operation is basically the same as the 1998MY MPV. The following are the major differences between the 2000MY and 1998MY MPV.
 - Heated outside mirrors, which operate with the rear window defroster, have been added.
 - The timer has been added. It is the same as the 1999MY 626, except for the defroster cycle time.

REAR WINDOW DEFROSTER STRUCTURAL VIEW

REAR WINDOW DEFROSTER SYSTEM WIRING DIAGRAM

YMU912S06


REAR WINDOW DEFROSTER DESCRIPTION

YMU912S07

Timer Operation

• The rear window defroster cycles "ON" and "OFF" according to the microcomputer timer operations.

Timing Chart

GLASS/WINDOWS/MIRRORS

OUTSIDE MIRROR OUTLINE

- The construction and operation of the power outside mirror are the same as the 1998MY MPV. Heated outside mirrors have been adopted to improve visibility. (Refer to 09–12–3 REAR WINDOW DEFROSTER OUTLINE.)

09-13 SEATS

09–13–1	SECOND-ROW SEAT DESCRIPTION	N 09–13–2
09–13–1	Side-sliding Operation	09–13–2
09–13–1	Removal Operation	09–13–2
09–13–1		
09–13–1	Stowing Third-row Seat Operation	09–13–3
	Rear View Seating Operation	09–13–3
	09–13–1 09–13–1 09–13–1	09–13–1 Side-sliding Operation

SEAT OUTLINE
YMU913S01

Front Seat

• The driver's seat is designed with a seat lifter mechanism that adjusts the seat cushion to the desired height with independent front and rear tilt dials.

Second-row Seat

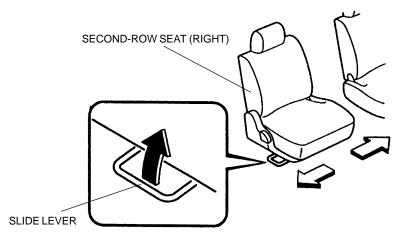

- A sliding mechanism allows passengers to adjust the seats forward and backward for increased comfort.
- The right hand side second-row seat is equipped with a side-sliding mechanism.
- The second-row seat is easily removed with the improved seat anchor lock lever.

Third-row Seat

- The third-row seat can be folded back into the rear well for increased space.
- The third-row seat can be reconfigured for comfortable seating facing rearward with the liftgate open.

SEAT STRUCTURAL VIEW

YMU913S02

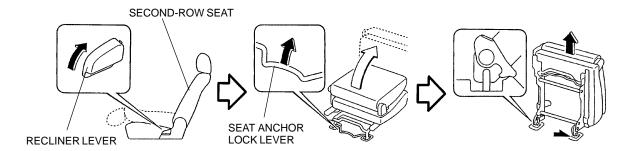


YMU913SA0

SECOND-ROW SEAT DESCRIPTION

Side-sliding Operation

• Pull the slide lever and slide the second-row seat inward or outward.

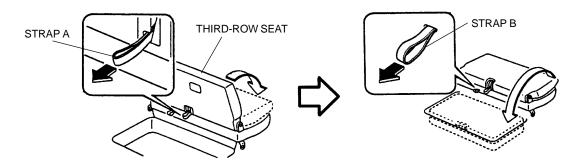


YMU913SA1

YMU913S03

Removal Operation

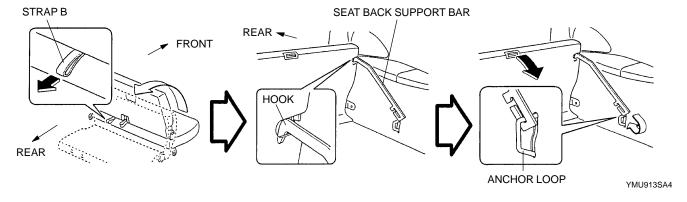
- 1. Put the second-row buckles into the pocket in the cushion.
- 2. Slide the seat to the rearmost position.
- 3. Pull the recliner lever and lower the seat back forward.
- 4. Lift and hold the seat anchor lock lever and lift the entire seat up and forward.
- 5. Remove the second-row seat.


YMU913SA2

THIRD-ROW SEAT DESCRIPTION

YMU913S04

Stowing Third-row Seat Operation


- 1. Remove the headrests.
- 2. Pull strap A and fold the seat back forward.
- 3. Pull strap B while lifting the seat up and to the rear.

YMU913SA3

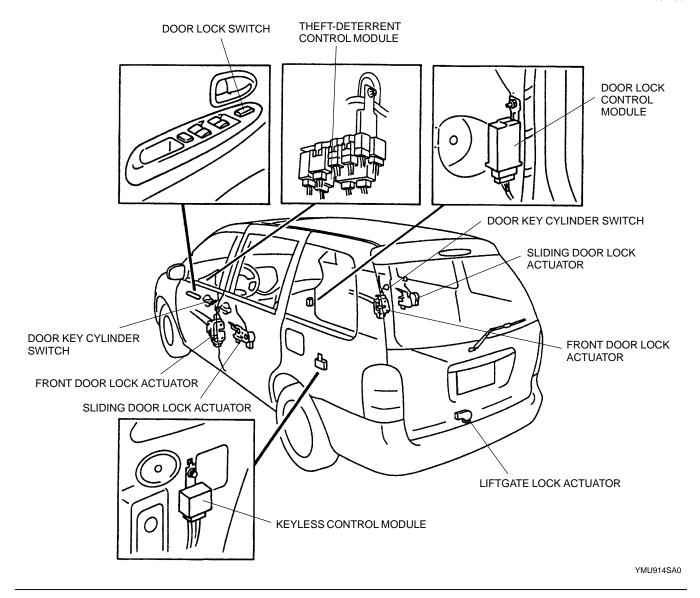
Rear View Seating Operation

- 1. Open the liftgate.
- 2. Remove the headrests.
- 3. Pull strap B while supporting the seat back with the other hand and carefully ease the seat back rearward and into the seat well.
- 4. Set the hook on the seat back support bar in the rear of the seat back.
- 5. Pull the seat back towards the front of the vehicle until the opposite end of the support bar hooks onto the anchor loop.

SECURITY AND LOCKS

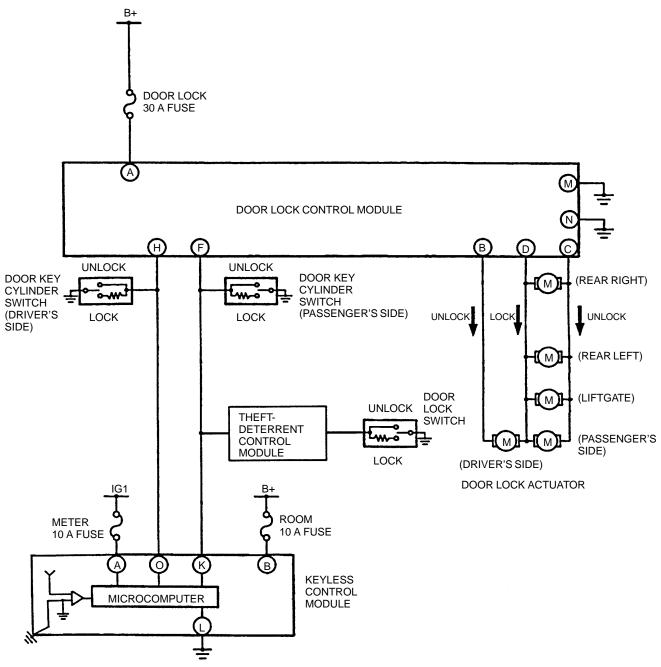
09-14 SECURITY AND LOCKS

• · · · · • · • · · · · · · · · · · · ·	DIAGRAM09-14-3 IMMOBILIZER SYSTEM STRUCTURAL
---	--


POWER DOOR LOCK SYSTEM OUTLINE

YMU914S01

- The door key interlock function has the following functions:
 - The driver's door key cylinder can be used to unlock the driver's door without unlocking the other doors.
 - The driver's door key cylinder can also be used to lock/unlock all the doors.
 - The passenger's door key cylinder can be used to lock/unlock all the doors.
- The door lock switch function has the following function:
 - The door lock switch can be used to lock/unlock all the doors.
- The keyless entry function has the following functions:
 - The transmitter can be used to unlock the driver's door without unlocking the other doors.
 - The transmitter can also be used to lock/unlock all the doors.


POWER DOOR LOCK SYSTEM STRUCTURAL VIEW

YMU914S02

POWER DOOR LOCK SYSTEM WIRING DIAGRAM

YMU914S03

YMU914SA1

POWER DOOR LOCK SYSTEM DESCRIPTION

YMU914S04

Function	Operating condition	Driver-side door	Passenger-side, rear doors and liftgate
	When the key is turned in the driver-side door key cylinder to lock position	Locked	Locked
	When the key is turned in the driver-side door key cylinder to unlock position and held for less than 1 second	Unlocked	Not activated
Door key interlock	When the key is turned in the driver-side door key cylinder to unlock position and held for more than 1 second	Unlocked	Unlocked
	When the key is turned in the passenger-side door key cylinder to lock position	Locked	Locked
	When the key is turned in the passenger-side door key cylinder to unlock position	Unlocked	Unlocked
Door lock switch	When the door lock switch is locked	Locked	Locked
DOOF TOCK SWITCH	When the door lock switch is unlocked	Unlocked	Unlocked
	Transmitter LOCK button is pressed*1	Locked	Locked
Keyless entry	Transmitter UNLOCK button is pressed once.	Unlocked	Not activated
,	Transmitter UNLOCK button is pressed twice for less than 5 seconds.	Unlocked	Unlocked

^{*1:} When the transmitter LOCK button is pressed again within 5 seconds, the horn sounds to confirm that all doors and liftgate are closed.

Note

The door key interlock function is not activated when the liftgate lock cylinder is used.

FUEL-FILLER LID SYSTEM OUTLINE

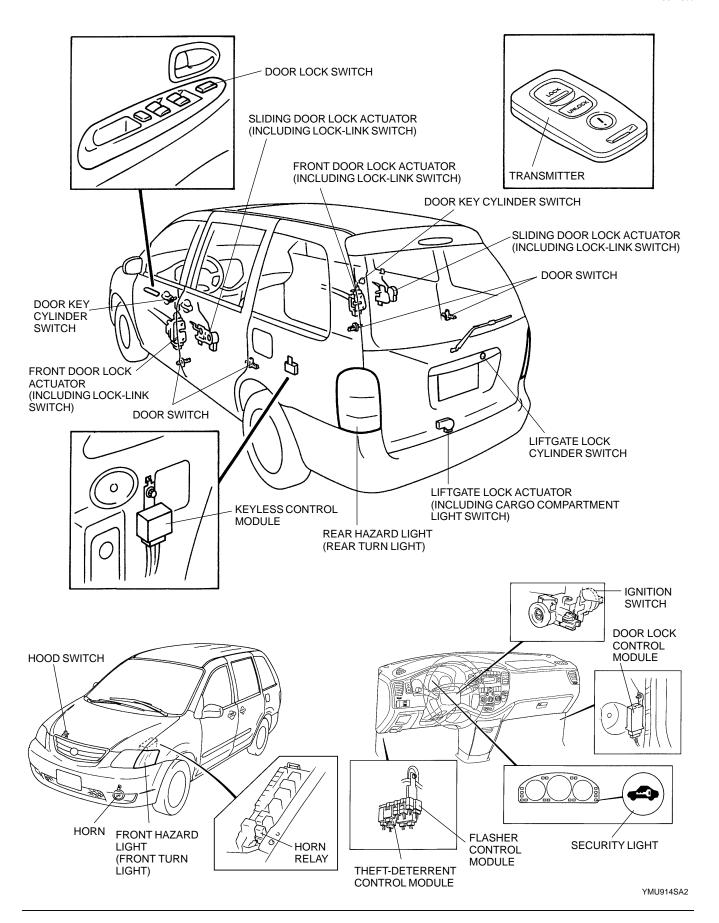
YMU914S14

- The fuel-filler lid system has the following functions:
 - Prevents the fuel-filler lid from being opened while the driver-side sliding door is open (even when the fuel-filler lid opener is operated). (Refer to 09–11–5 Fuel-filler Lid Cancel Operation.)
 - Prevents the sliding door from hitting the fuel-filler lid. The driver-side sliding door will not open when the fuel-filler lid is open. (Refer to 09–11–7 Sliding Door Cancel Operation.)

KEYLESS ENTRY SECURITY SYSTEM OUTLINE

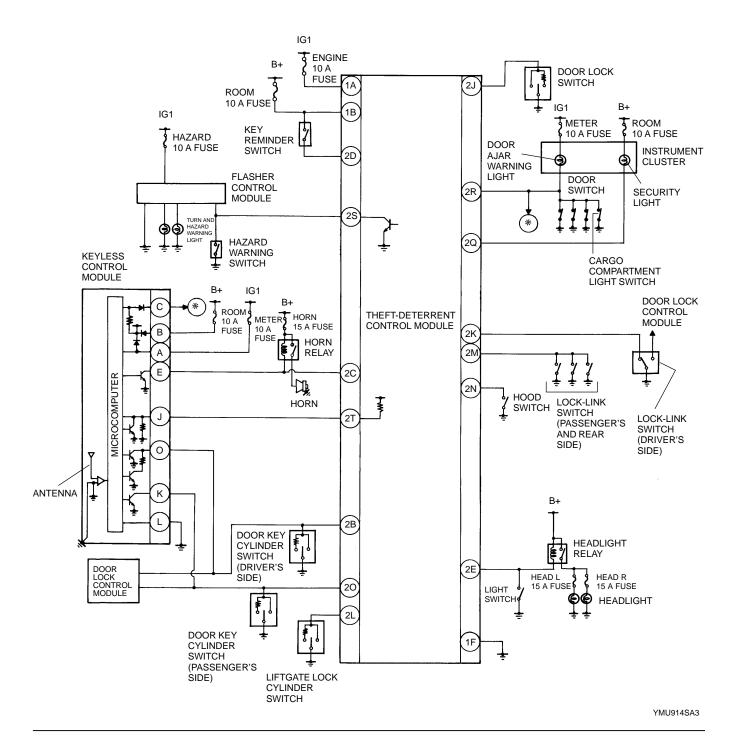
YMU914S05

Keyless Entry Function


- The construction and operation is basically the same as the 1999MY Protegé. However, the panic function
 has been modified. The following are the major differences between the panic function in the 2000MY and
 1998MY MPV.
 - The panic function has been adopted as in the 1999MY Protegé. This function sounds the horn and flashes the headlights and the hazard lights when the panic button of the transmitter is pressed.
 - The control device has been changed from the CPU to the keyless control module.
 - The serial communication between the keyless control module and the CPU has been eliminated.

Theft-deterrent Function

• The theft-deterrent function includes sound and light alarms that activate when the hood, the liftgate or a door is opened by any means other than the ignition key or the transmitter. The hazard lights and the headlights flash, and the horn sounds. When the ignition key is inserted into the door key cylinder or liftgate lock cylinder and turned to unlock, or the transmitter unlock button is pressed, the warnings stop.


KEYLESS ENTRY SECURITY SYSTEM STRUCTURAL VIEW

YMU914S06

KEYLESS ENTRY SECURITY SYSTEM WIRING DIAGRAM

YMU914S07

KEYLESS ENTRY SECURITY SYSTEM DESCRIPTION

Keyless Entry Function

YMU914S08

Operating condition	Driver-side door	Passenger-side, rear doors and liftgate	Warning
Transmitter LOCK button is pressed.	Locked	Locked	Not activate
Transmitter LOCK button is pressed again within 5 seconds.	Not activated	Not activated	Horn sounds
Transmitter UNLOCK button is pressed once.	Unlocked	Not activate	Not activate
Transmitter UNLOCK button is pressed twice within 5 seconds.	Unlocked	Unlocked	Not activate
Panic button is pressed.	Not activated	Not activated	Horn sounds and headlights and hazard lights flash for 2.5 minutes.
Any button of transmitter is pressed again while panic function is in operation.	Not activated	Not activated	Horn stops sounding, and headlights and hazard lights stop flashing.

Theft-deterrent Function System conditions

Sy	stem phase	Dead	Initial	Arming 1	Alarm 1	Alarm 2
	Timer period	_	_	_	2.5 minutes	_
	Key reminder switch	On	Off	Off	_	_
	Ignition switch	(at least one is on)	Off	Off		On or Off
	Door switch	_	_	Off		On or Off
INPUT	Hood switch	_	_	Off	On or Off (after at least one is on)	On or Off
INFOT	Cargo compartment light switch	_	_	Off		On or Off
	Door lock-link switch	_	_	Off		On or Off
	Driver's door key cylinder switch, Passenger's door key cylinder switch, Liftgate lock cylinder switch	_	_	Off/Lock	Off/Lock	Off/Lock
	Horn	Off	Off	Off	On	Off
OUTPUT	Hazard warning light	Off	Off	Off	Flash	Off
JUIFUI	Headlight	Off	Off	Off	Flash	Off
	Security light	Off	Off	Flash	Off	Off

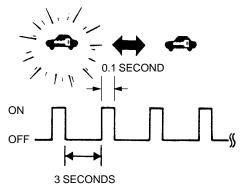
SECURITY AND LOCKS

System phase

Dead

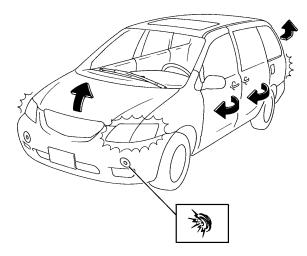
- The condition before the key is removed from the steering lock. (The key is at either ON position, ACC position, or LOCK position.)
- The security light is not lit at this time.

Initial


- The condition after the key has been removed from the steering lock.
- The security light is not lit at this time.

YMU914SA4

Arming 1

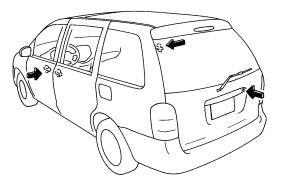

- The condition in which all doors are locked with the key or the transmitter. (A liftgate and a hood are closed.)
- The hazard lights flash 1 time shifting to "Arming 1" phase from the "Initial" phase.
- The security light flashes at 3 second intervals. The alarm function is fully set.

YMU914SA5

Alarm 1

- The condition in which, without using the key or the transmitter, a door, the hood, the liftgate is opened or the ignition circuit is short-circuited. The horn sounds intermittently and the hazard lights and the headlights flash intermittently for 2.5 minutes.
- The horn sounds intermittently and hazard lights and the headlights flash intermittently for 2.5 minutes again when a door, the hood or the liftgate is opened or closed without using the key or the transmitter again after 2.5 minutes have passed.

YMU914SA7


Alarm 2

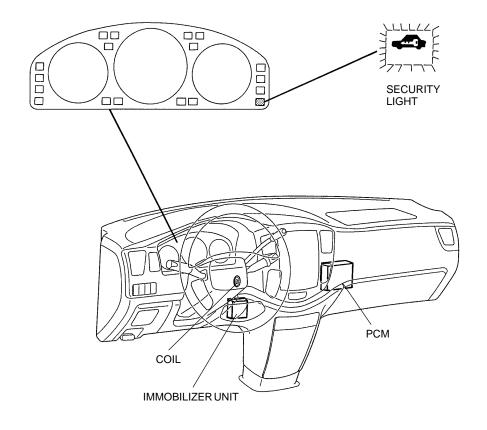
- The condition (after 2.5 minutes have passed from the time "Alarm 1" phase was activated) in which the alarm function is deactivated.
- When a door, the hood or the liftgate is opened or closed without using the key or the transmitter, the condition returns to "Alarm 1" phase.

SECURITY AND LOCKS

Alarm Stop Phase (Initial)

- The alarm function is canceled when any door is unlocked using the key, the door lock switch, or the transmitter, or the liftgate is unlocked using the key or the transmitter.
- The hazard lights have been flashed 2 times shifting to "Alarm Stop Phase" phase from "Arming 1", "Arming 2", "Alarm 1" or "Alarm 2" phase.

YMU914SA9


IMMOBILIZER SYSTEM OUTLINE

YMI 1914S00

- The procedures for component initialization are different depending on the component being replaced. If the component is not registered in the system, the vehicle will not start.
- The immobilizer system prevents the engine from starting when anything other than the programmed ignition key is used to turn the ignition (even if the ignition switch is short-circuited).
- The system components are:
 - Key with transponder
 - Security light
 - Coil
 - Immobilizer unit
 - PCM
- The engine will start only if the key with the corresponding identification number is recognized and verified by the PCM and immobilizer unit.
- The engine can be started using the key, which has an ID number registered in its transponder and which
 uses an algorithmic verification method. In addition to the ID number verification used for the 1999MY 626, an
 algorithmic verification method by calculating has been added to further improve security.
- The code word is input to the immobilizer unit and PCM, and the vehicle does not start if the code word is not newly registered when parts are replaced. It is the same as in the 1999MY 626.
- The procedure for registering the ID number and the procedure for inputting the code word are different according to the parts being replaced and the number of the registered keys.
- DTCs are the same as the 1999MY 626.

IMMOBILIZER SYSTEM STRUCTURAL VIEW

YMU914S10

YMU914SAA

IMMOBILIZER SYSTEM WIRING DIAGRAM

YMU914S11

IMMOBILIZER SYSTEM DESCRIPTION

YMU914S12

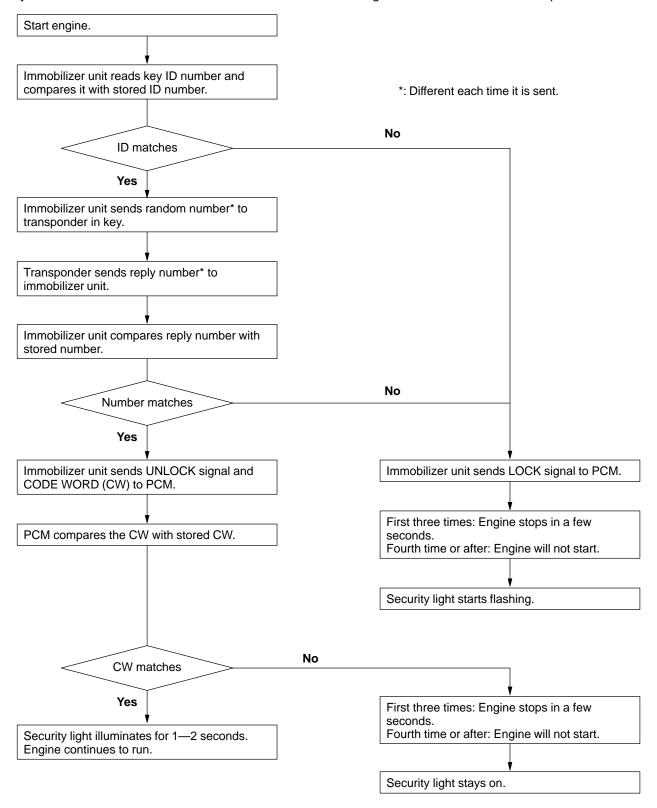
Key

The transponder in the key has a registered ID number and performs an algorithmic transaction.

Coil

• The coil is located in the steering lock.

Immobilizer Unit


- The immobilizer unit compares the ID number and the algorithmic verification method of the key with those registered in the immobilizer unit.
- When the ID number and the algorithmic verification method are verified, the immobilizer unit sends the code word to the PCM.
- When there is a malfunction in the immobilizer system, the immobilizer unit flashes the security light to indicate a malfunction.

PCM

The PCM verifies the code word of the immobilizer unit with that of the PCM.

System Operation

• This is a conceptual flowchart for understanding how the immobilizer system operates. It shows how the system decides whether or not to start the vehicle when the ignition switch is turned to ON position.

IMMOBILIZER SYSTEM ON-BOARD DIAGNOSTIC

YMU914S13

DTC Table DTC indicated by immobilizer unit

DTC	Output pattern	Description
01	ON OFF	ID number unregistered in immobilizer unit is input after engine cranking.
02	ON OFF	ID number format error (voltage range, frequency)
03	ON OFF THE STATE OF THE STATE O	ID number is not input into immobilizer unit after cranking engine.
11	ON OFF	Coil or wiring harness between immobilizer unit and coil is open circuit.
21	ON OFF	Code word/ID number memorized in immobilizer unit EEPROM cannot be read.
24	ON OFF	Open or short circuit in wiring harness between immobilizer unit and PCM
30	ON OFF	Immobilizer unit — PCM communication error

DTC indicated by PCM

DTC No.	Condition	MIL
P1602	Immobilizer unit — PCM communication error	OFF
P1603	Code word unregistered in PCM	OFF
P1604	Key ID number unregistered in PCM	OFF
P1621	Code word does not match after engine cranking	OFF
P1622	Key ID number does not match	OFF
P1623 Code word or key ID number write/read error in PCM		OFF
P1624	Immobilizer system communication counter = 0	OFF

DTC indications after 4th engine cranking under immobilizer system malfunctions (Reference)

Note

- When the following malfunctions occur on the immobilizer system, DTC(s) will be indicated as follows.
- These are not all potential malfunctions.

SECURITY AND LOCKS

 \times : Retreived

		T			T									1	
M	alfunctions	01	02	03	11	21	24	30	P1602	P1603	P1604	P1621	P1622	P1623	P1624
	IU – PCM						×		×						×
	IU – Ground								×						×
	IU – Coil				×										×
	IU – Battery		•	•	E	ngine r	uns nor	mally a	nd no E	TC is i	ndicate	d.		•	•
Open circuit	IU – Ignition switch				E	ngine r	uns nor	mally a	ınd no [OTC is i	ndicate	d.			
	IU – Battery and IU – Ignition switch								×						×
	IU – Security light	Е	ngine r	uns nor	mally a	nd no E	TC is i	ndicate	d. No s	ecurity	light illu	minatio	n after	crankin	g.
	IU – PCM						×		×						×
Short	IU – Coil				×										×
circuit	IU – Security light	Engine runs normally and no DTC is indicated. Security light illuminates at all key position					ns.								
Code w	vord mismatch :M)											×			×
Key w/	o transponder			×											×
Unregis	stered key	×													×

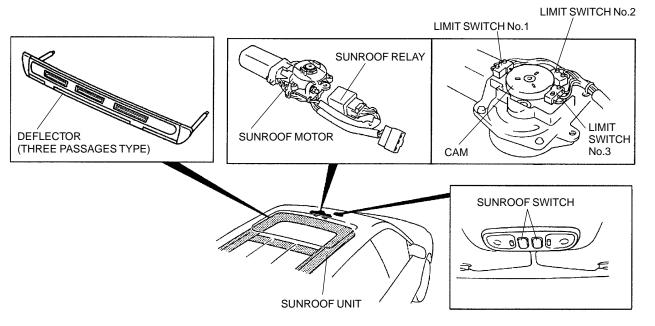
SUNROOF

09-15 SUNROOF

SLIDING SUNROOF OUTLINE 09-1	15–1 SLIDING SUN	ROOF SYSTEM WIRING
SLIDING SUNROOF STRUCTURAL	DIAGRAM .	
VIEW 09–1	15–1 Timing Char	

SLIDING SUNROOF OUTLINE

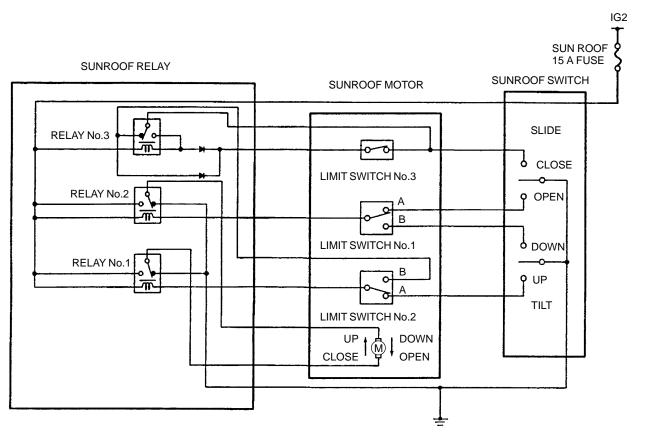
YMU915S01


The construction and operation (slide open/close and tilt up/down) are the same as the 1999MY Protegé
except the circuit in the sunroof motor.

x: Available

Item		2000MY MPV	1998MY MPV	1999MY Protegé
Slide open/close function		×	×	×
Auto-stop function (when cl	losing)	×	×	N/A
Tilt up/down function		×	N/A	×
Number of limit switch		3	1	3
Sliding amount	(mm {in})	633 {24.9}	702 {27.6}	300 {11.8}
Tilt up amount	(mm {in})	28 {1.1}	N/A	30 {1.2}

SLIDING SUNROOF STRUCTURAL VIEW


YMU915S02

YMU915SA1

SLIDING SUNROOF SYSTEM WIRING DIAGRAM

YMU915S03

YMU915SA2

Timing Chart

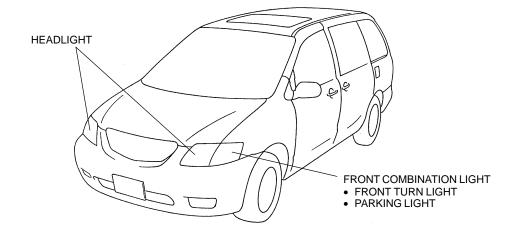
Limit switch opera	ation	Tilt up	Closed	Auto	o-stop	Slide open
	Α					
Limit switch No.1	В					
	Α					
Limit switch No.2	A					
	В					
	On					
Limit switch No.3	O#					
	Off					

YMU915SA3

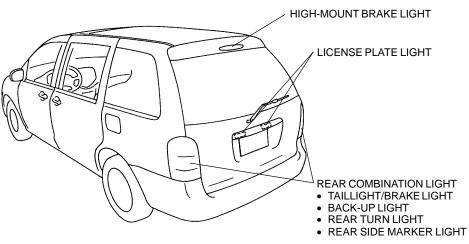
LIGHTING SYSTEMS

09-18 LIGHTING SYSTEMS

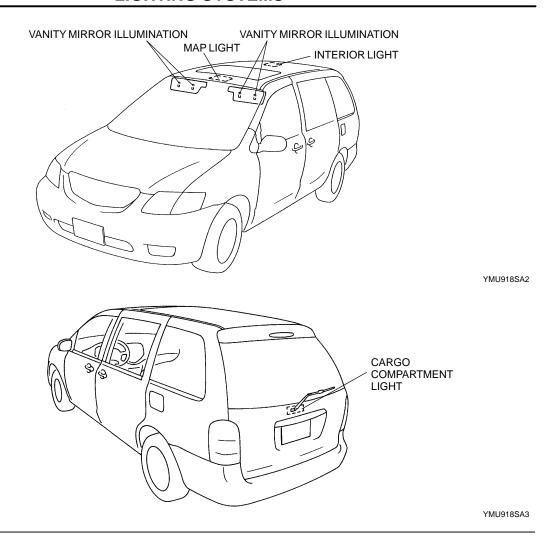
LIGHTING SYSTEMS STRUCTURAL VIEW	IGHTING SYSTEMS OUTLINE 0)9–18–1	LIGHTS-ON REMINDER WARNING BUZ	
ORL SYSTEM OUTLINESpecifications09-18-4(CANADA ONLY)	IGHTING SYSTEMS STRUCTURAL		DESCRIPTION	09-18-4
ORL SYSTEM OUTLINESpecifications09-18-4(CANADA ONLY)	VIEW	9–18–1	System Wiring Diagram	09-18-4
DRL SYSTEM DESCRIPTION	ORL SYSTEM OUTLINE			
Operation	(CANADA ONLY)0)9–18–2	INTERIOR LIGHT SYSTEM OUTLINE	09-18-4
ORL SYSTEM WIRING DIAGRAM 09–18–3 INTERIOR LIGHT CONTROL SYSTEM	ORL SYSTEM DESCRIPTION 0)9–18–2	INTERIOR LIGHT SYSTEM	
	Operation0	9–18–2	DESCRIPTION	09-18-5
WIRING DIAGRAM	ORL SYSTEM WIRING DIAGRAM 0)9–18–3	INTERIOR LIGHT CONTROL SYSTEM	
			WIRING DIAGRAM	09-18-5


LIGHTING SYSTEMS OUTLINE

YMU918S01


- The DRL system is the same as the 1999MY Protegé. (Canada model)
- The lights-on reminder warning buzzer system is the same as the 1999MY Protegé.
- A map light with overhead storage compartment has been added to normal roof type vehicle.
- An interior light at the center of the roof is controlled by the interior light control system.
- The interior light control system is the same as the 1999MY Protegé.

LIGHTING SYSTEMS STRUCTURAL VIEW


YMU918S02

YMU918SA0

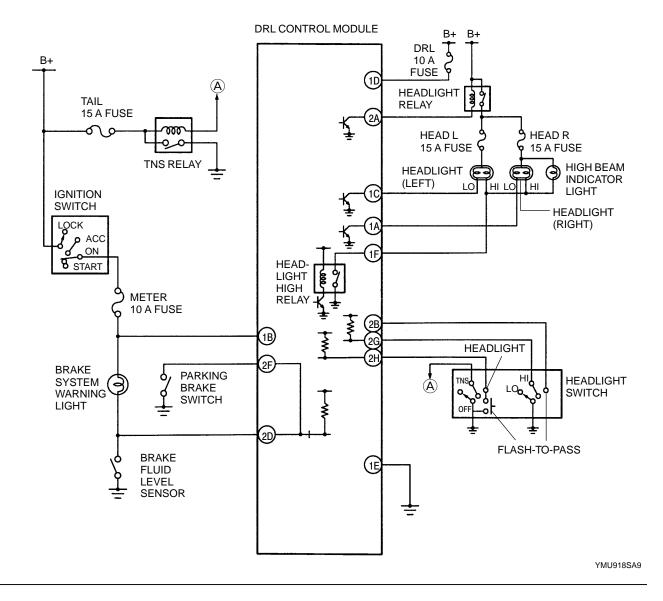
YMU918SA1

DRL SYSTEM OUTLINE (CANADA ONLY)

• The DRL system is controlled by the DRL control module.

DRL SYSTEM DESCRIPTION

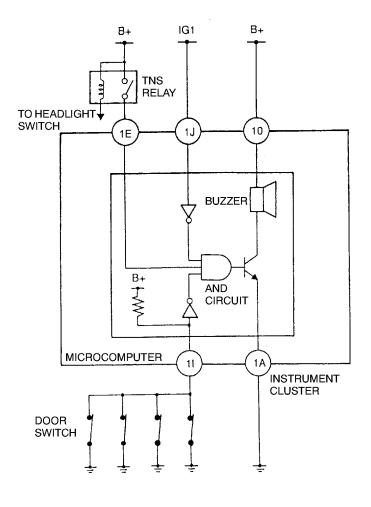
YMU918S04


YMU918S03

Operation

- DRL system automatically turns on the low beam headlights at a 60—80% duty value when the following conditions are met:
 - Ignition switch is at ON position.
 - Parking brake switch is off.
 - Headlight switch is off.
 - Flash-to-pass is not activated.
- DRL system turns off the low beam headlights under any of the following conditions:
 - Ignition switch is at LOCK or ACC position.
 - Parking brake switch is on.
 - Headlight switch is on.
 - Flash-to-pass is activated.

DRL SYSTEM WIRING DIAGRAM


YMU918S09

LIGHTS-ON REMINDER WARNING BUZZER DESCRIPTION

System Wiring Diagram

YMU918S05

YMU918SA4

Specifications

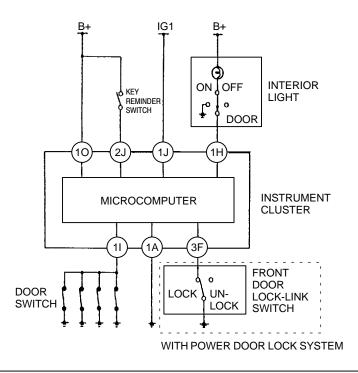
Operating condition (When all conditions are satisfied)	Sounding cycle
 Ignition switch is at LOCK or ACC position. Headlight switch is at TNS or ON position. Any door switch is on. (Any door is open.) 	Continuous OFF X3U918SA6

INTERIOR LIGHT SYSTEM OUTLINE

YMU918S06

- The three types of map light are shown below.
- The interior light control system has a function that decreases the illumination brightness to 80% when the interior light switch is in the DOOR position.

INTERIOR LIGHT SYSTEM DESCRIPTION


YMU918S07

x: Available

	Туре	Installation position	Interior light control	Roof
Map light	YMU918SA8		N/A	Sunroof
Map light (With overhead storage compartment)	YMU918SA5	Front	N/A	Normal roof
Map light (Without overhead storage compartment)	YMU918SA6		N/A	140/mai 100/
Interior light	YMU918SA7	Middle	×	Both

INTERIOR LIGHT CONTROL SYSTEM WIRING DIAGRAM

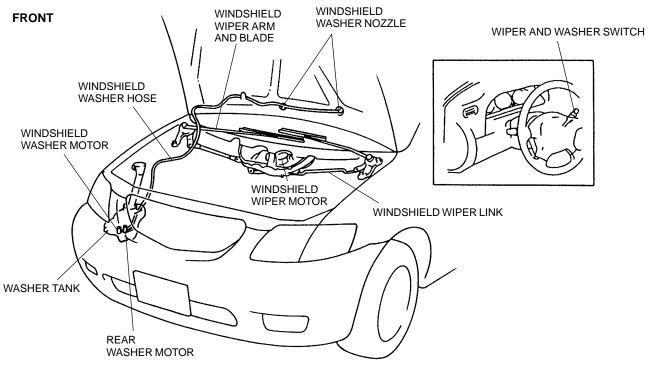
YMU918S08

YMU918SAA

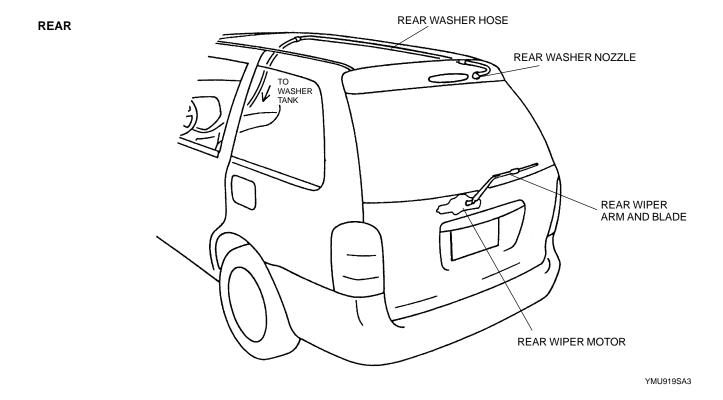
WIPER/WASHER SYSTEMS

09-19 WIPER/WASHER SYSTEMS

WIPER/WASHER SYSTEMS OUTLINE . 09–19–1	WINDSHIELD WIPER SYSTEM
WIPER/WASHER SYSTEMS	DESCRIPTION
STRUCTURAL VIEW	Structure


WIPER/WASHER SYSTEMS OUTLINE

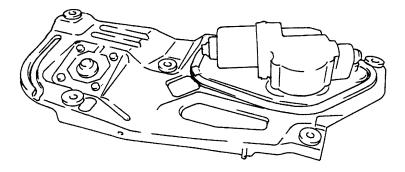
YMU919S01


- The wiper system is the same as the 1998MY MPV. It has one-touch operation and intermittent wiper operation functions.
- The windshield wiper motor has been mounted to a frame.
- The washer system is the same as the 1998MY MPV.
- As with the 1998MY MPV, the windshield washer tank capacity is 2.2 L {2.3 US qt, 1.9 Imp qt} or 5.5 L {5.8 US qt, 4.8 Imp qt} (Cold area specification).

WIPER/WASHER SYSTEMS STRUCTURAL VIEW

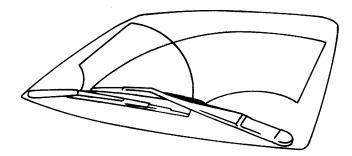
YMU919S02

YMU919SA2


WIPER/WASHER SYSTEMS

WINDSHIELD WIPER SYSTEM DESCRIPTION

YMU919S03


Structure

• The windshield wiper motor is mounted to a frame. The frame absorbs the vibration due to motor operation and reduces variation in wipe.

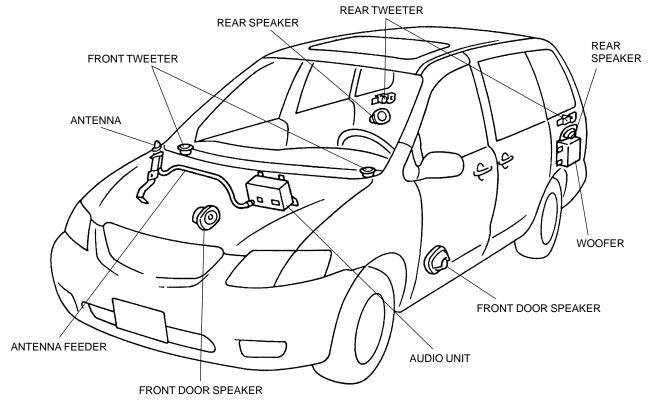
YMU919SA0

• Due to enlargement of the windshield area, the windshield wiping path has been increased.

YMU919SA1

09–20 ENTERTAINMENT

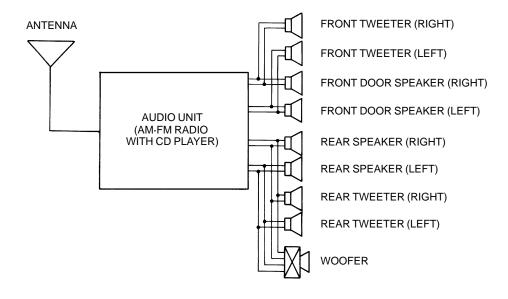
ENTERTAINMENT OUTLINE	09–20–1	ENTERTAINMENT DESCRIPTION	09–20–3
ENTERTAINMENT STRUCTURAL		Specifications	09–20–3
VIEW	09–20–1	Terminal Layout and Signals	09–20–4
ENTERTAINMENT SYSTEM		Feature	09–20–5
DIAGRAM	00_20_2		


ENTERTAINMENT OUTLINE

YMU920S01

- There are two types of audio systems: an AM/FM radio with CD player, which is the same as the 1998MY MPV, and a new AM/FM radio with CD player, which has a built-in CD changer.
- There are two types of speaker systems: a 4-speaker system, which is the same as the 1998MY MPV, and a new 9-speaker system.

ENTERTAINMENT STRUCTURAL VIEW


YMU920S02

YMU920SA0

ENTERTAINMENT SYSTEM DIAGRAM

YMU920S03

YMU920SA1

ENTERTAINMENT DESCRIPTION

Specifications Audio unit

YMU920S04

Specification		AM/FM radio with CD player
Rated voltage	(V)	12
Frequency band	AM (kHz)	530—1710
Prequency band	FM (MHz)	87.7—107.9
Amplifier maximum output power	(W)	25×4
Output impedance	(Ω)	4

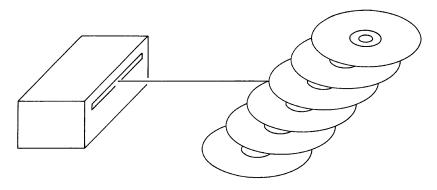
Speaker

4-speaker system

Specification		Front door	Rear	
Rated input	(W)	12.5		
Maximum input	(W)	2	5	
Impedance	(Ω)	3.4—4.6	3.4—4.2	
Lowest resonance level	(Hz)	80	60	
Sound pressure level	(dB)	87–	-93	
Size	(in)	5.5×7.5	6×9	

9-speaker system

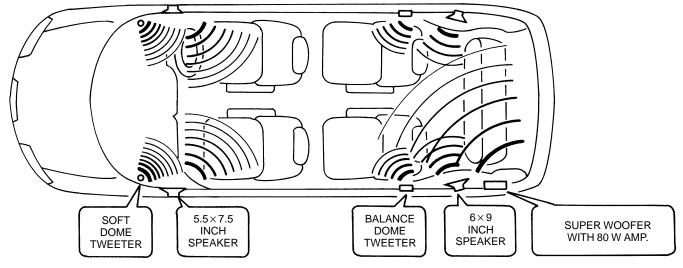
Specification		Front door (High grade)	Front tweeter	Rear (High grade)	Rear tweeter	Woofer
Rated input	(W)		12.5			
Maximum input	(W)			25		
Impedance	(Ω)	3.4—4.6	3.2—4.4	3.4—4.6	5.1—6.9	1
Lowest resonance level	(Hz)	90	_	90	_	53
Sound pressure level	(dB)	85.5—91.5	75—81	88.5	78—84	71—77
Amplifier maximum output power	(W)	_			80	
Size	(in)	5.5×7.5	φ1.2	6×9	φ1.2	ϕ 6.3


Terminal Layout and Signals Audio unit

Tamatani		Signal
Terminal		AM FM radio with CD player
	1A	Right input (+)
	1B	Signal ground
	1C	Left input (+)
	1D	Combination control
	1E	Auxiliary control out
	1F	Auxiliary control in
	1G	Bus (–)
10 1M 1K 1I 1G 1E 1C 1A	1H	Bus (+)
	11	ACC
1P 1N 1L 1J 1H 1F 1D 1B	1J	Power ground
	1K	+B (power back up)
	1L	System mute
	1M	TNS (+)
X3U920SA2	1N	Illumination (-)
	10	_
	1P	_
	2A	ACC
	2B	Tel mute
	2C	+B
	2D	Antenna switch
	2E	TNS (+)
2M 2K 2E 2C 2A	2F	Illumination (–)
2N 2L 2J 2H 2F 2D 2B	2H	Steering switch
	2J	Steering switch
	2K	Left front speaker (+)
Vallacense	2L	Left front speaker (–)
X3U920SA3	2M	Right front speaker (+)
	2N	Right front speaker (–)
	3A	Left rear speaker (+)
	3B	Left rear speaker (–)
	3C	_
3I 3C 3A	3D	Amplifier control
3J 3H 3F 3D 3B	3F	Right rear speaker (+)
00 01 01 05 05	3H	Right rear speaker (-)
	31	_
X3U920SA4	3J	_
4A X3U920SA5	4A	Ground (power)

Feature

Audio unit


• The new AM/FM radio with CD player has a built-in CD changer that holds a maximum of six CDs.

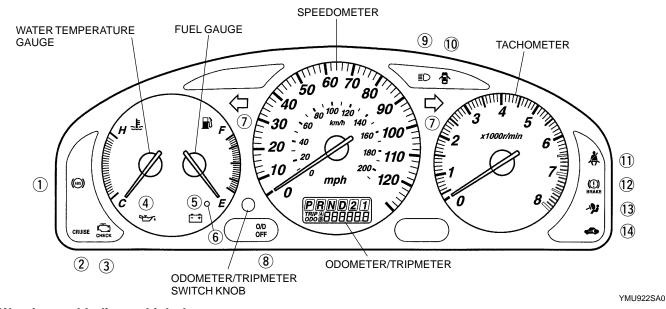
YMU920SA2

Speaker system

- In the new 9-speaker system, the tweeters, which are placed at both the front and rear of the room, provide a clear, high frequency sound, and the woofer, which contains an amplifier with a maximum output of 80 W, generates a deep base sound for a surround sound effect.
- A soft dome front tweeter with a PPS (Polyphenylene Sulfide) diaphragm has been adopted for a wide band width and clear high frequency sound without distortion.

YMU920SA3

INSTRUMENT CLUSTER OUTLINE 09-22-1	INSTRUMENT CLUSTER	
INSTRUMENT CLUSTER STRUCTURAL	DESCRIPTION	09–22–4
VIEW 09–22–1	Specifications	09–22–4
Warning and Indicator Light Layout 09-22-1	Input/Output Check Mode	09–22–5
INSTRUMENT CLUSTER SYSTÉM WIRING	·	

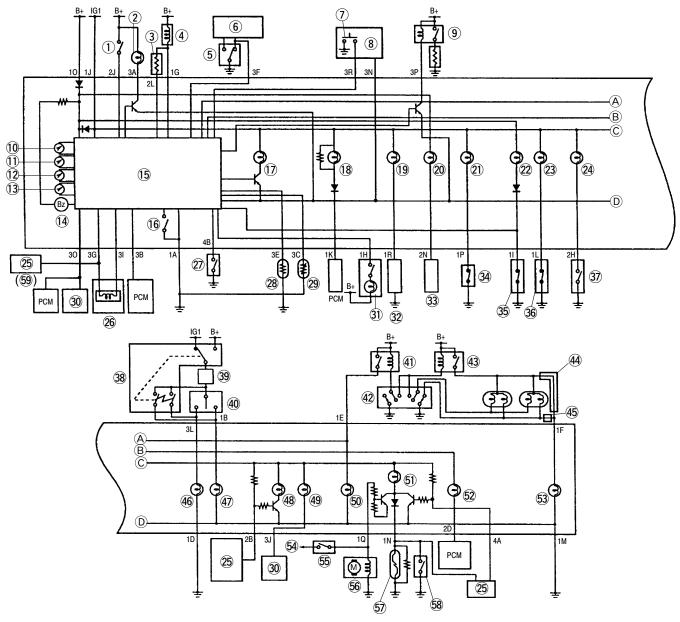

INSTRUMENT CLUSTER OUTLINE

YMU922S01

- The instrument cluster consists of a speedometer, tachometer, fuel and water temperature gauges, LCD, and warning lights and indicators.
- The operation of the instrument cluster is controlled by a built-in microcomputer.
- The instrument cluster has an input/output check mode, which is the same as the 1999MY Protegé.
- The LCD odometer/tripmeter is the same as the 1999MY Protegé.

INSTRUMENT CLUSTER STRUCTURAL VIEW

YMU922S02


Warning and Indicator Light Layout

No.	Warning and indicator light	
1	ABS warning light	
2	Cruise set indicator light	
3	Malfunction indicator light	
4	Oil pressure warning light	
5	Generator warning light	
6	Fuel-level warning light	
7	Turn indicator light	

No.	Warning and indicator light	
8	O/D OFF indicator light	
9	High beam indicator light	
10	Door ajar warning light	
11	Seat belt warning light	
12	Brake system warning light	
13	Air bag system warning light	
14	Security light	

INSTRUMENT CLUSTER SYSTEM WIRING DIAGRAM

YMU922S03

YMU922SA3

1	Key reminder switch
2	Ignition key illumination
3	Key interlock resistor
4	Key interlock solenoid
5	Door lock-link switch
6	Door lock timer control module
7	Rear window defroster switch
8	Front climate control unit
9	Rear window defroster relay
10	Speedometer
11	Tachometer
12	Fuel gauge
13	Water temperature gauge
14	Buzzer

15	Microcomputer
16	Odometer/tripmeter switch
17	Fuel-level warning light
18	Generator warning light
19	Air bag system warning light
20	Security light
21	Seat belt warning light
22	Door ajar warning light
23	Oil pressure warning light
24	O/D OFF indicator light
25	ABS HU/CM
26	Vehicle speedometer sensor (without ABS)
27	Shift lock solenoid (P position signal)
28	Water temperature sensor
	•

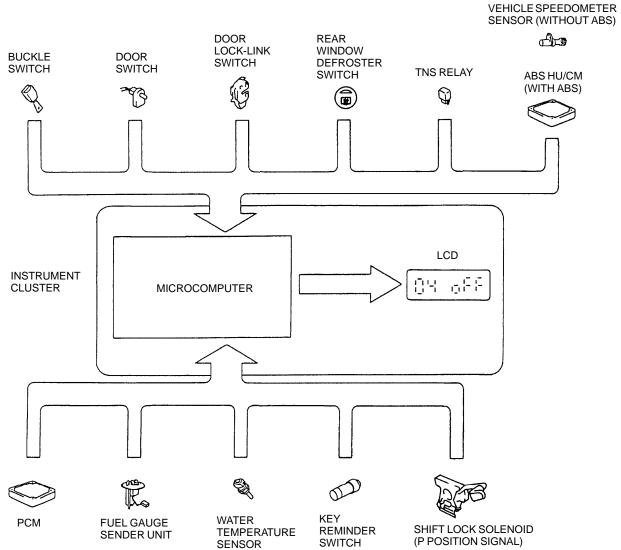
29	Fuel gauge sender unit
30	Cruise control module
31	Interior light
32	SAS control module
33	Immobilizer unit
34	Buckle switch
35	Door switch
36	Oil pressure switch
37	O/D OFF switch
38	Hazard warning switch
39	Flasher control module
40	Turn switch
41	TNS relay
42	Headlight switch
43	Headlight relay
44	With DRL

45	Without DRL
46	Turn indicator light (Left)
47	Turn indicator light (Right)
48	ABS warning light
49	Cruise set indicator light
50	Instrument cluster illumination
51	Brake system warning light
52	Malfunction indicator light
53	High beam indicator light
54	To starter switch
55	Transaxle range switch
56	Starter motor
57	Brake fluid-level sensor
58	Parking brake switch
59	With ABS

INSTRUMENT CLUSTER DESCRIPTION

Specifications

YMU922S04

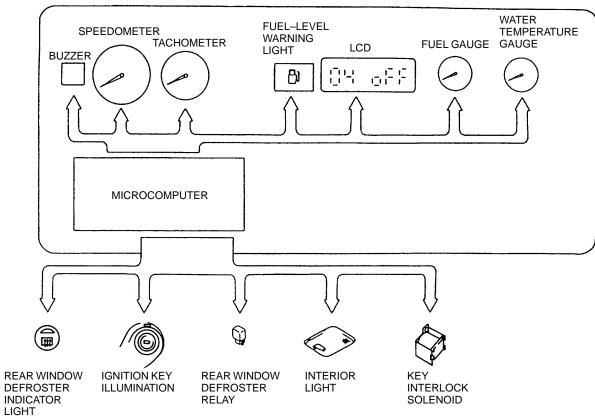

Item			Specification
	Meter type		Cross coil type
	Indication range	Canada (km/h {MPH})	0—210 {0—130}
		Except Canada (MPH {km/h})	0—130 {0—210}
Speedometer	Input signal source		With ABS: ABS HU/CM Without ABS: Vehicle speedometer sensor
	Input signal		8 pulses/one rotation of speedometer driven gear
	Output signal		4 pulses/one rotation of speedometer driven gear
	Rated voltage	(V)	DC 12
	Meter type		Cross coil type
	Indication range	(rpm)	0—8000
Tachometer	Red zone	(rpm)	6500—8000
Tachometer	Input signal source)	PCM
	Input signal		6 pulses/two engine rotations
	Rated voltage	(V)	DC 12
Fuel gauge	Meter type		Cross coil type (Indicator needle type)
Tuel gauge	Rated voltage	(V)	DC 12
Water temperature	Meter type		Cross coil type (Medium range stabilized type)
gauge	Rated voltage	(V)	DC 12
	Display		Liquid crystal display
	Indication digits		6 digits
Odometer	Characteristics		1 km is added for 5096 pulses of vehicle speed input signal 1 mile is added for 8202 pulses of vehicle speed input signal
	Rated voltage	(V)	DC 12
	Display		Liquid crystal display
	Indication digits		4 digits
Tripmeter	Cancellation		Push method
	Characteristics		1 km is added for 5096 pulses of vehicle speed input signal 1 mile is added for 8202 pulses of vehicle speed input signal
	Rated voltage	(V)	DC 12

Input/Output Check Mode

- The microcomputer built into the instrument cluster detects malfunctions in the input signal or individual part.
- The input/output check mode has input circuit check and individual part check functions.
- The operating procedure of the input/output check mode is the same as the 1999MY Protegé.

Input circuit check

DTC	Part sending input signal	Remarks
01	Buckle switch	_
04	Door switch	_
05	Door lock-link switch	_
07	Rear window defroster switch	_
08	TNS relay	_
10	With ABS: ABS HU/CM Without ABS: Vehicle speedometer sensor	Parts sending vehicle speed signal have been changed.
11	PCM	Part sending engine speed signal has been changed.
22	Fuel gauge sender unit	_
24	Water temperature sensor	_
31	Key reminder switch	_
41	Shift lock solenoid (P position signal)	_



YMU922SA1

Individual part check

DTC	Simulated part sending input signal	Remarks
12	Speedometer	_
13	Tachometer	_
14	Buzzer	_
16	Fuel-level warning light	_
17	Rear window defroster indicator light	_
18	Ignition key illumination	_
20	Rear window defroster relay	_
23	Fuel gauge	_
25	Water temperature gauge	_
26	LCD	_
27	Interior light	_
42	Key interlock solenoid	_

INSTRUMENT CLUSTER

YMU922SA2