Curso Hi-Scan Pro Manual del Estudiante

Introducción

- Adiestrar a los técnicos en el uso y diagnóstico de los vehículos Hyundai con el Hi-Scan Pro.
- Hi-Scan Pro:
 - Tiene la habilidad de leer la información de operación del vehículo a traves del conector de diagnóstico (DLC)
 - Controla alguno de los actuadores.
 - Contiene información de diagnóstico, DVOM, generador de señales, ociloscopio de dos canales.
 - Puede reprogramar ECM, TCM y PCM

Beneficio:

- Mayor agilidad al realizar un diagnóstico
- Precisión al realizar un trabajo
- Aumento en estado económico
- Longevidad en el empleo

Objetivo:

Enseñar el uso apropiado del Hi-Scan Pro para diagnosticar problemas en los sistemas eléctricos del motor, Transmisión Automática , SRS y ABS.

Contenido:

- Partes del Hi-Scan Pro
- Hyundai Vehicle Diagnosis
 - Diagnostic Trouble Codes
 - Current Data
 - Flight Record
 - Actuator Test
 - Simu-Scan
 - Symptom Analysis
 - EVAP Leak Test
- Tool Box (DVOM/Scope)
- CARB OBD-II Diagnosis
- Flight Record Review
- System Setup

Partes del Hi-Scan Pro: Vista de frente

Partes del Hi-Scan Pro: Vista Superior

Conector del cable DLC

Partes del Hi-Scan Pro: Vista Lateral Derecho

Tarjeta de diagnóstico

Conector de 12 V

Tarjeta de memoria adicional

Partes del Hi-Scan Pro: Vista Lateral Izquierdo

HYUNDAI VEHICLE DIAGNOSIS

(2.1) Sección de Sistemas y Vehículos

(Hyundai Vehicle Diagnosis > Enter)

Primera pantalla

0.	INITIAL	SCREEN
----	---------	--------

01. HYUNDAI VEHICLE DIAGNOSIS 02. TOOL BOX(DVOM/SCOPE) 03. CARB OBD-II DIAGNOSIS 04. FLIGHT RECORD REVIEW 05. SYSTEM SETUP 06. DATA DOWN LOAD

([1999-2000] > Enter)

Menú del año del vehículo que está verificando

1. HYUNDAI VEHICLE DIAG	NOSIS
MODEL : SONATA	ALL
SYSTEM : ENGINE L4	
01. 1999-2000	
02. 1998	
03. 1997	
04. 1994-1996	
05. 1989-1993	

HYUNDAI VEHICLE DIAGNOSIS

([Engine L4] > Enter)

Menú de sistemas: escoja el sistema a probar

1.	HYUNDAI VEHICLE DIAGNOS	IS
MODEL	: SONATA	ALL
01.	ENGINE L4	
02.	ENGINE V6	
03.	AUTOMATIC TRANSAXLE	
04.	ANTI-LOCK BRAKE SYSTEM	
05.	SRS-AI RBAG	
06.	CRUISE CONTROL	
07.	TRACTION CONTROL SYSTEM	

(3.1) Diagnostic Trouble Codes

(Diagnostic Trouble Codes > Enter)

Sección de códigos (DTC) guardados

1. HYUNDAI VEHICLE DIAGNOSIS
MODEL : SONATA ALL
SYSTEM : ENGINE L4
1999-2000
01. DIAGNOSTIC TROUBLE CODES
02. CURRENT DATA
Ø3. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. SYMPTOM ANALYSIS
07. EVAP. LEAKAGE TEST
08. CARB OBD-II DIAGNOSIS

Diagnostic Trouble Codes

((F6) HELP > Up / Down arrow keys > Enter)

Ayuda para códigos guardados: La información dependera de el año del vehículo , modelo, y función seleccionada

1	1 DIAGNOSTIC TROUB	LE CODES
P0120	HROTTLE POSITION S	ENSOR
		TIPS
		WAVE
		CASE
	UMBER OF DTC : 1	ITE FLOW
PART	ERAS	HELP

((F6) HELP > Up / Down arrow keys > TIPS > Enter)

Pantalla de consejos (TIPS). Te brinda los posibles problemas que podrían causar el código.

P0123 THROTTLE P.SNSR-HIGH INPUTTIP
FAILURE CONDITIONS
If the throttle angle is greater tha 95.7% during two driving cycles when th engine is running, this code will be se and the Malfunction Indicator Ligh (MIL) will turn on.
NORMAL PARAMETERS:
TP Sensor signals: *0% with throttle valve at idle *Voltage increases as throttle valve opens *75.4% - 85.4% with throttle valve wid open
CIRCUIT DESCRIPTION
The Throttle Position (TP) Sensor mount on the side of the throttle body and i

Diagnostic Trouble Codes

"Wave"

((F6) HELP > Up / Down arrow keys > WAVE > Enter > Up / Down arrow keys)

Pantalla de hondas: Muestra una serie de hondas establecidas para el sensor en prueba. Las teclas direccionales le permiten al usuario ver los distintos patronos de hondas.

"Case"

((F6) HELP > Up / Down arrow keys > CASE > Enter > Up / Down Enter)

Pantalla de ejemplos

12	MASS.AIR FLOW SNSR	CA
MAF and	IPS Signal Correlatio	m
Symptom:	Hesitation	

Diagnostic Trouble Codes

"Case"

((F6) HELP > Up / Down arrow keys > CASE > Enter > Enter > Down arrow)

Esta pantalla te da una serie de síntomas y la corrección para ellos dependiendo del DTC.

"CIRT"

((F6) HELP > Up / Down arrow keys > CIRT > Enter)

Pantalla de circuitos muestra el circuito en cuestión.

Diagnostic Trouble Codes

"FLOW"

((F6) HELP > Up / Down arrow keys > FLOW > Enter)

Esta función da una serie de preguntas, las cuales te llevaran a una solución; ésto utilizando el panel númerico

"PART"

((F1) PART)

Esta pantalla ofrece una serie de pruebas del manual y llevandote a un ociloscopio para realizar pruebas siguendo las instrucciones de la pantalla.

Throttle Position sensor
- Test Condition *Connect the CH-A test probe to the TP sensor signal line.
- Failure Condition
*TP sensor signal is well activated according to your throttle valve operation
*If the 'HOLD'key was inversed and screen frozen, there is open circuit condition concurred at TPS

Diagnostic Trouble Codes

"PART"

((F1) PART > Enter)

En esta pantalla se puede ver un falla captada en la función de pare "HOLD" conjelando la gráfica, muestra un circuito abierto en el sensor de TPS

ΤF	SNS	R				Ø.	5	V		200 mS				
MI	MIN:- 7.9mV C				CUR	UR:- 7.9mV				MA	3	34.2mV		
4														
	•	•	·	·	•	·		·	·	·	·	·	•	•
3		•	•	·			•	•	•	•		·		
		·	•		•			•	•	•	•	·	•	•
2			•						•	•		•		•
		·				·								
1		·	•			·								
		•	•					•	•	•		·		•
₽									-					
		_			_					_				
	HOL	D	Z0	OM	С	URS	3			MI	ENU	ŀ	IEL	P

"PART"

((F1) PART > Enter > (F3) VOLT > Up / Down arrow keys)

Se puede apreciar un ejemplo de un TPS funcionando normal. En ciertos casos "PARTS" permitrá que sólo se vea una parte de la gráfica en algunos sensores, de ahí se irá a "HOLD" para una mejor y más larga vista en el ociloscopio.

Diagnostic Trouble Codes

"ERASE"

((F2) ERAS > YES / NO)

DTC con el código , PO120 TPS. Esta función borrará los códigos guardados en la memoria , cuando así lo requiera, le preguntará si desea borrar los códigos almacenados o no.

	1.1	DIA	GNOS	STIC	TRO	JBL	E CODI	ES	
P0120	TH	ROTTI	LE I	POSIT	ION	SE	NSOR		
	NU	MBER	OF	DTC	:	1	ITEMS		
PAR	T	ERAS						HELP	

Current Data

(Current Data > Enter)

Información actual

1. HYUNDAL VEHICLE DIAGNOSIS
MODEL : SONATA ALL
SYSTEM : ENGINE L4
1999-2000
01. DIAGNOSTIC TROUBLE CODES
02. CURRENT DATA
Ø3. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. SYMPTOM ANALYSIS
07. EVAP. LEAKAGE TEST
08. CARB OBD-II DIAGNOSIS

(Current Data > Enter)

En esta página se le provee la información en forma numérica de varios sensores. Recuerde que la información dada es lo que procesa en la computadora del vehículo.

	1.2 CURRENT I)ATA							
	11.0XYGEN SENSOR	156 mV							
	12.MASS.AIR FLOW SNSR	1601 mV							
	13.INT.AIR TEMP.SNSR	78 °F							
	14. THROTTLE P. SENSOR	19 mV							
	16. BATTERY VOLTAGE	14.1 V							
	18. CRANKING SIGNAL	OFF							
	21.COOLANT TEMP.SNSR	125 °F							
	22.ENGINE SPEED 906 rpm								
		_	Ŧ						
[FIX SCRN FULL PART	GRPH HELP]						

Current Data

((F1) FIX > Up / Down > (F1) FIX ...)

La función de fijar "FIX" coloca la lectura seleccionada al tope de la pantalla siendo identificada con un asterisco, La lectura seleccionada no se cambiará cuando usted mueva el cursor por la pantalla , ésto permitirá que usted pueda comparar unos sensores en específico . La función de fijar se puede usar en más de un sensor o lectura .

1.2 CURRENT DATA									
×	12.MA	ASS.AIE	R FLOW	SNSR	1445	mŲ			
×	14.TH	IROTTLE	P.SEN	SOR	19	mŲ	-		
×	22.EM	IGINE S	750	rpm					
	13.INT.AIR TEMP.SNSR 78 °F								
	16.BA	AT T ERY	VOLTAG	E	14.1	V			
	18.CF	RANKING	G SIGNA	L	OFF				
	21.CC)olant	TEMP.S	NSR	174	°F			
	24.VEHICLE SPEED Ø MPH								
							Ŧ		
	FIX	SCRN	FULL	PART	GRPH	HELP			

<u>Current Data</u>

((F2) SCRN)

Al seleccionar la función de SCRN le permitirá mantener la data de 4 valores ya fijados al tope de la pantalla. Oprimiendo de nuevo la tecla de SCRN mantendra la lectura de 2 valores, mientras que una tercera vez lo regresará a una vista normal de todos los valores. Esta función es de mucha ayuda cuando se necesita tener algunas lecturas en especifico todo el tiempo.

Current Data

((F3) FULL)

Al activar la opción de pantalla completa se dará la lectura de 22 sensores y actuadores en una sola página. De haber más de 22 con la tecla direccional hacia abajo pasarás a la próxima página. Presione "ESC" para volver a la pantalla normal.

1.2	2 CURI	RENT DATA
02S 839	ΜŲ	A∕C SWITCH <mark>OFF</mark>
MAF SENSOR1445	mŲ	TR. SWITCHP, N
IAT SENSOR78	°F	ENG. LOAD 18.1 %
TP SENSOR 19	mŲ	INJECTION 2.3 mS
BATT. VOLT14.1	V	IGN.TIMINGBTDC 8 °
CRANK SIG. <mark>OFF</mark>		ISC DUTY 34.8 %
ECT SENSOR194	°F	A∕C RELAY <mark>off</mark>
ENG. SPEED812	rpm	028-REAR 214 mV
VSS 0	MPH	CLOSE LOOPCLSD LOOP
CTP SWITCHOFF		LONG-TERM -3.1 %
PSP SWITCHOFF		SHORT-TERM <mark>0.0</mark> %

((F6) HELP)

La información dada en cada sección dependerá de el modelo del vehículo, año y función escogida. La sección de ayuda se utilizará igual que en el área de códigos guardados.

1.2 CURRENT DATA										
×	11.0XYGEN SENSOR	566	тV							
×	12.MASS.AIR FLOW SNSR	1523	mV							
×	14.THROTTLE P.SENSOR	605	mV							
×	22.ENGINE SPEED	875	2010 M							
	13.INT.AIR TEMP.SNSR	75 [TIPS							
	16.BATTERY VOLTAGE	14.	WAVE	-						
	18.CRANKING SIGNAL	OFF	CASE							
	21.COOLANT TEMP.SNSR	CIRT								
			FLOW							
	FIX SCRN FULL PART	GRPH	HELP							

Current Data

"TIPS"

((F6) HELP > TIPS > Enter > Up / Down)

La pantalla de consejos te da una serie de procedimientos y pruebas para los componentes en cuestión.

11.0XYGEN SENSOR
TEST CONDITION - Engine: Warm-up SERVICE STANDARD - When decelerating suddenly from 4,000rpm: 200mv or less - When engine is suddenly reced: 600 - 1,000mV Engine is idling or 2,500 r/min: 400mV or less <-> 600-1,000mV(Changes Inspect the waveform of oxygen sensor with oscilloscope

((F6) HELP > Down Arrow > (F6) WAVE > Enter)

La pantalla de gráficas te muestra una serie de ejemplos de hondas para el sensor en cuestión. Esto te permitirá poder comparar tus lecturas con la de los sensores bajo buen y mal funcionamiento.

<u>Current Data</u>

"CASE"

((F6) HELP > Down Arrow > CASE > Enter)

La pantalla de casos te da una serie de condiciones y soluciones resultantes de pruebas de carretera.

11.0XYGEN SENSOR CAS						
Normal Owners Sensor Polymon A real						
Low RPM Hesitation						
Slight Engine Sunge						
Boon Cao Miloago						
Stumble Free Lile Deer Cas Milesee						
Stomble from fale, roor Gas infeage						

((F6) HELP > Down Arrow > CASE > Enter > Enter)

Después de la selección de casos de prueba hay una descripción del problema y una solución para ese caso en particular.

11. OXYGEN SENSOR	CASE
These signals were recorded from a 1 Accent SOHC. At lower RPM, the engi would stumble and have a slightly erratic idle. The front 02 sensor s an inconsistant cross count and incorrect voltage range. There is not the smooth rolling transition from above to below the 1200mV reference voltage as there sh be. The sensor voltage should fluct between about 800_1600mV.	997 ine shows nould tuate
Solution: The problem was corrected the replacement of the front oxygen sensor. This problem may have been result of a poor connection at the f oxygen sensor.	with the ront

Current Data

"CASE"

((F6) HELP > Down Arrow > CASE > Enter > Enter > Enter)

La pantalla de caso te muestra la gráfica de sensores defectuosos, y descripción de inconcistencias en la honda.

"CIRT"

((F6) HELP > Down Arrow > CIRT > Enter)

La pantalla de circuítos le brinda el esquemático para el componente en cuestión. El número del pin y la localización es dada para facilitar el diagnóstico.

<u>Current Data</u>

"FLOW"

((F6) HELP > Down Arrow > FLOW > Enter)

En la sección de "FLOW" aparecerá una serie de preguntas para precisar el diagnóstico del vehículo. Presionando el teclado numérico hará su selección para la pregunta.

11.0XYGEN SENSO	R FLO
*Turn ignition switch on. *Connect scan tool to data connector. *Verify DTC P0130 is set.	link
Are other DTCs also set? 1. Yes 2. No	

"GRPH"

((F5) GRPH)

Al oprimir la tecla de gráfica "GRPH" mostrará un sensor ya escogido a través de la función de fijar, en forma de gráfica. Por lo menos debe haber un sensor escogido.

<u>Current Data</u>

"GRPH"

Cuando más de un sensor o actuador es escogido se puede navegar a través de las demás selecciones con las teclas direccionales .

"PART"

((F4) PART)

Esta pantalla presenta una serie de pruebas del manual y transfiere a un ociloscopio para realizar pruebas siguiendo las instrucciones de la pantalla.

<u>Current Data</u>

"PART"

((F4) PART > (F1) HOLD)

Al oprimir la tecla de "HOLD" se congelará la pantalla para una mejor evaluación de la gráfica.

((F4) PART > (F1) HOLD > (F3) CURS)

Esta pantalla le permite al usuario obtener lecturas de voltaje, tiempo de dwell y frecuencia de una honda, utilizando las teclas direccionales para ajustar las líneas verticales. Oprima la tecla de cursor para mover el marcador izquierdo con las teclas direccionales. Vuelve a presionar la tecla del cursor para mover el marcador derecho. Oprime la tecla de cursor por tercera vez para asegurar los dos marcadores.

Current Data

"PART"

((F4) PART > (F1) HOLD > (F5) MENU > Up / Down > Left / Right)

La función menu durante "HOLD" permite al usuario a encender/apagar la data, y alterar el punto de "trigger".

((F4) PART > Enter > (F2) TIME > Up / Down arrow keys)

Al oprimir "TIME" con las teclas direccionales hacia arriba o abajo puede cambiar las diviciones de tiempo horizantales del ociloscopio. El rango de tiempo puede ser visto en su esquina derecha superior, el tiempo estipulado de fábrica es de (500ms).

Current Data

"PART"

Tiempo (TIME). Esta pantalla muestra un tiempo establecido de 2.0 s / división. Varios sensores requieren varias divisiones de tiempo para permitir una mejor interpretacion de información.

Current Data

"PART"

((F4) PART > Enter > (F4) RCRD)

Una pantalla de lectura de voltaje con una sola escala. Oprima RCRD, siga las instrucciones de la pantalla para grabar tu señal.

Una vez se haya grabado la data en el ociloscopio ella automáticamente le dará un "replay". Para volver a ver la data presione ((F1) PLAY). Esta data grabada se quedará en memoria hasta que se grabe sobre ella.

Current Data

"PART"

((F4) PART > ENTER > (F4) RCRD)

'Para salir presione ESC. Para ver de nuevo presione RECD y seleccione "Flight Record Review".

				0.5 V							200 mS				
		•		FL	IG	ΗT	REC	COF	RD H	REV	IĒ	J			
	•	·	ŀ	Ň	E₩	FL	IĠŀ	łT	RÉC	OR	D			•	•
	·	·		•	•	•	•	•	•	•	•	•	•	·	•
	·	·	·		·	·	·	•	•	•	·		•	•	•
>	•	•												•	

((F4) PART > Enter > (F4) RCRD > Flight Record Review > (F5) VIEW > Up / Down > Enter)

Al seleccionar ver la data grabada utilice las teclas direccionales de subir o bajar para enegrecer la opción y entrar a la selección de su preferencia. Hondas gráficas grabadas te llevarán a tu señal grabada.

<u>Current Data</u>

"PART"

(VIEW > Average & Min-Max Trend)

El promedio máximo y el mínimo (el voltaje max y min) se les muestra al momento de haber grabado la data. Utilice las flechas direccionales izq. o der. moviendo el cursor hasta el tiempo deseado.Esta lectura de tiempo puede ser vista en la esquina derecha superior.

En este caso la lectura es de 47.5 segundos después de que se empezó a grabar.

TREND VIE	εw	50.	0	S		47	. 50	0	S	СН	A
1.0	A	VER	AGE	Ę	ц						
0.607	M	γÅ	•	•	•	•	•	•	•	• •	
-1.0				•	•	•		•	•		
2.0	M	IN-I	1AX	Ę	ני						
0.541	1 0-1910	hri	•	•	•	•		•	•		
0.0		'	•	•	•	•	•	•		· ·	
							VΙ	E₩	E	XIT	

Current Data

"PART"

(VIEW > Frequency & Duty Trend)

Frecuencia y tendencia laboral: Muestran la frecuencia y la tendencia laboral de la data grabada.

TREND VIEW	50.0 S	47.5	500 \$	S CH A	ĥ
1.00	EREQUENCY	[Hz]			
1.00		· · · ·	· · ·	· · ·	
0					
100	риту с%ј				
58		· · ·	· · ·	· · ·	
Ø					
		■ ▶ [•	ЛЕМ	EXIT	

((F4) PART > Enter > (F5) GND)

GND. El nivel de "ground" para el osciloscopio puede ser ajustado con las teclas de subir o bajar . El ajuste de "ground" está al fondo de la pantalla.

Current Data

"PART"

El nivel de "ground" ajustado a mitad de la pantalla.

<u>Flight Record</u>

(Flight Record > Enter)

Flight Record (System Selection)

1. HYUNDAI VEHICLE DIAGNOSIS
Model : Sonata All
SYSTEM : ENGINE L4
1999-2000
01. DIAGNOSTIC TROUBLE CODES
02. CURRENT DATA
03. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. SYMPTOM ANALYSIS
07. EVAP. LEAKAGE TEST
08. CARB OBD-II DIAGNOSIS

Esta función le permite fijar los componentes que desea grabar

(F1). Con una cantidad de hasta 8 artículos en (Flight Record).

((F6) RCRD)) Esta función grabará los componentes escogidos y se detendrá al oprimir la tecla de (ESC).

((F5) CALL) Esta función es utilizada para volver a ver la data grabada. La data se mantendrá hasta que se le vuelva a grabar sobre ella siendo borrada por la data nueva.

1.3 FLIGHT RECORD								
×	12.MA	ASS.AIR FLOW	SNSR	1015	mŲ			
×	14.TH	ROTTLE P.SE	NSOR	585	mŲ	•		
	11.0	YGEN SENSOR		58	mŲ			
	13. IN	T.AIR TEMP.	SNSR	93	°F			
	16.BA	ATTERY VOLTA	GE	12.1	V			
	18.CF	RANKING SIGN	AL	OFF				
	21.CC	OLANT TEMP.	SNSR	95	°F			
	22.ENGINE SPEED Ø rpm							
						Ŧ		
	FIX	INTERVAL:	350mS	CALL	RCRD			

<u>Flight Record</u>

CAR ID Entry.

Para entrar una tarjeta de identificación utilice las teclas direccionales de subir o bajar para cambiar los caracteres y las de izq y der.para cambiar la pocisión.

1.3 FLIGHT RECORD	
MEMORY 1	
CAR ID : MODEL : ACCENT ALL SYSTEM : ENGINE SOHC 2000-01MY	
PRESS [ENTER] KEY TO START.	

Para grabar oprima ((F5) TRIG). Desde que se comienza a grabar se marcará un punto, el cual se usará como base de salida. Esto le permitirá al usuario tener un punto de referencia para fallas intermitentes. Oprima (F6) para terminar.

1.3 FLIGHT RECORD : N	ow Recording
× 11. BATTERY VOLTAGE	12.2 V
* 12. MASS.AIR FLOW SNSR	0.0 Kg∕h
× 13.INT.AIR TEMP.SNSR	104.9°F
* 14. THROTTLE P. SENSOR	0.0°
* 15.ISC ACTUATOR DUTY	48.8 %
* 17.ISA ADAPTION VALUE	1.0 %
* 18.CKP SIGNAL	OFF
× 20. ENGINE SPEED	0 rpm
	0 %
	TRIG END

<u>Flight Record</u>

((F5)CALL)

Una vez terminada la grabación, aparecerá esta pantalla. Esta data numérica puede ser revisada con las teclas direccionales de subir o bajar.

((F1) GRPH) Esta función le permite ver la gráfica de la data grabada.

((F6) HOME) Esto le permitirá regresar al punto de comienzo.

<u>Flight Record</u>

Flight Record Graph.

((F1) GRPH) Esta función le permite ver dos señales a la misma vez una de ellas se puede fijar mientras la otra se puede ir cambiando con las teclas de subir o bajar. Para mover el punto de referencia en la gráfica utilice las teclas de izquierda y derecha. En la parte izquieda de la pantalla puede ver la data numérica de la gráfica.

((F1) LIST) Al oprimir esta tecla volverá a la pantalla anterior.

((F6) HOME) Al oprimir esa tecla regresará al punto donde comenzó a grabar.

Actuator Test

(Enter > Up / Down arrow keys)

Hay varios componentes que se pueden verificar. Use las teclas direccionales para escoger el actuador que quiere verificar y oprima (STRT).

1.4 ACTUATION TEST									
NO.1 INJEC	FOR								
DURAT I ON	DURATION 6 SECONDS								
METHOD	DEACTIVATION								
CONDITION	IG.KEY ON ENGINE RUNNING								
PRESS [STRT], IF YOU ARE READY !									
STRT									

(Actuation Test > Enter)

Prueba de actuadores

1. HYUNDAI VEHICLE DIA	GNOSIS
MODEL : SONATA	ALL
SYSTEM : ENGINE L4	
1999-2000	
01. DIAGNOSTIC TROUBLE	CODES
02. CURRENT DATA	
03. FLIGHT RECORD	
04. ACTUATION TEST	
05. SIMU-SCAN	
06. SYMPTOM ANALYSIS	
07. EVAP. LEAKAGE TEST	
08. CARB OBD-II DIAGNOS	SIS

<u>Simu-Scan</u>

(Simu-Scan > Enter)

Simu-Scan (System Selection)

1. HYUNDAI VEHICLE DIAGN	0818
MODEL : SONATA	ALL
SYSTEM : ENGINE L4	
1999-2000	
01. DIAGNOSTIC TROUBLE CO	DES
02. CURRENT DATA	
03. FLIGHT RECORD	
04. ACTUATION TEST	
05. SIMU-SCAN	
06. SYMPTOM ANALYSIS	
07. EVAP. LEAKAGE TEST	
08. CARB OBD-II DIAGNOSIS	

Simu-Scan esta función le permite a la data actuar en forma numérica y utilizar la función de multimetro.

((F1) METR) Esta función le permite al usuario escoger el tipo de metro que desea utilizar.

((F2) SIML) Esta función le permite escoger que sensor estimular.

((F6) FIX) Esta función le permitirá fijar la lectura de algún sensor en específico

((F4) CLR) Esta función le permitirá borrar los valores MAX y MIN en los metros.

Simu-Scan

((F1) METR > (1) VOLT > Enter)

METR > VOLT. Aquí puede apreciar la lectura de varios sensores mientras utiliza el voltímetro.

1.5 SIMU-SCAN						
11.0XYGEN SENSOR 58 mV						
12.MASS.AIR FLOW SNSR 1015 mV	-					
13.INT.AIR TEMP.SNSR 84 °F						
14. THROTTLE P. SENSOR 585 mV	•					
VOLT METER						
Ø.4 Ų ⊂HA						
MAX: 0.5 V MIN: -0.0 V						
METR SIML CLR FIX						

((F2) SIML > (3) VSS > (F4) + or (F5) -)

SIML > VSS Al seleccionar esta pantalla puede ver la simulación de una entrada de velocidad a la vez que se le muestra la lectura de algunos sensores . Con la teclas de + / - puede aumentar o disminuir la velocidad simulada.

40

Sympton Analysis

Análisis de síntomas:

Le presenta una serie de posibles problemas que le pudieran estar ocurriendo al vehículo

1. HYUNDAI VEHICLE DIAGNOSIS
Model : Sonata All
SYSTEM : ENGINE L4
1999-2000
01. DIAGNOSTIC TROUBLE CODES
02. CURRENT DATA
03. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. SYMPTOM ANALYSIS
07. EVAP. LEAKAGE TEST
08. CARB OBD-II DIAGNOSIS

(Select Symptom > Enter)

En esta función se le permite al usuario escoger un síntoma y se brindará información de cómo diagnosticar el problema.

1.6	SYMPTOM	ANALYSIS	Ŧ

01. ENGINE HESITATE, ACCELERATES POORLY

02.POOR DRIVING
03.STALL-SOON AFTER STARTING
04.STALL-AFTER ACCEL. PEDAL DEPRESSED
05.STALL-AFTER ACCEL. PEDAL RELEASED
06.ENGINE STALL-DURING A/C ON
07. DOES NOT CRANK
08. STARTER RUNS BUT ENGINE NOT CRANK

Sympton Analysis

(Injector & Fuel Quality > (F4) Data)

La selección de algún tipo de problema lo llevará a un listado de posibles componentes defectuosos para facilitar el diagnóstico.

ENGINE HESITATE, ACCELERATES POORLY 🔻
01.INJECTOR & FUEL QUALITY
02.IGNITION CIRCUIT
Ø3. OXYGEN SENSOR
04.AIR FLOW SENSOR
05.THROTTLE POSITION SENSOR
06.TIMING MARK
07.COMPRESSION PRESSURE
08.FUEL PRESSURE
DATA PART HELP

Esta pantalla le muestra una lectura digital y gráfica para los sensores que le apliquen. Las lecturas pueden ser pasadas con las teclas de subir o bajar. Se presiona la tecla de ESC para regresar a la pantalla anterior.

ENGINE HESITATE, ACCELERATES POORLY									
4980	×maf sensor	mV	028						
1699	,-1w	\sim	761	mŲ					
0									
4980	TP SENSOR	mŲ	INJE	CTION					
605			.0	mS					
0	·····	$\sim\sim$							
FIX									

Sympton Analysis

(Injector & Fuel Quality > (F5) Part)

ENGINE	HESITATE,	ACCELERATES	POORLY	Ŧ
--------	-----------	-------------	--------	---

01.INJECTOR & FUEL QUALITY 02.IGNITION CIRCUIT 03.OXYGEN SENSOR 04.AIR FLOW SENSOR 05.THROTTLE POSITION SENSOR 06.TIMING MARK 07.COMPRESSION PRESSURE 08.FUEL PRESSURE

DATA PART HELP

(F5) PART > Enter

Injectors
Injector CHA - Test Condition *Connect the CH-A test probe to the Injector signal line. - Failure Condition *Voltage spark is more than 64V (EF Sonata V6 ; 50V)
*Shape of signal waveform

Sympton Analysis

(F5) PART

La data actual es mostrada para ser analizada

IN.	JECT	OR			10 V					2.0 mS				
MII	IN:-664.0mV					dt: 3.80mS				MAX: 65.8			3 V	
80														
											ħ			
60														
40														
	•	•	•	•	•	•	•	•	•	•	h	•		
20	•	•	·	•	•	•	•	•	•	•	K	·		•
		<u> </u>		<u>من</u> م				منها	Ξ	·	1			
⊳	•				•			•	·					•
	HOL	D	TI	ME	Ų	OLT	ľ	RCI	RD	G	D	ŀ	EL	P
	HUL	U	11	ΠĽ	L V	UL I		KCI	KD	G	עו		1EL.	r

Para comparar lecturas ya establecidas con las que está analizando en el momento vaya a WAVE.

IN.	JECT	OR					10	V		2.0 mS						
MII	N:-6	dt	:	з.	60r	۱S	MA	X:	65.8 V							
80																
											П					
60											1					
40			•	•		•			•		ł	Ī	IPS	ŝ		
												ļ	IAVE			
20												Ç0	ASE	S_		
			• • •		- -				_			Ç0	IRT			
⊳											┛	F	LOP	J		
	HOL	D	TI	ME] [V	0L]	C	RCI	RD	Gľ	1D	H	ELI	2		

Sympton Analysis

((F6) HELP > Up / Down arrow > Wave > Enter)

IN,	JECTO	R				1	0	V		2.0 mS					
MII	N:-66	dt	:	з.	60m	S	MA	X:	65.8 V						
80															
		•	•	•	•	•	•	•	•	•	•				
60		•	·	•	•	·	•	·	•		l				
		•	•	•	•	·	·	•	·	•	ł				
40		•	•	·	•	•	·	·	·		łſ	TIPS	٦		
		•		•	•	•	·	·			$\left \cdot \right $				
											$\left \cdot \right $	WHOL	•		
20	<u> </u>				<u>م. نــــ</u>				÷,		$\left \cdot \right $	CASE			
												CIRT			
⊳		_		_						-	-	FLOW			
	HOLD		TIM	E	Ų	OLT		RCF	D	GN	D	HELP			

Use las teclas de subir o bajar para ver las diferentes tipos de hondas.

INJE	CT	DR					10	V		2.0 mS						
MIN:	42	26.	7m	V	dt	:	3.	10	٦S	MAX	X:	7	'1 .	3 V		
80																
60																
иа																
40										•		•		•		
20		•	·	•		•		•	•	•	ľ	·	•	•		
		• •	•••			•••		• ·		1 [.]	`	~~•	• • •	••		
Þ			•						•			•	•			
Injectio Normal	n du I Wa	iratio vefo	n at)m	idle	(Acee	ent)										

EVAP Leakage Test

(EVAP Leakage Test > Enter)

La prueba de escape de gases hará que el sistema haga un ciclo de pruebas en sus componentes para detectar fugas en el sistema de gases.

Siga las instrucciones que aparecn en su pantalla.

La prueba tarda alrededor de 2-3 min. en completarse. Oprima Esc para regresar al menú.

Tool Box (DVOM/Scope)

(Tool Box DVOM / SCOPE > Enter)

Caja de herramientas

1.	HYUNDAI VEHICLE DIAGNOSIS
2.	TOOL BOX(DVOM/SCOPE)
з.	CARB OBD-II DIAGNOSIS
4.	FLIGHT RECORD REVIEW
5.	SYSTEM SETUP
6.	DATA DOWN LOAD

(Engine > Enter)

En la caja de herramientas, al escojer motor (engine), lo llevará a un menú de pruebas par el diagnóstico del motor.

Ø1. ENGINE Ø2. AUTOMATIC TRANSAXLE Ø3. OSCILLOSCOPE Ø4. METER (V, F, R, A, T, P) Ø5. ACTUATOR DRIVING Ø6. SENSOR SIMULATOR

TOOL BOX(DVOM/SCOPE)

2.

Tool Box (DVOM/Scope)

(Sensors > Enter)

En la sección de diagnóstico del motor escoja los componentes o áreas a probar.

Z.I Endine

01.SENSORS

02.ACTUATORS 03.IGNITION 04.OTHERS

(CKP Sensor Analog > Enter)

La pantalla de sensores le dará una selección de procedimientos con el ociloscopio para la elección de cualquier sensor.

2.1.1 SENSORS
01.CKP/CMP SENSOR (HALL)
02.CKP/CMP SENSOR (ANALOG)
03.CKP/CMP SENSOR (MELCO)
04.CKP SENSOR (HALL)
05.CKP SENSOR (ANALOG)
06.CKP SENSOR (MELCO)
07.ENGINE COOLANT TEMPERATURE SNSR
08.EXHAUST GAS RECIRCULATION SNSR

Tool Box (DVOM/Scope)

((CKP) sensor (Analog) > Enter)

Seleccionando un sensor en particular le mostrará las pruebas en específico para ese sensor, condiciones de falla y lo enviará al ociloscopio para pruebas de sensores. Esta función es muy similar a la de data actual (current data).

CKP/CMP sensor (HALL)
CKP CHA CHB CMP - Test Condition *Connect the CH-A test probe to the CKP Sensor Signal line and CH-B to CMP.
- Failure Condition
*Shape of Signal Waveform compare with standard waveform
*CKP two missing teeth is between CMP GND period.

La data mostrada se puede comparar con las hondas que se encuentran en la sección de ("HELP" > "WAVE"). Para regresar a la pantalla de selección de sensores.

СКІ	2	(A	NA	L0(3)		5.6	<u>a</u> (ļ		2.0 mS						
Pea CKR	ak P(C	to H-A	Pea)	k MIH	4:	7.	8 V	СЦ	IR:	8.	. 9 L) MA	×	9.3	sυ		
20																	
		•	•	·	•		•		•	·	•	•	•	•			
10		•	•	•	•	•	•	•	•	•	•		•	•			
A 1	ነ እ	Å	•	λ	АЛ	A /	۱۸	ለ ለ	А /	1 л	A I	١Ă	Ňл	А Л	'n.		
W	٧ı	۰۲ کر ا	5	11	ľ	IV	VV	'V'	٧V	Ϋ́	IV	Į/۱	11/1	[ψV		
	-		•	V. *				."	•				."				
-10		•	•	·	•	·	•	•	•	·	•	•	•				
		•	·	·	·	•		•	·	·	•		·				
- 20			•							•							
-20	_					<u> </u>		1							1		
	H(DLD		Z0()M	CL	JRS				ME	NU	(H)	ELP			

Tool Box (DVOM/Scope)

(Actuators > Enter)

La sección de prueba de actuadores le brinda información de prueba para diferentes componentes.

	2.1	ENGINE	
e	1. SENSORS		
E	2. ACTUATORS		
e	3.IGNITION		-
e	4. OTHERS		

(Idle Speed Actuator > Enter)

Se puede escoger entre los actuadores para realizar pruebas y condiciones de prueba.

2.1.2 ACTUATORS	
01.IDLE SPEED ACTUATOR	
02. INJECTORS	
03.STEP MOTOR	

Tool Box (DVOM/Scope)

(Idle Speed Actuator > Enter)

Este es un ejemplo de una prueba de actuador con condición de falla , al oprimir "Enter" activará la función de ociloscopio.

La data es ilustrada para que la compare con las gráficas que se encuentran en la biblioteca de hondas ("HELP" > "WAVE").

I Sí	Â					5.	Ø	V				10	мS	
DU	FY:	66	%	MI	N:	100	.0	0 H	lz	MA	iX:	100	. 00	Hz
40														
	•	•	·	·	·	·	•	·	·	·	•	•	•	
30	•		•	·	·	·	•	·	·		•	·	•	
													•	
20														
10														
	HOI	D	TI	ME	Ų	OLT		RCI	8D	GN	1D] [H	ELP	

Tool Box (DVOM/Scope)

(Primary Ignition Coil > Enter)

Esta opción le permite probar los componentes del sistema de ignición.

2.1.3 IGNITION

01. PRIMARY IGNITION COIL

02.SECONDARY IGNITION COIL 03.POWER TRANSISTOR 04.IGNITION FAILURE SENSOR

Este es un ejemplo de una pantalla de prueba del sistema de ignición con condición de falla, al oprimir "Enter"activará el ociloscopio.

Tool Box (DVOM/Scope)

(Primary Ignition Coil > Enter)

La data es ilustrada para que la compare con las gráficas que se encuentra en la biblioteca de hondas ("HELP" > "WAVE").

IG	COI	L-i	1		50 V					1.0 mS					
MIN	:-	1.	Øm	V	dt	:	1.	90r	าร	MA	X:	37	' З.:	2 V	
400															
	·	·	•	·	•	·	·	·	·	·	•	·	·	•	
300									· ·						
									•	•					
200									•						
									•						
100															
									·	لرز	••••				
\triangleright					٦				لم		-۲				
Zoor	n 1×														
Γ	HOL	D	ZO	OM	l Ci	URS	S			ME	ENU] [F	EL	Р	

Al oprimir ((F1) HOLD seguido por (F3) CURS se puede medir la duración de la chispa. La línea base del cursor se situa en el lado derecho, permitiendo que se mida el pico de descarga de la chispa. El ejemplo muestra una duración de chispa de 1.78 mS

СН	A:	23	B.1	Ų	DT	:	1.	70r	าร	FRE	Q:5	588	. 24	Hz
MIN	1:-	1	. Øm	V	dt	:	1.	80r	าร	MA	х:	37	7.5	V
			•	•	•	•	•	•			ï	•	•	
	•	•	•	•	•	•	•	•	•	•	1	•	•	
	•	•	•	•	•	•	·	•	•	•	1	•	•	
	•		•	•		•	•	•	•	•		•	•	
	•		•			•	•	•	•	•	.1	•		
			•											
										المستسم	اند			
> ·					٦.						-۱		•	
Zoo	om 1:	×												_
	HOI	LD	ZO	OM	C	URS				ME	NU	H	ELP	

Tool Box (DVOM/Scope)

(Primary Ignition Coil > Enter)

Oprima (F3) "CURS" de nuevo para mover la línea base hacia el lado izquierdo utilizando las teclas direccionales esto le dará la medida de saturación en la ignición. La medida de saturación en esta gráfica es de 4.78 mS. Oprima (F3) CURS por tercera vez para asegurar que los dos marcadores se mantengan en su localización actual.

СН	A:		4.3	Ų	DT	: •	4.7	'OmS	F	RE	Q::	212	2.77	Hz
MII	N:-	1	. Øm	V	dt	: :	1.8	35mS		MA	х:	38	1.8	V
400					1				I					
		•	•	•		•	•	• •		•	•	•		
300		•	•	•		•	·	• •		•	•	•		
						•	•			·				
200					¦ .									
100														
									IL					
<u>.</u>					, •1				\square		ጉ			
V		•												
	HOL	D	ZO	OM	C	JRS				ME	NU] [H	ELP]

2.1 ENGINE

01.SENSORS 02.ACTUATORS 03.IGNITION 04.OTHERS

> **E** HYUNDAI

(Others > Enter)

La pantalla de otros "Other" le dará pruebas con condición de falla donde escogera entre la batería y el generador.

Tool Box (DVOM/Scope)

(Automatic Transaxle > Enter)

Selección de pruebas a la transmisión.

Z. IVUL BUA(DVVIP SCOPE)
01. ENGINE
02. AUTOMATIC TRANSAXLE
03. OSCILLOSCOPE
04. METER (V,F,R,A,T,P)
05. ACTUATOR DRIVING
06. SENSOR SIMULATOR

DOV(DUOM / CODE)

(Automatic Transaxle)

Al seleccionar un componente le proveerá las pruebas a realizar.

2.2 AUTOMATIC TRANSAXLE 🛛 🔻
01.2ND BRAKE SOLENOID VALVE
02. DAMPER CLUTCH CONTROL SOL. VALVE
03.LOW & REVERSE BRAKE SOL. VALVE
04.01L TEMPERATURE SENSOR
05.0VER DRIVE SOLENOID VALVE
06. PRESSURE CONTROL SOLENOID
07. PULSE GENERATOR A (ANALOG)
08. PULSE GENERATOR B (ANALOG)

Tool Box (DVOM/Scope)

(Automatic Transaxle > 2nd Brake Solenoid Valve > Enter) Este es un ejemplo de la pantalla de pruebas para una variedad de componentes.

Tool Box (DVOM/Scope)

(Tool Box > Oscilloscope > Enter)

2. AUTOMATIC TRANSAX	LE
3. OSCILLOSCOPE	
14. METER (V, F, R, A, T,	P)
5. ACTUATOR DRIVING	
6. SENSOR SIMULATOR	

((F1)HOLD)

Esto congelara la información para que la pueda analízar.

Tool Box (DVOM/Scope)

((F1) HOLD > (F3) CURS)

Esta pantalla le permite al usuario verificar el voltaje, tiempo de trabajo (dwell), y la frecuencia de la honda utilizando las teclas direccionales de izq. Y der. Para ajustar las lineas verticales. Oprima la tecla de "CURS" para escojer entre el curzor izq.y der. De esta forma con las tecla s deireccionales moviendo el curzor. Al vover a oprimir la tecla de "CURS" podra mover el curzor der. Con las teclas direccionales. Oprima "CURS" de nuevo para ver ambos cursores.

Tool Box (DVOM/Scope)

((F1) HOLD > (F5) MENU > Up / Down > Left / Right)

La función de data conjelada le permite al usuario encender y apagar data, cambiar el tiempo de "GRID" y cambiar el punto de activación.

FR	CH 6	A 0.5 4	20	υS	CH B Ø	.5V
					DATA	Off
					GRID	Line
					TRI	GGER
₽		-			MODE	Single
			į		SOURC	E Force
					LEVEL DELAY	+ 50 %
Н	OLD	TIME	VOLT	GND	CHNL	MENU

((F2) TIME > Up / Down arrow keys)

TIME > UP/DOWN esto cambia la divición en las lineas horizontales en el ociloscopio. Esta lectura de tiempo se puede ver en la parte superior en el centro de la pantalla. (200ms)

Tool Box (DVOM/Scope)

Pantalla de tiempo para ajuste divición de tiempo a 1.0s/.

Los canales A y B funcionando a la misma vez. Para entrar a esta función oprima (F5) CHNL. Empezará con el canal A, al oprimir esta tecla de nuevo cambiará al canal B, una tercera selección entrarán a funcionar los dos canales simultáneamente y para volver al principio seleccione por cuarta vez.

60

Tool Box (DVOM/Scope)

((F3) VOLT > Up / Down arrow keys)

La sección de voltaje es ajustada en esta pantalla con las teclas direccionales de subir o bajar. En esta pantalla se les muestra una escala de 0.2 volt.

((F1) HOLD > (F5) RCRD)

En esta pantalla de Volt con una escala de 5 volt. Selecione RCRD y siga las instrucciones de la pantalla para gravar la señal.

FR	СН	Ĥ	5.0	V	200	m	3	C	H B	0	. 2	V	
	:			÷	:						-	-	
····÷	·····			···÷····	÷								
	· · · · · ·		·····		÷								
		,-			<u>, .</u>				~		ļ		
			· • • • •		<u>.</u>				L.				·
				-									
HC	DLD	T	IME	VO	LT	G	٩D	16	CHN	L	MI	ENU]

Tool Box (DVOM/Scope)

Al terminar de grabar el Scaner le hace un recorrido de la data automáticamente. Si desea ver la data de nuevo oprima ((F1) PLAY).

((F4) PART > ENTER > (F4) RCRD)

Para salir oprima ESC o par ver de nuevo oprima RCRD y seleccione "Flight Record Review".

							Ø.	5	V				200	m	S
				•			•	•	•						
		·		FL	I Gł	ΗT	REC	:01	RD H	1EU	IEL	,	•	•	
	•	•	ŀ	N	E₩	FL	IĠŀ	IT	REC	OR	D		•	•	
	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•			•	•	•	•	•	•
	·	•	•	·	•	•	·	•	·	•	•	•	·	·	•
▷	•	•	•	•	•	•	•	•	•				•	•	•

Tool Box (DVOM/Scope)

((F1) HOLD > (F5) RCRD > Flight Record Review > Enter > (F5) VIEW > Up / Down > Enter)

El usuario puede escoger la forma que quiere ver la data grabada. Use las teclas direccionales para enegrecer su selección y oprima "Enter". Esta función lo llevara a ver la data grabada.

(VIEW > Average & Min-Max Trend)

Los promedio de tendencia min. & max, le muestran el máximo y mínimo voltaje de la data grabada. Utilize las teclas direccionales izquierda y derecha para mover el cursor al tiempo deseado. Esta lectura de tiempo puede ser vista en la esquina derecha superior de la pantalla.

63

Tool Box (DVOM/Scope)

(VIEW > Frequency & Duty Trend)

Aquí se les muestra la frecuencia y las tendencias de trabajo para la data grabada.

TREND VIEW	50.0 S	47.500	S CHA
1.00	REQUENCY	[Hz]	
1.00			
0			
100	PUTY [%]		
58			
Ø			
		VIEW	EXIT

((F4) GND > Up/ Down arrow keys)

El nivel de "ground" puede ser ajustado con las teclas direccionales de subir o bajar.

Tool Box (DVOM/Scope)

(Meter > Enter)

Seleccion de metros

	2. TOOL BOX(DVOM/SCOPE)
01.	ENGINE
02.	AUTOMATIC TRANSAXLE
03.	OSCILLOSCOPE
04.	METER (V, F, R, A, T, P)
05.	ACTUATOR DRIVING
06.	SENSOR SIMULATOR

(Meter)

Esta función le permite escoger entre (F1)VOLT (F2) FREQ, (F3) OHM, (F4) AMP*, (F5) TEMP*, (F6) PRES* dependiendo de la función que escoja.

(*) =Le idica que necesita un accesorio opcional para medir.

2.4 METER
VOLT (CH A)
0 97 11
0.01 V
MAX: 0.89 U MIN: -0.02 U
Press [ENTER] to Reset MAX & MIN
VOLT FREQ OHM AMP TEMP PRES

Tool Box (DVOM/Scope)

((F1) VOLT > Up / Down > Enter)

En todos los metros se puede utilizar ambos canales exepto en el ohmiometro que sólo puede utizar el canal B.

Este es un ejemplo utizando el canal A y B simultáneamente para poder comparar las lecturas.

2.4 METER				
VOLT (CH A)				
0.88 V				
MAX: 0.89 V MIN: 0.87 V				
VOLT (CH B)				
0.44 V				
MAX : 0.45 V MIN :-0.00 V				
VOLT FREQ OHM AMP TEMP PRES				

Tool Box (DVOM/Scope)

((F2) FREQ > Up / Down > Enter >Up / Down > Enter)

Después de escoger el canal que utilizará puede escoger varios métodos para medir frecuencia.

2.4 METER			
	FREQUENCY (CH A)		
	0_0_ _		
	RPM Z		
	FREQUENCY		
	DUTY(+)		
MA	DUTY(-) IN : 0.0 Hz		
Proc	PULSE WIDTH +		
rres	PULSE WIDTH -		
VOLT	FREQ OHM AMP TEMP PRES		

Tool Box (DVOM/Scope)

(Actuator Driving)

Control de actuadores.

01. ENGINE
02. AUTOMATIC TRANSAXLE
03. OSCILLOSCOPE
04. METER (V,F,R,A,T,P)
05. ACTUATOR DRIVING
06. SENSOR SIMULATOR

(Actuator Driving > Enter)

La frecuencia del tiempo de trabajo puede ser ajustado con las teclas direccionales de subir o bajar. Las teclas de izquierda y derecha se usan para escoger entre frecuencia y tiempo de trabajo. El período cambiará de acuerdo a la frecuencia automáticamente siguiendo esta tabla: Period = $(1 \div Frequency)$.

Tool Box (DVOM/Scope)

Sensor Simulator

2. TOOL BOX(DVOM/SCOPE) 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	2. TOOL BOX(DVOM/SCOPE) 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	2. TOOL BOX(DVOM/SCOPE) 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR		
 Ø1. ENGINE Ø2. AUTOMATIC TRANSAXLE Ø3. OSCILLOSCOPE Ø4. METER (V, F, R, A, T, P) Ø5. ACTUATOR DRIVING Ø6. SENSOR SIMULATOR 	 Ø1. ENGINE Ø2. AUTOMATIC TRANSAXLE Ø3. OSCILLOSCOPE Ø4. METER (V, F, R, A, T, P) Ø5. ACTUATOR DRIVING Ø6. SENSOR SIMULATOR 	 Ø1. ENGINE Ø2. AUTOMATIC TRANSAXLE Ø3. OSCILLOSCOPE Ø4. METER (V, F, R, A, T, P) Ø5. ACTUATOR DRIVING Ø6. SENSOR SIMULATOR 		2. TOOL BOX(DVOM/SCOPE)
 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	 01. ENGINE 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 		
 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	 02. AUTOMATIC TRANSAXLE 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	01.	ENGINE
 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	 03. OSCILLOSCOPE 04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR 	02.	AUTOMATIC TRANSAXLE
04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	04. METER (V,F,R,A,T,P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	04. METER (V, F, R, A, T, P) 05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	03.	OSCILLOSCOPE
05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	05. ACTUATOR DRIVING 06. SENSOR SIMULATOR	04.	METER (V, F, R, A, T, P)
06. SENSOR SIMULATOR	06. SENSOR SIMULATOR	06. SENSOR SIMULATOR	05.	ACTUATOR DRIVING
			06.	SENSOR SIMULATOR

(Sensor Simulator > Enter > (F1) VSS)

Esta pantalla le mostrará la señal de velocidad la cual podrá aumentar o disminuir oprimiendo las teclas de (+) o (-) al igual que en la función de voltaje.

Tool Box (DVOM/Scope)

(Sensor Simulator > Enter > (F3) FREQ)

La simulación de frecuencia se controla de la misma forma que las funciones anteriores con la ecepción de la (F4) SLCT que cambiará los valores de frecuencia a ciclos de trabajo.

2.6 SENSO	R SIMULATOR					
SIMULATION OF FREQUENCY						
FREQUENCY	DUTY					
1 KHz	50 %					
(CH B ONLY)						
VSS VOLT FREQ	SLCT + -					

CARB OBD-II DIAGNOSIS

(CARB OBD-II Diagnosis) California Air Resources Board

El Hi-Scan Pro automáticamente busca por "interfaces"que pudiesen aplicar OBD-II

3. CARB OBD-II DIAGNOSIS

INTERFACE : KWP 2000

ALL SUPPORTED ON BOARD SYSTEM READINESS TESTS HAVE BEEN COMPLETED

PRESS [ENTER]

8. INITIAL SCREEN
 91. HYUNDAI VEHICLE DIAGNOSIS
 92. TOOL BOX(DVOM/SCOPE)
 93. CABB OBD-II DIAGNOSIS
 94. FLIGHT RECORD REVIEW
 95. SYSTEM SETUP
 96. DATA DOWN LOAD

3. CARB OBD-II DIAGNOSIS INTERFACE : ISO 9141-2 NOT ALL SUPPORTED ON BOARD SYSTEM READINESS TESTS HAVE BEEN COMPLETED PRESS [ENTER]

(CARB OBD-II Diagnosis > Enter > Enter)

Este es el menú principal de donde puede escojer la función que desee de CARB OBD-II.

CARB OBD-II DIAGNOSIS

(Readiness Test)

Los resultados de disponibilidad o de preparación de los sistemas de CARB OBD-II son mostrados en esta pantalla. El número de módulos que estén respondiendo se encuentra en el lado izquierdo de la columna. Un. "*" muestra que dos o más módulos están respondiendo con los mismos valores, el signo de "#" demuestra que dos o más módulos están respondiendo con diferentes vlores. "(F1) DMID"muestra el "Module ID"para la prueba seleccionada, (F2) SMID muestran los puntos que aplican sorteados por el "Module ID". ("Current Data")

	3.1 READINESS	TEST				
2×	NUMBER OF DTC	0				
2¥	MIL STATUS	OFF				
2#	MISFIRE MONITORING	SUPPORTED				
2#	FUEL SYS.MONITORING	SUPPORTED				
2#	COMPONENT MONITORING	SUPPORTED				
2#	CATALYST	NOT CMPLTD				
2¥	HEATED CATALYST	NOT APPLIC				
2#	EVAP. PURGE SYSTEM	NOT CMPLTD	Ŧ			
MODULE ID : 12						
I	DMID SMID					

CARB OBD-II DIAGNOSIS

(Current Data)

Esta pantalla le muestra la lectura de los sensores y interruptores mostrados. Los indicadores son igual que los mostrados en "rediness test" sólo con la suma de "-" lo cual demuestra que no está respondiendo de dos o más módulos. DMID y SMID son idénticos a los de la pantalla anterior con la diferencia de el SPID le permite al usuario escoger la data que quiere ver.

3.2 CURRENT DATA							
1	FUEL SYS.STS - BNK1 OPEN-DRIV						
1	FUEL SYS.STS - BNK2 NOT USED						
1	CALCULAT.LOAD VALUE. 0.0 %						
1	COOLANT TEMP. SENSOR 69 °F						
1	SHORT TERM FUEL (B1) 0.0 %						
1	LONG TERM FUEL (B1) -1.6 %						
1	ENGINE SPEED Ø rpm						
1	VEHICLE SPEED SNSR. Ø MPH	-					
MODULE ID : 12							
	DMID SMID SPID						

CARB OBD-II DIAGNOSIS

(Diagnostic Trouble Codes)

La pantalla de DTC muestra la cantidad de códigos que se encuentren presentes. La tecla de (F2) SMID le mostrará los DTCs dados por el módulo, mientras que la tecla de (F6) ERAS le permitirá borrar los códigos.

3.3 DIAGNOSTIC TROUBLE CODES	
P0120 THROTTLE POSITION SENSOR P1701 TPS	
MODULE ID : 12	
SMID	AS

(Freeze Frame Data)

En el "DTC freeze frame" la información mostrada son los valores guardados en la memoria de la computadora al momento que se presentó el DTC.

DMID, SMID y SPID: Estos comandos funcionan al igual que en las pantallas anteriores.

	3.4 FREEZE FRAME DATA							
1	FUEL SYS.STS - BNK1 OPEN-DRIV							
1	FUEL SYS.STS - BNK2 NOT USED							
1	CALCULAT.LOAD VALUE. 23.1 %							
1	COOLANT TEMP. SENSOR 118 °F							
1	SHORT TERM FUEL (B1) 0.0 %							
1	LONG TERM FUEL (B1) -2.3 %							
1	ENGINE SPEED 980 rpm							
1	VEHICLE SPEED SNSR. Ø MPH	ļ						
MODULE ID : 12								
	DUID SUID SLID							

CARB OBD-II DIAGNOSIS

(Expanded Diagnostic Protocol)

El protocolo de diagnóstico expandido es utilizado para definir técnicas decodificadoras las cuales harán tres funciones:

•Describir los mensajes que van a ser transmitidos al vehículo y el método de transmición a SAE J1978 OBD II Scan Tool.

•Describir el mensaje que el SCANER recibirá y procesarlo a SAE J1978 OBD II Scan Tool.

•Describir la formas de procesar la data incluída en la de mensajes recibidos a SAE J1978 OBD II Scan Tool.

3	.5 EXP	ANDED	DIAG.	PROTOCO	DL	
T	HERE I PRES	S NO I S [ED]	EDP DE	FINITIO	١	•
EDIT	INST	DEL			RUN	

CARB OBD-II DIAGNOSIS

(O2 Test Results)

Mostrar los resultados de las pruebas de O2

3.6 O2 TE	ST RESULTS
BANK1 -	SENSOR 1
BANK1 -	SENSOR 2

(O2 Test Results > Enter > Bank 1-Sensor 1 > Enter)

Esta pantalla muestra los resultados de O2 B1 / S1.

		3.6	02	TEST	RESULTS		
1	R ->	L 02S	VOI	TAGE	0.520	Ų	
1	L ->	R 02S	VOI	LTAGE	0.520	V	
1	HI GH	VOL. ·	- st	J.TIM	E 0.560	v	
1	L ->	R SWIT	ГСН	TIME	0.000	sec	
							•
MODULE ID : 12							

(O2 Test Results > Enter > Bank 1-Sensor 1 > Enter)

Esta pantalla muestra los resultados de O2 B1 / S2.

		3	3.6	02	TEST	RESULTS		
1	R ->	L(028	VOI	TAGE	0.520	V	
1	L ->	RO	028	VOI	TAGE	0.520	V	
			MOT			12		Ŧ
			TIOI		5 ID -	12		

CARB OBD-II DIAGNOSIS

(Combination Display)

La combinación de pantallas le permite ver dos funciones a la misma vez.

El operador puede escoger cualquiera de las funciones en la parte baja de la pantalla oprimiendo la tecla corespondiente. La primera selección cambiará la parte baja de la pantalla manteniéndo la parte superior fija; a segunda selección cambiará la parte superior manteniendo la baja y así consecutivamente.

3.8 COMBINATION DISPLAY							
			CURREN	IT DATA	ì		12
1	FUEL	SYS.S	TS - I	BNK1	CLOSED	LOOP	
1	FUEL	SYS.S	TS - H	BNK2	NOT US	ED	
1	CALC	ULAT.L	oad va	ALUE.	18.0	%	
1	COOL	ANT TE	MP. SH	ENSOR	195	°F	T
		DIAGNO	STIC 1	ROUBLE	E CODES		
	P012	0 THRO	TTLE H	POSITIC)n sens	OR	*
	P170	1 TPS					
							Ŧ
]	DMID	CURR	DTC	FRZE	02TS	MONI]

FLIGHT RECORD REVIEW

(Flight Record Review)

System Flight Record Selection

(Flight Record Review > Enter)

Después que la data de "Flight Record" es recuperada, puede revisar la Data utilizando las teclas direccionales. Al oprimir (F1) GRPH le mostrará una gráfica de la data mostrada.

Esta es la forma de"Flight Record" en forma de gráfica. Al oprimir (F5) FIX le permitirá revisar entre las gráficas mientras mantiene una fija. Esto lo puede hacer utilizando las teclas direccionales. La data numérica aparecerá en la columna izquierda de su pantalla.

<u>SYSTEM SETUP</u>

(System Setup > Enter)

	0. INITIAL SCREEN
01.	HYUNDAI VEHICLE DIAGNOSIS
02.	TOOL BOX(DVOM/SCOPE)
03.	CARB OBD-II DIAGNOSIS
04.	FLIGHT RECORD REVIEW
05.	SYSTEM SETUP
06.	DATA DOWN LOAD

	5. SYSTEM SETUP
01.	SYSTEM CONFIGURATION
02.	DATA SETUP
03.	PRINTER SETUP
04.	SYSTEM TEST
05.	METER ZERO SET

(System Configuration)

Esta pantalla le muestra información tal como el número de serie, versión de la tarjeta de información, tamaño de la tarjeta de información y el tamaño de la tarjeta de memoria si es que tiene una instalada

5.1 8	STEM CONFIGURATION
	[
SERIAL NO.	KHP100E-EF013
S∕W CARD VER.	2000.04.28. 14:36
9/11 CADD 017E	4096 Vbuta
2/ W CHUD 2175	4050 NDYLE
MEMORY EXPANSI	ON CARD SIZE
	NOT INSTALLED

SYSTEM SETUP

(Data Setup)

En esta función puedes costomizar el Hi-Scan Pro a su preferencia.

5.2 DATA SETUP								
1. HOLD LAST TOOL BOX SCREEN NO								
2. SOUND 0	2. SOUND ON 3. LANGUAGE BASIC							
4. UNIT CONU	4. UNIT CONVERSION							
SPEED	MPH	TEMP.	°F					
PRESSURE	psi	ANGLE	0					
AIR FLOW	gm∕s							
5. CENTER TE	5. CENTER TEL. 714 965 33626 -							
6. DEALERSHIP								
7. SELF TESI	NO							

(Printer Setup)

En esta pantalla puede escoger el tipo de impresor (Printer) que desea utilizar moviendo el cursor con las teclas direccionales y "Enter".

J.J FRIMIER SEIUP								
01.	Hi	scan l	PRI	TI	ØR			
02.	HP	LASER	JET	C	1200	BPS)		
03.	HP	LASER	JET	C	9600	BPS)		
04.	HP	LASER	JET	C	19200	BPS)		
05.	HP	LASER	JET	G	38400	BPS)		

O DDINTED OFTUD

(System Test)

El Hi-Scan Pro tiene su propio sistema de monitoreo para varios sistemas y funciones.

1.	KEYPAD TEST	
92.	LCD SCREEN TEST	
3 3.	MEMORY TEST	

<u>SYSTEM SETUP</u>

(Meter Zero Set)

El Hi-Scan Pro le ofrece una opción de llevar a cero las puntas de prueba de los canales A y B.

		5.	5 ME1	ſER	ZERO	SET	
01.	CH	Â	ZERO	SET	1		
02.	СН	B	ZERO	SET	!		

MAKE PROBE SHORTED TO SET ZERO LIKE ABOVE PICTURE AND PRESS [ENTER] KEY

