

# ENGINE

## CONTENTS

|                   | page |                                    | page |
|-------------------|------|------------------------------------|------|
| 2.5L ENGINE ..... | 15   | ENGINE DIAGNOSIS .....             | 8    |
| 3.9L ENGINE ..... | 55   | STANDARD SERVICE INFORMATION ..... | 1    |
| 5.2L ENGINE ..... | 93   |                                    |      |

## STANDARD SERVICE INFORMATION

### INDEX

|                                 | page |                                      | page |
|---------------------------------|------|--------------------------------------|------|
| <b>GENERAL INFORMATION</b>      |      | <b>SERVICE PROCEDURES</b>            |      |
| ENGINE OIL .....                | 4    | FORM-IN-PLACE GASKETS .....          | 6    |
| ENGINE PERFORMANCE .....        | 2    | HYDROSTATIC LOCK .....               | 7    |
| FORM-IN-PLACE GASKETS .....     | 1    | REPAIR DAMAGED OR WORN THREADS ..... | 6    |
| MEASURING WITH PLASTIGAGE ..... | 2    |                                      |      |

### GENERAL INFORMATION

#### FORM-IN-PLACE GASKETS

There are several places where form-in-place gaskets are used on the engine. **DO NOT use form-in-place gasket material unless specified.** Care must be taken when applying form-in-place gaskets. Bead size, continuity and location are of great importance. Too thin a bead can result in leakage while too much can result in spill-over. A continuous bead of the proper width is essential to obtain a leak-free joint.

Two types of form-in-place gasket materials are used in the engine area (Mopar Silicone Rubber Adhesive Sealant and Mopar Gasket Maker). Each have different properties and cannot be used interchangeably.

#### MOPAR SILICONE RUBBER ADHESIVE SEALANT

Mopar Silicone Rubber Adhesive Sealant, normally black in color, is available in 3 ounce tubes. Moisture in the air causes the sealant material to cure. This material is normally used on flexible metal flanges. It has a shelf life of a year and will not properly cure if over aged. Always inspect the package for the expiration date before use.

#### MOPAR GASKET MAKER

Mopar Gasket Maker, normally red in color, is available in 6 cc tubes. This anaerobic type gasket material cures in the absence of air when squeezed between smooth machined metallic surfaces. It will not cure if left in the uncovered tube. **DO NOT use on flexible metal flanges.**

#### SURFACE PREPARATION

Parts assembled with form-in-place gaskets may be disassembled without unusual effort. In some instances, it may be necessary to lightly tap the part with a mallet or other suitable tool to break the seal between the mating surfaces. A flat gasket scraper may also be lightly tapped into the joint but care must be taken not to damage the mating surfaces.

Scrape or wire brush all gasket surfaces to remove all loose material. Inspect stamped parts to ensure gasket rails are flat. Flatten rails with a hammer on a flat plate, if required. Gasket surfaces must be free of oil and dirt. Make sure the old gasket material is removed from blind attaching holes.

#### GASKET APPLICATION

Assembling parts using a form-in-place gasket requires care.

Mopar Silicone Rubber Adhesive Sealant should be applied in a continuous bead approximately 3 mm (0.12 inch) in diameter. All mounting holes must be

## GENERAL INFORMATION (Continued)

circled. For corner sealing, a 3 or 6 mm (1/8 or 1/4 inch) drop is placed in the center of the gasket contact area. Uncured sealant may be removed with a shop towel. Components should be torqued in place while the sealant is still wet to the touch (within 10 minutes). The use of a locating dowel is recommended during assembly to prevent smearing the material off location.

Mopar Gasket Maker should be applied sparingly to one gasket surface. The sealant diameter should be 1.00 mm (0.04 inch) or less. Be certain the material surrounds each mounting hole. Excess material can easily be wiped off. Components should be torqued in place within 15 minutes. The use of a locating dowel is recommended during assembly to prevent smearing the material off location.

## ENGINE PERFORMANCE

To provide best vehicle performance and lowest vehicle emissions, it is most important that the tune-up be done accurately. Use the specifications listed on the Vehicle Emission Control Information label found on the engine compartment hood.

(1) Test cranking amperage draw (refer to Group 8B, Battery/Starter/Generator Service for the proper procedures).

(2) Tighten the intake manifold bolts (refer to Group 11, Exhaust System and Intake Manifold for the proper specifications).

(3) Perform cylinder compression test:

## CAUTION: DO NOT overspeed the engine.

(a) Check engine oil level and add oil, if necessary.

(b) Drive the vehicle until engine reaches normal operating temperature.

(c) Select a route free from traffic and other forms of congestion, observe all traffic laws and briskly accelerate through the gears several times. The higher engine speed may help clean out valve seat deposits which can prevent accurate compression readings.

(d) Remove all spark plugs from engine. As spark plugs are being removed, check electrodes for abnormal firing indicators—fouled, hot, oily, etc. Record cylinder number of spark plug for future reference.

(e) Disconnect coil wire from distributor and secure to good ground to prevent a spark from starting a fire.

(f) Be sure throttle blades are fully open during the compression check.

(g) Insert compression gauge adapter into the No.1 spark plug hole. Crank engine until maximum pressure is reached on gauge. Record this pressure as No.1 cylinder pressure.

(h) Repeat above step for all remaining cylinders.

(i) Compression should not be less than 689 kPa (100 psi) and not vary more than 172 kPa (25 psi) from cylinder to cylinder.

(j) If cylinder(s) have abnormally low compression pressures, repeat procedure.

(k) If the same cylinder(s) repeat an abnormally low reading, it could indicate the existence of a problem in the cylinder.

**NOTE: The recommended compression pressures are to be used only as a guide to diagnosing engine problems. An engine should NOT be disassembled to determine the cause of low compression unless some malfunction is present.**

(4) Clean or replace spark plugs as necessary. Adjust gap (refer to Group 8D, Ignition System for gap adjustment and torque).

(5) Test resistance of spark plug cables (refer to Group 8D, Ignition System).

(6) Inspect the primary wire. Test coil output voltage, primary and secondary resistance. Replace parts as necessary (refer to Group 8D, Ignition System and make necessary adjustment).

(7) Set ignition timing to specifications (refer to Specification Label on engine compartment hood).

(8) Perform a combustion analysis.

(9) Test fuel pump for pressure (refer to Group 14, Fuel System for the proper specifications).

(10) Inspect air filter element (refer to Group 0, Lubrication and Maintenance for the proper procedure).

(11) Inspect crankcase ventilation system (refer to Group 0, Lubrication and Maintenance for the proper procedure).

(12) For emission controls, refer to Group 25, Emission Controls System for service procedures.

(13) Inspect and adjust accessory belt drives (refer to Group 7, Cooling System for the proper adjustments).

(14) Road test vehicle as a final test.

## MEASURING WITH PLASTIGAGE

## CRANKSHAFT MAIN BEARING CLEARANCE

Engine crankshaft bearing clearances can be determined by use of Plastigage, or equivalent. The following is the recommended procedures for the use of Plastigage:

(1) Remove oil film from surface to be checked. Plastigage is soluble in oil.

(2) The total clearance of the main bearings can only be determined by removing the weight of the crankshaft. This can be accomplished by either of two methods:

## GENERAL INFORMATION (Continued)

## METHOD - 1 (PREFERRED)

Shim the bearings adjacent to the bearing to be checked. This will remove the clearance between upper bearing shell and the crankshaft. Place a minimum of 0.254 mm (0.010 inch) shim between the bearing shell and the adjacent bearing cap. Tighten the bolts to 18 N·m (13 ft. lbs.) torque.

- **ALL ENGINES**—When checking No.1 main bearing; shim No.2 main bearing.

- **ALL ENGINES**—When checking No.2 main bearing; shim No.1 and No.3 main bearing.

- **ALL ENGINES**—When checking No.3 main bearing; shim No.2 and No.4 main bearing.

- **3.9L ENGINE**—When checking No.4 main bearing; shim No.3 main bearing.

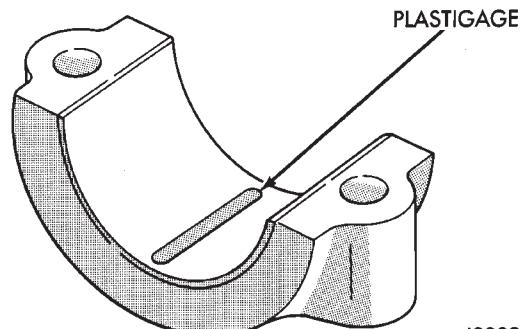
- **2.5L ENGINE**—When checking No.4 main bearing; shim No.3 and No.5 main bearing.

- **5.2L ENGINE**—When checking No.4 main bearing; shim No.3 and No.5 main bearing.

- **2.5L ENGINE**—When checking No.5 main bearing; shim No.4 main bearing.

- **5.2L ENGINE**—When checking No.5 main bearing; shim No.4 main bearing.

**NOTE: Remove all shims before assembling engine.**


## METHOD - 2 (ALTERNATIVE)

The weight of the crankshaft is supported by a jack under the counterweight adjacent to the bearing being checked.

(1) Place a piece of Plastigage across the entire width of the bearing cap shell (Fig. 1). Position the Plastigage approximately 6.35 mm (1/4 inch) off center and away from the oil holes. In addition, suspect areas can be checked by placing the Plastigage in that area. Tighten the bearing cap bolts of the bearing being checked to 108 N·m (80 ft. lbs.) torque (2.5L Engine). Tighten the bearing cap bolts of the bearing being checked to 115 N·m (85 ft. lbs.) torque (3.9L and 5.2L Engines). **DO NOT rotate the crankshaft or the Plastigage may be smeared, giving inaccurate results.**

(2) Remove the bearing cap and compare the width of the flattened Plastigage with the scale provided on the package (Fig. 2). Plastigage generally comes in 2 scales (one scale is in inches and the other is a metric scale). Locate the band closest to the same width. This band shows the amount of clearance. Differences in readings between the ends indicate the amount of taper present. Record all readings taken (refer to Engine Specifications).

(3) Plastigage is available in a variety of clearance ranges. The 0.025-0.076 mm (0.001-0.003 inch) range is usually the most appropriate for checking engine bearing clearances.



J9309-90

**Fig. 1 Placement of Plastigage in Bearing Shell**



RN861

**Fig. 2 Clearance Measurement**

## CONNECTING ROD BEARING CLEARANCE

Engine connecting rod bearing clearances can be determined by use of Plastigage, or equivalent. The following is the recommended procedures for the use of Plastigage:

(1) Remove oil film from surface to be checked. Plastigage is soluble in oil.

(2) Place a piece of Plastigage across the entire width of the bearing cap shell (Fig. 1). Position the Plastigage approximately 6.35 mm (1/4 inch) off center and away from the oil holes. In addition, suspect areas can be checked by placing the Plastigage in the suspect area.

(3) The crankshaft must be turned until the connecting rod to be checked starts moving toward the top of the engine. Only then should the rod cap with Plastigage in place be assembled. Tighten the 2.5L rod cap nut to 45 N·m (33 ft. lbs.) torque. Tighten the 3.9 and 5.2L rod cap nut to 61 N·m (45 ft. lbs.) torque. **DO NOT rotate the crankshaft or the Plastigage may be smeared, giving inaccurate results.**

(4) Remove the bearing cap and compare the width of the flattened Plastigage with the scale provided on the package (Fig. 2). Plastigage generally comes in 2 scales (one scale is in inches and the other is a metric scale). Locate the band closest to the same width. This band shows the amount of clearance. Differences in readings between the ends indicate the

## GENERAL INFORMATION (Continued)

amount of taper present. Record all readings taken (refer to Engine Specifications).

(5) Plastigage is available in a variety of clearance ranges. The 0.025-0.076 mm (0.001-0.003 inch) range is usually the most appropriate for checking engine bearing clearances.

## ENGINE OIL

**WARNING: NEW OR USED ENGINE OIL CAN BE IRRITATING TO THE SKIN. AVOID PROLONGED OR REPEATED SKIN CONTACT WITH ENGINE OIL. CONTAMINANTS IN USED ENGINE OIL, CAUSED BY INTERNAL COMBUSTION, CAN BE HAZARDOUS TO YOUR HEALTH. THOROUGHLY WASH EXPOSED SKIN WITH SOAP AND WATER. DO NOT WASH SKIN WITH GASOLINE, DIESEL FUEL, THINNER, OR SOLVENTS, HEALTH PROBLEMS CAN RESULT. DO NOT POLLUTE, DISPOSE OF USED ENGINE OIL PROPERLY.**

## ENGINE OIL SPECIFICATION

**CAUTION: Do not use non-detergent or straight mineral oil when adding or changing crankcase lubricant. Engine failure can result.**

## API SERVICE GRADE CERTIFIED

Use an engine oil that is API Service Grade Certified or an oil that conforms to the API Service Grade SH or SH/CD. MOPAR provides engine oils that conform to all of these service grades.

## SAE VISCOSITY

An SAE viscosity grade is used to specify the viscosity of engine oil. SAE 30 specifies a single viscosity engine oil. Engine oils also have multiple viscosities. These are specified with a dual SAE viscosity grade which indicates the cold-to-hot temperature viscosity range. Select an engine oil that is best suited to your particular temperature range and variation (Fig. 3).

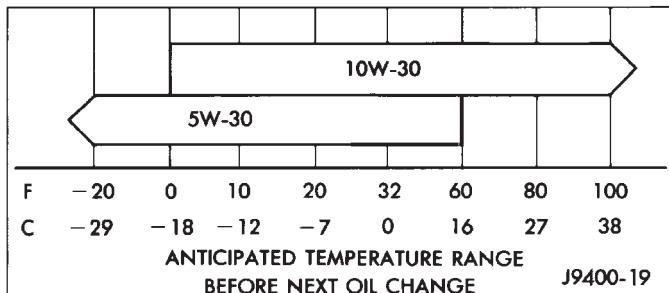



Fig. 3 Temperature/Engine Oil Viscosity

## ENERGY CONSERVING OIL

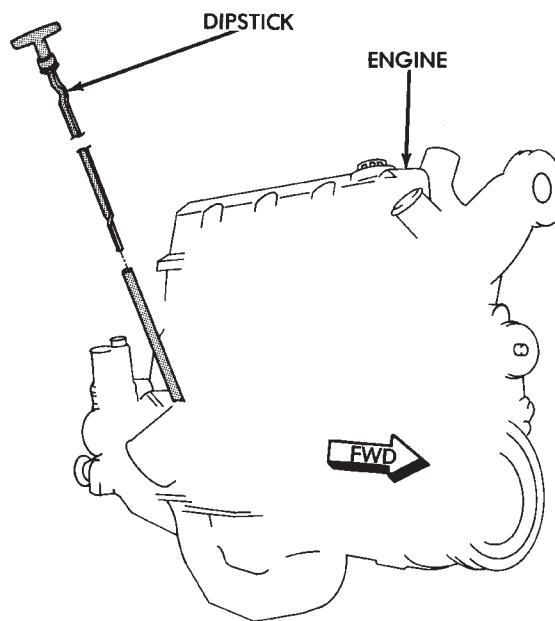
An Energy Conserving type oil is recommended for gasoline engines. They are designated as either ENERGY CONSERVING or ENERGY CONSERVING II.

## CONTAINER IDENTIFICATION

Standard engine oil identification notations have been adopted to aid in the proper selection of engine oil. The identifying notations are located on the label of engine oil plastic bottles and the top of engine oil cans (Fig. 4).



9400-9

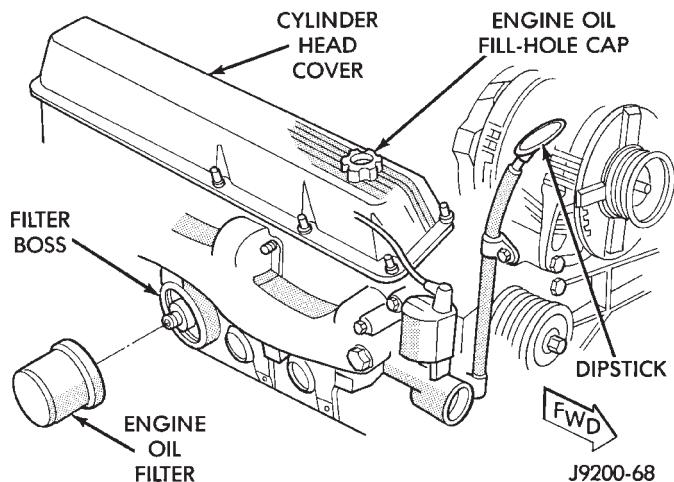

Fig. 4 Engine Oil Container Standard Notations

## ENGINE OIL ADDITIVES

In some instances, such as infrequent operation, short trip driving, and during break-in after a major overhaul, addition of special materials containing anti-rust and anti-scuff additives are beneficial. A suitable product for this purpose is MOPAR Engine Oil Supplement.

## OIL LEVEL INDICATOR (DIPSTICK)

The engine oil level indicator (Dipstick) is located at the right rear of the 2.5L engine. (Fig. 5).




J9200-25

Fig. 5 Engine Oil Dipstick Location—Typical

## GENERAL INFORMATION (Continued)

The engine oil level indicator is located at the right front of the engine, left of the generator on 3.9L and 5.2L engine (Fig. 6).



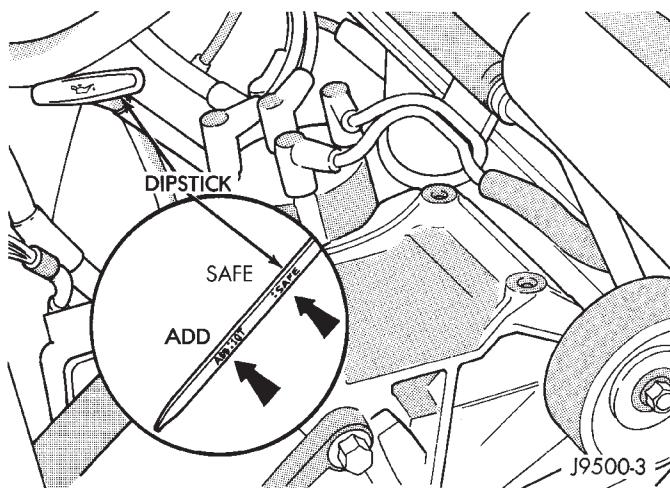
**Fig. 6 Engine oil Dipstick Location**

## CRANKCASE OIL LEVEL INSPECTION

**CAUTION: Do not overfill crankcase with engine oil, oil foaming and oil pressure loss can result.**

To ensure proper lubrication of an engine, the engine oil must be maintained at an acceptable level. The acceptable levels are indicated between the ADD and SAFE marks on the engine oil dipstick (Fig. 7).

- (1) Position vehicle on level surface.
- (2) With engine OFF, allow approximately ten minutes for oil to settle to bottom of crankcase, remove engine oil dipstick.
- (3) Wipe dipstick clean.
- (4) Install dipstick and verify it is seated in the tube.
- (5) Remove dipstick, with handle held above the tip, take oil level reading (Fig. 7).
- (6) Add oil only if level is below the ADD mark on dipstick.


## ENGINE OIL CHANGE

Change engine oil at mileage and time intervals described in the Maintenance Schedule.

## TO CHANGE ENGINE OIL

Run engine until achieving normal operating temperature.

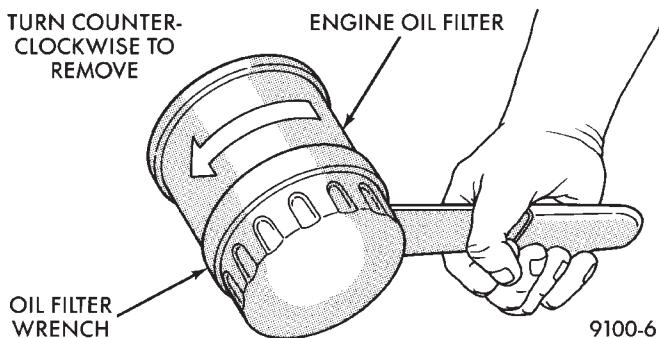
- (1) Position the vehicle on a level surface and turn engine off.
- (2) Hoist and support vehicle on safety stands. Refer to Hoisting and Jacking Recommendations.
- (3) Remove oil fill cap.
- (4) Place a suitable drain pan under crankcase drain.



**Fig. 7 Engine Oil Dipstick—2.5L Engine**

(5) Remove drain plug from crankcase and allow oil to drain into pan. Inspect drain plug threads for stretching or other damage. Replace drain plug and gasket if damaged.

- (6) Install drain plug in crankcase.
- (7) Lower vehicle and fill crankcase with specified type and amount of engine oil described in this section.
- (8) Install oil fill cap.
- (9) Start engine and inspect for leaks.
- (10) Stop engine and inspect oil level.


## ENGINE OIL FILTER CHANGE

## FILTER SPECIFICATION

All engines are equipped with a high quality full-flow, disposable type oil filter. Chrysler Corporation recommends a Mopar or equivalent oil filter be used.

## OIL FILTER REMOVAL

- (1) Position a drain pan under the oil filter.
- (2) Using a suitable oil filter wrench loosen filter.
- (3) Rotate the oil filter counterclockwise to remove it from the cylinder block oil filter boss (Fig. 8).



**Fig. 8 Oil Filter Removal—Typical**

## GENERAL INFORMATION (Continued)

(4) When filter separates from adapter nipple, tip gasket end upward to minimize oil spill. Remove filter from vehicle.

(5) With a wiping cloth, clean the gasket sealing surface (Fig. 9) of oil and grime.

## OIL FILTER INSTALLATION

(1) Lightly lubricate oil filter gasket with engine oil or chassis grease.

(2) Thread filter onto adapter nipple. When gasket makes contact with sealing surface, (Fig. 9) hand tighten filter one full turn, do not over tighten.

(3) Add oil, verify crankcase oil level and start engine. Inspect for oil leaks.

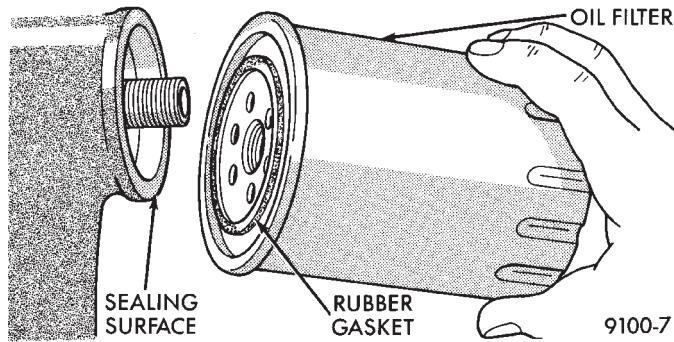



Fig. 9 Oil Filter Sealing Surface—Typical

## SERVICE PROCEDURES

## REPAIR DAMAGED OR WORN THREADS

Damaged or worn threads can be repaired. Essentially, this repair consists of:

- Drilling out worn or damaged threads.
- Tapping the hole with a special Heli-Coil Tap, or equivalent.
- Installing an insert into the tapped hole to bring the hole back to its original thread size.

**CAUTION: Be sure that the tapped holes maintain the original center line.**

Heli-Coil tools and inserts are readily available from automotive parts jobbers.

## FORM-IN-PLACE GASKETS

There are several places where form-in-place gaskets are used on the engine. **DO NOT use form-in-place gasket material unless specified.** Care must be taken when applying form-in-place gaskets. Bead size, continuity and location are of great importance. Too thin a bead can result in leakage while too much can result in spill-over. A continuous bead of the proper width is essential to obtain a leak-free joint.

Two types of form-in-place gasket materials are used in the engine area (Mopar Silicone Rubber

Adhesive Sealant and Mopar Gasket Maker). Each have different properties and cannot be used interchangeably.

## MOPAR SILICONE RUBBER ADHESIVE SEALANT

Mopar Silicone Rubber Adhesive Sealant, normally black in color, is available in 3 ounce tubes. Moisture in the air causes the sealant material to cure. This material is normally used on flexible metal flanges. It has a shelf life of a year and will not properly cure if over aged. Always inspect the package for the expiration date before use.

## MOPAR GASKET MAKER

Mopar Gasket Maker, normally red in color, is available in 6 cc tubes. This anaerobic type gasket material cures in the absence of air when squeezed between smooth machined metallic surfaces. It will not cure if left in the uncovered tube. **DO NOT** use on flexible metal flanges.

## SURFACE PREPARATION

Parts assembled with form-in-place gaskets may be disassembled without unusual effort. In some instances, it may be necessary to lightly tap the part with a mallet or other suitable tool to break the seal between the mating surfaces. A flat gasket scraper may also be lightly tapped into the joint but care must be taken not to damage the mating surfaces.

Scrape or wire brush all gasket surfaces to remove all loose material. Inspect stamped parts to ensure gasket rails are flat. Flatten rails with a hammer on a flat plate, if required. Gasket surfaces must be free of oil and dirt. Make sure the old gasket material is removed from blind attaching holes.

## GASKET APPLICATION

Assembling parts using a form-in-place gasket requires care.

Mopar Silicone Rubber Adhesive Sealant should be applied in a continuous bead approximately 3 mm (0.12 inch) in diameter. All mounting holes must be circled. For corner sealing, a 3 or 6 mm (1/8 or 1/4 inch) drop is placed in the center of the gasket contact area. Uncured sealant may be removed with a shop towel. Components should be torqued in place while the sealant is still wet to the touch (within 10 minutes). The use of a locating dowel is recommended during assembly to prevent smearing the material off location.

Mopar Gasket Maker should be applied sparingly to one gasket surface. The sealant diameter should be 1.00 mm (0.04 inch) or less. Be certain the material surrounds each mounting hole. Excess material can easily be wiped off. Components should be torqued in place within 15 minutes. The use of a

## SERVICE PROCEDURES (Continued)

locating dowel is recommended during assembly to prevent smearing the material off location.

#### HYDROSTATIC LOCK

When an engine is suspected of hydrostatic lock (regardless of what caused the problem), follow the steps below.

(1) Perform the Fuel Pressure Release Procedure (refer to Group 14, Fuel System).

(2) Disconnect the negative cable from the battery.

(3) Inspect air cleaner, induction system and intake manifold to ensure system is dry and clear of foreign material.

(4) Place a shop towel around the spark plugs to catch any fluid that may possibly be under pressure in the cylinder head. Remove the plugs from the engine.

**CAUTION: DO NOT use the starter motor to rotate the crankshaft. Severe damage could occur.**

(5) With all spark plugs removed, rotate the crankshaft using a breaker bar and socket.

(6) Identify the fluid in the cylinders (i.e. coolant, fuel, oil, etc.).

(7) Make sure all fluid has been removed from the cylinders.

(8) Repair engine or components as necessary to prevent this problem from occurring again.

(9) Squirt engine oil into the cylinders to lubricate the walls. This will prevent damage on restart.

(10) Install new spark plugs. Tighten the 2.5L engine spark plugs to 37 N·m (27 ft. lbs.) torque. Tighten the 3.9L or 5.2L engine spark plugs to 34 N·m (25 ft. lbs.) torque.

(11) Drain engine oil. Remove and discard the oil filter.

(12) Install the drain plug. Tighten the plug to 34 N·m (25 ft. lbs.) torque.

(13) Install a new oil filter.

(14) Fill engine crankcase with the specified amount and grade of oil.

(15) Connect the negative cable to the battery.

(16) Start the engine and check for any leaks.

## ENGINE DIAGNOSIS

### INDEX

| page                                    | page |
|-----------------------------------------|------|
| <b>DIAGNOSIS AND TESTING</b>            |      |
| CYLINDER COMBUSTION PRESSURE            |      |
| LEAKAGE TEST .....                      | 9    |
| CYLINDER COMPRESSION PRESSURE TEST ..   | 8    |
| ENGINE CYLINDER HEAD GASKET FAILURE     |      |
| DIAGNOSIS .....                         | 8    |
| ENGINE OIL PRESSURE .....               | 11   |
| GENERAL INFORMATION .....               | 8    |
| HYDRAULIC TAPPETS .....                 | 11   |
| INSPECTION (ENGINE OIL LEAKS IN         |      |
| GENERAL) .....                          | 9    |
| INSPECTION FOR REAR SEAL AREA LEAKS ..  | 10   |
| INTAKE MANIFOLD LEAKAGE DIAGNOSIS ..... | 8    |
| SERVICE DIAGNOSIS—LUBRICATION .....     | 14   |
| SERVICE DIAGNOSIS—MECHANICAL .....      | 13   |
| SERVICE DIAGNOSIS—PERFORMANCE .....     | 12   |

### DIAGNOSIS AND TESTING

#### GENERAL INFORMATION

Engine diagnosis is helpful in determining the causes of malfunctions not detected and remedied by routine tune-ups.

These malfunctions may be classified as either performance (e.g., engine idles rough and stalls) or mechanical (e.g., a strange noise).

Refer to the Service Diagnosis—Performance chart and the Service Diagnosis—Mechanical chart for possible causes and corrections of malfunctions. Refer to Group 14, Fuel System for the fuel system diagnosis.

Additional tests and diagnostic procedures may be necessary for specific engine malfunctions that can not be isolated with the Service Diagnosis charts. Information concerning additional tests and diagnosis is provided within the following diagnosis:

- Cylinder Compression Pressure Test.
- Cylinder Combustion Pressure Leakage Test.
- Engine Cylinder Head Gasket Failure Diagnosis.
- Intake Manifold Leakage Diagnosis.

#### INTAKE MANIFOLD LEAKAGE DIAGNOSIS

An intake manifold air leak is characterized by lower than normal manifold vacuum. Also, one or more cylinders may not be functioning.

**WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR THE FAN. DO NOT WEAR LOOSE CLOTHING.**

- (1) Start the engine.
- (2) Spray a small stream of water at the suspected leak area.
- (3) If a change in RPM is observed the area of the suspected leak has been found.
- (4) Repair as required.

#### CYLINDER COMPRESSION PRESSURE TEST

The results of a cylinder compression pressure test can be utilized to diagnose several engine malfunctions.

Ensure the battery is completely charged and the engine starter motor is in good operating condition. Otherwise the indicated compression pressures may not be valid for diagnosis purposes.

- (1) Clean the spark plug recesses with compressed air.
- (2) Remove the spark plugs.
- (3) Secure the throttle in the wide-open position.
- (4) Disconnect the ignition coil.
- (5) Insert a compression pressure gauge and rotate the engine with the engine starter motor for three revolutions.
- (6) Record the compression pressure on the 3rd revolution. Continue the test for the remaining cylinders.

Refer to Engine Specifications for the correct engine compression pressures.

#### ENGINE CYLINDER HEAD GASKET FAILURE DIAGNOSIS

A leaking engine cylinder head gasket usually results in loss of power, loss of coolant and engine misfiring.

An engine cylinder head gasket leak can be located between adjacent cylinders or between a cylinder and the adjacent water jacket.

- An engine cylinder head gasket leaking between adjacent cylinders is indicated by a loss of power and/or engine misfire.
- An engine cylinder head gasket leaking between a cylinder and an adjacent water jacket is indicated by coolant foaming or overheating and loss of coolant.

#### CYLINDER-TO-CYLINDER LEAKAGE TEST

To determine if an engine cylinder head gasket is leaking between adjacent cylinders; follow the proce-

## DIAGNOSIS AND TESTING (Continued)

dures outlined in Cylinder Compression Pressure Test. An engine cylinder head gasket leaking between adjacent cylinders will result in approximately a 50-70% reduction in compression pressure.

## CYLINDER-TO-WATER JACKET LEAKAGE TEST

**WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR THE FAN. DO NOT WEAR LOOSE CLOTHING.**

Remove the radiator cap.

Start the engine and allow it to warm up until the engine thermostat opens.

If a large combustion/compression pressure leak exists, bubbles will be visible in the coolant.

If bubbles are not visible, install a radiator pressure tester and pressurize the coolant system.

If a cylinder is leaking combustion pressure into the water jacket, the tester pointer will pulsate with every combustion stroke of the cylinder.

## CYLINDER COMBUSTION PRESSURE LEAKAGE TEST

The combustion pressure leakage test provides an accurate means for determining engine condition.

Combustion pressure leakage testing will detect:

- Exhaust and intake valve leaks (improper seating).
- Leaks between adjacent cylinders or into water jacket.

- Any causes for combustion/compression pressure loss.

(1) Check the coolant level and fill as required. DO NOT install the radiator cap.

(2) Start and operate the engine until it attains normal operating temperature, then turn the engine OFF.

(3) Remove the spark plugs.

(4) Remove the oil filler cap.

(5) Remove the air cleaner.

(6) Calibrate the tester according to the manufacturer's instructions. The shop air source for testing should maintain 483 kPa (70 psi) minimum, 1 379 kPa (200 psi) maximum and 552 kPa (80 psi) recommended.

(7) Perform the test procedures on each cylinder according to the tester manufacturer's instructions. While testing, listen for pressurized air escaping through the throttle body, tailpipe and oil filler cap opening. Check for bubbles in the radiator coolant.

All gauge pressure indications should be equal, with no more than 25% leakage.

**FOR EXAMPLE:** At 552 kPa (80 psi) input pressure, a minimum of 414 kPa (60 psi) should be maintained in the cylinder.

Refer to the Cylinder Combustion Pressure Leakage Test Diagnosis chart.

## INSPECTION (ENGINE OIL LEAKS IN GENERAL)

Begin with a through visual inspection of the engine, particularly at the area of the suspected leak. If an oil leak source is not readily identifiable, the following steps should be followed:

| CONDITION                                                                 | POSSIBLE CAUSE                                                                   | CORRECTION                                                                                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| AIR ESCAPES THROUGH CARBURETOR/THROTTLE BODY                              | Intake valve not seated properly.                                                | Inspect valve. Reface or replace, if necessary.                                                                                             |
| AIR ESCAPES THROUGH TAILPIPE                                              | Exhaust valve not seated properly.                                               | Inspect valve. Reface or replace, if necessary.                                                                                             |
| AIR ESCAPES THROUGH RADIATOR                                              | Head gasket leaks or crack in cylinder block.                                    | Remove cylinder head and inspect. Replace, if necessary.                                                                                    |
| MORE THAN 50% LEAKAGE FROM ADJACENT CYLINDERS                             | Head gasket leaks or crack in cylinder block or head between adjacent cylinders. | Remove cylinder head and inspect. Replace gasket or head, if necessary.                                                                     |
| MORE THAN 25% LEAKAGE AND AIR ESCAPES THROUGH OIL FILLER CAP OPENING ONLY | Stuck or broken piston ring(s); cracked piston; worn rings and/or cylinder wall. | Inspect for broken ring(s) or piston. Measure ring gap and cylinder diameter, taper, and out-of-round. Replace affected part, if necessary. |

## DIAGNOSIS AND TESTING (Continued)

(1) Do not clean or degrease the engine at this time because some solvents may cause rubber to swell, temporarily stopping the leak.

(2) Add an oil soluble dye (use as recommended by manufacturer). Start the engine and let idle for approximately 15 minutes. Check the oil dipstick to make sure the dye is thoroughly mixed as indicated with a bright yellow color under a black light.

(3) Using a black light, inspect the entire engine for fluorescent dye, particularly at the suspected area of oil leak. If the oil leak is found and identified, repair per service manual instructions.

(4) If dye is not observed, drive the vehicle at various speeds for approximately 24km (15 miles), and repeat inspection.

(5) **If the oil leak source is not positively identified at this time**, proceed with the air leak detection test method.

## Air Leak Detection Test Method

(1) Disconnect the breather cap to air cleaner hose at the breather cap end. Cap or plug breather cap nipple.

(2) Remove the PCV valve from the cylinder head cover. Cap or plug the PCV valve grommet.

(3) Attach an air hose with pressure gauge and regulator to the dipstick tube.

**CAUTION: Do not subject the engine assembly to more than 20.6 kpa (3 PSI) of test pressure.**

(4) Gradually apply air pressure from 1 psi to 2.5 psi maximum while applying soapy water at the suspected source. Adjust the regulator to the suitable test pressure that provide the best bubbles which will pinpoint the leak source. If the oil leak is detected and identified, repair per service manual procedures.

(5) If the leakage occurs at the rear oil seal area, refer to the section, Inspection for Rear Seal Area Leak.

(6) If no leaks are detected, turn off the air supply and remove the air hose and all plugs and caps. Install the PCV valve and breather cap hose.

(7) Clean the oil off the suspect oil leak area using a suitable solvent. Drive the vehicle at various speeds approximately 24 km (15 miles). Inspect the engine for signs of an oil leak by using a black light.

## INSPECTION FOR REAR SEAL AREA LEAKS

Since it is sometimes difficult to determine the source of an oil leak in the rear seal area of the engine, a more involved inspection is necessary. The following steps should be followed to help pinpoint the source of the leak.

If the leakage occurs at the crankshaft rear oil seal area:

(1) Disconnect the battery.

(2) Raise the vehicle.

(3) Remove torque converter or clutch housing cover and inspect rear of block for evidence of oil. Use a black light to check for the oil leak:

(a) Circular spray pattern generally indicates seal leakage or crankshaft damage.

(b) Where leakage tends to run straight down, possible causes are a porous block, distributor seal, camshaft bore cup plugs oil galley pipe plugs, oil filter runoff, and main bearing cap to cylinder block mating surfaces.

(4) If no leaks are detected, pressurize the crankcase as outlined in the, Inspection (Engine oil Leaks in general)

**CAUTION: Do not exceed 20.6 kPa (3 psi).**

(5) If the leak is not detected, very slowly turn the crankshaft and watch for leakage. If a leak is detected between the crankshaft and seal while slowly turning the crankshaft, it is possible the crankshaft seal surface is damaged. The seal area on the crankshaft could have minor nicks or scratches that can be polished out with emery cloth.

**CAUTION: Use extreme caution when crankshaft polishing is necessary to remove minor nicks and scratches. The crankshaft seal flange is especially machined to complement the function of the rear oil seal.**

(6) For bubbles that remain steady with shaft rotation, no further inspection can be done until disassembled.

## INSPECTION FOR REAR SEAL AREA LEAKS

Since it is sometimes difficult to determine the source of an oil leak in the rear seal area of the engine, a more involved inspection is necessary. The following steps should be followed to help pinpoint the source of the leak.

If the leakage occurs at the crankshaft rear oil seal area:

(1) Disconnect the battery.

(2) Raise the vehicle.

(3) Remove torque converter or clutch housing cover and inspect rear of block for evidence of oil. Use a black light to check for the oil leak:

(a) Circular spray pattern generally indicates seal leakage or crankshaft damage.

(b) Where leakage tends to run straight down, possible causes are a porous block, distributor seal, camshaft bore cup plugs, oil galley pipe plugs, oil filter runoff, and main bearing cap to cylinder block mating surfaces. See Group 9, Engines, for proper repair procedures of these items.

## DIAGNOSIS AND TESTING (Continued)

(4) If no leaks are detected, pressurized the crankcase as outlined in the section, Inspection (Engine oil Leaks in general)

**CAUTION: Do not exceed 20.6 kPa (3 psi).**

(5) If the leak is not detected, very slowly turn the crankshaft and watch for leakage. If a leak is detected between the crankshaft and seal while slowly turning the crankshaft, it is possible the crankshaft seal surface is damaged. The seal area on the crankshaft could have minor nicks or scratches that can be polished out with emery cloth.

**CAUTION: Use extreme caution when crankshaft polishing is necessary to remove minor nicks or scratches. The crankshaft seal flange is specially machined to complement the function of the rear oil seal.**

(6) For bubbles that remain steady with shaft rotation, no further inspection can be done until disassembled. Refer to the service Diagnosis—Mechanical, under the Oil Leak row, for components inspections on possible causes and corrections.

(7) After the oil leak root cause and appropriate corrective action have been identified, Refer to Group 9, Engines—Crankshaft Rear Oil Seals, for proper replacement procedures.

## HYDRAULIC TAPPETS

Before disassembling any part of the engine to correct tappet noise, check the oil pressure. If vehicle has no oil pressure gauge, install a reliable gauge at the pressure sending-unit. The pressure should be between 207-552 kPa (30-80 psi) at 3,000 RPM.

Check the oil level after the engine reaches normal operating temperature. Allow 5 minutes to stabilize oil level, check dipstick. The oil level in the pan should never be above the FULL mark or below the ADD OIL mark on dipstick. Either of these two conditions could be responsible for noisy tappets.

## OIL LEVEL

### HIGH

If oil level is above the FULL mark, it is possible for the connecting rods to dip into the oil. With the engine running, this condition could create foam in the oil pan. Foam in oil pan would be fed to the hydraulic tappets by the oil pump causing them to lose length and allow valves to seat noisily.

### LOW

Low oil level may allow oil pump to take in air. When air is fed to the tappets, they lose length, which allows valves to seat noisily. Any leaks on

intake side of oil pump through which air can be drawn will create the same tappet action. Check the lubrication system from the intake strainer to the pump cover, including the relief valve retainer cap. When tappet noise is due to aeration, it may be intermittent or constant, and usually more than one tappet will be noisy. When oil level and leaks have been corrected, operate the engine at fast idle. Run engine for a sufficient time to allow all of the air inside the tappets to be bled out.

## TAPPET NOISE DIAGNOSIS

(1) To determine source of tappet noise, operate engine at idle with cylinder head covers removed.

(2) Feel each valve spring or rocker arm to detect noisy tappet. The noisy tappet will cause the affected spring and/or rocker arm to vibrate or feel rough in operation.

**NOTE: Worn valve guides or cocked springs are sometimes mistaken for noisy tappets. If such is the case, noise may be dampened by applying side thrust on the valve spring. If noise is not appreciably reduced, it can be assumed the noise is in the tappet. Inspect the rocker arm push rod sockets and push rod ends for wear.**

(3) Valve tappet noise ranges from light noise to a heavy click. A light noise is usually caused by excessive leak-down around the unit plunger, or by the plunger partially sticking in the tappet body cylinder. The tappet should be replaced. A heavy click is caused by a tappet check valve not seating, or by foreign particles wedged between the plunger and the tappet body. This will cause the plunger to stick in the down position. This heavy click will be accompanied by excessive clearance between the valve stem and rocker arm as valve closes. In either case, tappet assembly should be removed for inspection and cleaning.

(4) The valve train generates a noise very much like a light tappet noise during normal operation. Care must be taken to ensure that tappets are making the noise. If more than one tappet seems to be noisy, it's probably not the tappets.

## ENGINE OIL PRESSURE

(1) Remove oil pressure sending unit.

(2) Install Oil Pressure Line and Gauge Tool C-3292. Start engine and record pressure. Refer to Oil Pressure in Engine Specifications for the proper pressures.

## DIAGNOSIS AND TESTING (Continued)

## SERVICE DIAGNOSIS—PERFORMANCE

| CONDITION                     | POSSIBLE CAUSES                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CORRECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENGINE WILL NOT START         | 1. Weak battery.<br>2. Corroded or loose battery connections.<br>3. Faulty starter.<br>4. Moisture on ignition wires and distributor cap.<br>5. Faulty ignition cables.<br>6. Faulty coil or control unit.<br>7. Incorrect spark plug gap.<br>8. Incorrect ignition timing.<br>9. Dirt or water in fuel system.<br>10. Faulty fuel pump, relay or wiring.                                                                                                                  | 1. Test battery specific gravity. Charge or replace as necessary.<br>2. Clean and tighten battery connections. Apply a coat of light mineral grease to the terminals.<br>3. Refer to Group 8A, Battery/Starter/Charging System Diagnostics.<br>4. Wipe wires and cap clean and dry.<br>5. Replace any cracked or shorted cables.<br>6. Test and replace, if necessary (refer to Group 8D, Ignition System).<br>7. Set gap (refer to Group 8D, Ignition System).<br>8. Refer to Group 8D, Ignition System.<br>9. Clean system and replace fuel filter.<br>10. Refer to Group 14, Fuel System.                                                      |
| ENGINE STALLS OR ROUGH IDLE   | 1. Idle speed set too low.<br>2. Idle mixture too lean or too rich.<br>3. Leak in intake manifold.<br>4. Worn or burned distributor rotor.<br>5. Incorrect ignition wiring.<br>6. Faulty coil.<br>7. EGR valve leaking.<br>8. Incorrect cam timing.                                                                                                                                                                                                                        | 1. Refer to Group 14, Fuel System.<br>2. Refer to Group 14, Fuel System.<br>3. Inspect intake manifold gasket and vacuum hoses. Replace, if necessary (refer to Group 11, Exhaust System & Intake Manifold).<br>4. Install new distributor rotor.<br>5. Install correct wiring.<br>6. Test and replace, if necessary (refer to Group 8D, Ignition System).<br>7. Test and replace, if necessary (refer to Group 25, Emissions Control System).<br>8. Refer to Timing Belt Service.                                                                                                                                                                |
| ENGINE LOSS OF POWER          | 1. Incorrect ignition timing.<br>2. Worn or burned distributor rotor.<br>3. Worn distributor shaft.<br>4. Dirty or incorrectly gapped spark plugs.<br>5. Dirt or water in fuel system.<br>6. Faulty fuel pump.<br>7. Incorrect valve timing.<br>8. Blown cylinder head gasket.<br>9. Low compression.<br>10. Burned, warped or pitted valves.<br>11. Plugged or restricted exhaust system.<br>12. Faulty ignition cables.<br>13. Faulty coil.<br>14. Incorrect cam timing. | 1. Refer to Group 8D, Ignition System.<br>2. Install new distributor rotor.<br>3. Remove and repair distributor (refer to Group 8D, Ignition System).<br>4. Clean plugs and set gap (refer to Group 8D, Ignition System).<br>5. Clean system and replace fuel filter.<br>6. Install new fuel pump.<br>7. Correct valve timing.<br>8. Install new cylinder head gasket.<br>9. Test compression of each cylinder.<br>10. Install new valves.<br>11. Install new parts, as necessary.<br>12. Replace any cracked or shorted cables.<br>13. Test and replace, as necessary (refer to Group 8D, Ignition System).<br>14. Refer to Timing Belt Service. |
| ENGINE MISSES ON ACCELERATION | 1. Dirty or gap set too wide in spark plug.<br>2. Incorrect ignition timing.<br>3. Dirt in fuel system.<br>4. Burned, warped or pitted valves.<br>5. Faulty coil.<br>6. Incorrect cam timing.                                                                                                                                                                                                                                                                              | 1. Clean spark plugs and set gap (refer to Group 8D, Ignition System).<br>2. Refer to Group 8D, Ignition System.<br>3. Clean fuel system.<br>4. Install new valves.<br>5. Test and replace, if necessary, (refer to Group 8D, Ignition System).<br>6. Refer to Timing Belt Service.                                                                                                                                                                                                                                                                                                                                                               |
| ENGINE MISSES AT HIGH SPEED   | 1. Dirty or gap set too wide in spark plug.<br>2. Worn distributor shaft.<br>3. Worn or burned distributor rotor.<br>4. Faulty coil.<br>5. Incorrect ignition timing.<br>6. Dirty injector in throttle body.<br>7. Dirt or water in fuel system.<br>8. Incorrect cam timing.                                                                                                                                                                                               | 1. Clean spark plugs and set gap (refer to Group 8D, Ignition System).<br>2. Remove and repair distributor (refer to Group 8D, Ignition System).<br>3. Install new distributor rotor.<br>4. Test and replace, as necessary (refer to Group 8D, Ignition System).<br>5. Refer to Group 8D, Ignition System.<br>6. Clean injector.<br>7. Clean system and replace fuel filter.<br>8. Refer to Timing Belt Service.                                                                                                                                                                                                                                  |

## DIAGNOSIS AND TESTING (Continued)

## SERVICE DIAGNOSIS—MECHANICAL

| CONDITION            | POSSIBLE CAUSES                                                                                                                                                                                                                                                                                                                                                                                   | CORRECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOISY VALVES         | <ol style="list-style-type: none"> <li>1. High or low oil level in crankcase.</li> <li>2. Thin or diluted oil.</li> <li>3. Low oil pressure.</li> <li>4. Dirt in tappets/lash adjusters.</li> <li>5. Bent push rods.</li> <li>6. Worn rocker arms.</li> <li>7. Worn tappets/lash adjusters.</li> <li>8. Worn valve guides.</li> <li>9. Excessive runout of valve seats on valve faces.</li> </ol> | <ol style="list-style-type: none"> <li>1. Check for correct oil level (refer to Group 0, Lubrication and Maintenance).</li> <li>2. Change oil (refer to Group 0, Lubrication and Maintenance).</li> <li>3. Check engine oil level.</li> <li>4. Clean hydraulic tappets/hydraulic lash adjusters.</li> <li>5. Install new push rods.</li> <li>6. Inspect oil supply to rocker arms.</li> <li>7. Install new hydraulic tappets/hydraulic lash adjusters.</li> <li>8. Ream and install new valves with oversize stems.</li> <li>9. Grind valve seats and valves.</li> </ol> |
| CONNECTING ROD NOISE | <ol style="list-style-type: none"> <li>1. Insufficient oil supply.</li> <li>2. Low oil pressure.</li> <li>3. Thin or diluted oil.</li> <li>4. Excessive bearing clearance.</li> <li>5. Connecting rod journal out-of-round.</li> <li>6. Misaligned connecting rods.</li> </ol>                                                                                                                    | <ol style="list-style-type: none"> <li>1. Check engine oil level (refer to Group 0, Lubrication and Maintenance).</li> <li>2. Check engine oil level. Inspect oil pump relief valve and spring.</li> <li>3. Change oil to correct viscosity.</li> <li>4. Measure bearings for correct clearance. Repair as necessary.</li> <li>5. Replace crankshaft or grind journals.</li> <li>6. Replace bent connecting rods.</li> </ol>                                                                                                                                             |
| MAIN BEARING NOISE   | <ol style="list-style-type: none"> <li>1. Insufficient oil supply.</li> <li>2. Low oil pressure.</li> <li>3. Thin or diluted oil.</li> <li>4. Excessive bearing clearance.</li> <li>5. Excessive end play.</li> <li>6. Crankshaft journal out-of-round, worn.</li> <li>7. Loose flywheel or torque converter.</li> </ol>                                                                          | <ol style="list-style-type: none"> <li>1. Check engine oil level (refer to Group 0, Lubrication and Maintenance).</li> <li>2. Check engine oil level. Inspect oil pump relief valve and spring.</li> <li>3. Change oil to correct viscosity.</li> <li>4. Measure bearings for correct clearance. Repair as necessary.</li> <li>5. Check No. 3 main bearing for wear on flanges.</li> <li>6. Grind journals or replace crankshaft.</li> <li>7. Tighten to correct torque.</li> </ol>                                                                                      |

## DIAGNOSIS AND TESTING (Continued)

## SERVICE DIAGNOSIS—LUBRICATION

| CONDITION                                    | POSSIBLE CAUSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CORRECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OIL LEAKS                                    | <ol style="list-style-type: none"> <li>1. Gaskets and O-Rings.           <ol style="list-style-type: none"> <li>(a) Misaligned, deteriorated or torn.</li> <li>(b) Loose fastener, broken or porous metal part.</li> </ol> </li> <li>2. Crankshaft Rear Seal           <ol style="list-style-type: none"> <li>(a) Misinstalled, inverted or torn lip</li> <li>(b) Torn, cut or shaved seal back bead.</li> </ol> </li> <li>3. Crankshaft Seal Flange.           <p>Scratched, nicked or grooved.</p> </li> <li>4. Cylinder block to Cap Mating Surface.           <ol style="list-style-type: none"> <li>(a) Inadequate Loctite sealant.</li> <li>(b) Oil hole burr.</li> </ol> </li> <li>5. Oil Pan to Rear Main Cap Sealant (Slots 3.9 - 5.2 only).           <ol style="list-style-type: none"> <li>(a) Inadequate or mislocated sealant.</li> <li>(b) Torn, cut or misinstalled oil pan.</li> <li>(c) Cracked or damaged oil pan flange.</li> </ol> </li> <li>6. Chain Case Cover Seal.           <ol style="list-style-type: none"> <li>(a) Misinstalled, cocked or misaligned.</li> <li>(b) Torn, cut or damaged seal lips.</li> <li>(c) Scratched or damaged seal casing or cover bore.</li> <li>(d) Scratched or damaged vibration damper hub.</li> </ol> </li> </ol> | <ol style="list-style-type: none"> <li>1.           <ol style="list-style-type: none"> <li>(a) Replace the part.</li> <li>(b) Tighten, repair or replace the part.</li> </ol> </li> <li>2.           <ol style="list-style-type: none"> <li>(a) Replace the seal.</li> <li>(b) Replace the seal.</li> </ol> </li> <li>3.           <p>Replace or polish if necessary.</p> </li> <li>4.           <ol style="list-style-type: none"> <li>(a) Apply sealant per sealant per service manual.</li> <li>(b) Carefully stone or chamfer hole.</li> </ol> </li> <li>5.           <ol style="list-style-type: none"> <li>(a) Apply sealant per service manual procedures.</li> <li>(b) Replace the gasket.</li> <li>(c) Replace the oil pan.</li> </ol> </li> <li>6.           <ol style="list-style-type: none"> <li>(a) Replace per service manual procedures.</li> <li>(b) Replace the seal.</li> <li>(c) Replace the seal.</li> <li>(d) Minor damage can be polished out; otherwise replace the part.</li> </ol> </li> </ol> |
| OIL PRESSURE DROP                            | <ol style="list-style-type: none"> <li>1. Low oil level.</li> <li>2. Faulty oil pressure sending unit.</li> <li>3. Low oil pressure.</li> <li>4. Clogged oil filter.</li> <li>5. Worn parts in oil pump.</li> <li>6. Thin or diluted oil.</li> <li>7. Excessive bearing clearance.</li> <li>8. Oil pump relief valve stuck.</li> <li>9. Oil pump suction tube loose, bent or cracked.</li> <li>10. Oil pump cover warped or cracked.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ol style="list-style-type: none"> <li>1. Check engine oil level.</li> <li>2. Install new sending unit.</li> <li>3. Check sending unit and check main bearing oil clearance.</li> <li>4. Install new oil filter.</li> <li>5. Replace worn parts or pump.</li> <li>6. Change oil to correct viscosity.</li> <li>7. Measure bearings for correct clearance.</li> <li>8. Remove valve and inspect, clean and install.</li> <li>9. Remove oil pan and install new tube, if necessary.</li> <li>10. Install new oil pump.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OIL PUMPING AT RINGS;<br>SPARK PLUGS FOULING | <ol style="list-style-type: none"> <li>1. Worn, scuffed or broken rings.</li> <li>2. Carbon in oil ring slot.</li> <li>3. Rings fitted too tightly in grooves.</li> <li>4. Worn valve guides.</li> <li>5. Leaking intake gasket (3.9L &amp; 5.2L engines).</li> <li>6. Leaking valve guide seals (3.9L &amp; 5.2L engines).</li> <li>7. Dislodged valve guide seals (3.9L &amp; 5.2L engines).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ol style="list-style-type: none"> <li>1. Hone cylinder bores and install new rings.</li> <li>2. Install new rings.</li> <li>3. Remove the rings. Check grooves. If grooves are not proper width, replace piston.</li> <li>4. Ream guides and replace valves with oversize valves and seals.</li> <li>5. Replace gasket and tighten intake manifold to proper torque.</li> <li>6. Replace seals.</li> <li>7. Seat valve guide seals or replace, as needed.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## 2.5L ENGINE

### INDEX

| page                                         | page |
|----------------------------------------------|------|
| <b>DESCRIPTION AND OPERATION</b>             |      |
| ENGINE DESCRIPTION .....                     | 15   |
| LUBRICATION SYSTEM .....                     | 16   |
| OIL PUMP PRESSURE .....                      | 16   |
| OVERSIZE AND UNDERSIZE COMPONENT CODES ..... | 18   |
| <b>DIAGNOSIS AND TESTING</b>                 |      |
| HYDRAULIC TAPPETS .....                      | 18   |
| <b>SERVICE PROCEDURES</b>                    |      |
| FITTING CONNECTING ROD BEARINGS .....        | 22   |
| FITTING CRANKSHAFT MAIN BEARINGS .....       | 24   |
| PISTON FITTING .....                         | 19   |
| PISTON RING FITTING .....                    | 20   |
| VALVE TIMING .....                           | 18   |
| <b>REMOVAL AND INSTALLATION</b>              |      |
| CAMSHAFT BEARINGS .....                      | 41   |
| CAMSHAFT PIN REPLACEMENT .....               | 39   |
| CAMSHAFT .....                               | 38   |
| CRANKSHAFT MAIN BEARINGS .....               | 41   |
| CYLINDER HEAD COVER .....                    | 30   |
| ENGINE ASSEMBLY .....                        | 28   |
| ENGINE CYLINDER HEAD .....                   | 32   |
| ENGINE MOUNTS—FRONT .....                    | 27   |
| ENGINE REAR SUPPORT .....                    | 27   |
| <b>DISASSEMBLY AND ASSEMBLY</b>              |      |
| CYLINDER BLOCK .....                         | 48   |
| VALVE SERVICE .....                          | 46   |
| <b>CLEANING AND INSPECTION</b>               |      |
| CYLINDER BLOCK .....                         | 49   |
| ENGINE CYLINDER HEAD .....                   | 49   |
| HYDRAULIC TAPPETS .....                      | 49   |
| ROCKER ARMS AND PUSH RODS .....              | 48   |
| <b>SPECIFICATIONS</b>                        |      |
| 2.5L ENGINE SPECIFICATIONS .....             | 51   |
| <b>SPECIAL TOOLS</b>                         |      |
| 2.5L ENGINE .....                            | 54   |

### DESCRIPTION AND OPERATION

#### ENGINE DESCRIPTION

The 2.5 liter (150 CID) four-cylinder engine is an in-line, lightweight, overhead valve engine.

|                                 |                                    |
|---------------------------------|------------------------------------|
| Engine Type .....               | In-line 4 Cylinder                 |
| Bore and Stroke .....           | 98.4 x 81.0mm (3.88 x 3.19 in.)    |
| Displacement .....              | 2.5 (150 cu. in.)                  |
| Compression Ratio .....         | 9.1:1                              |
| Torque .....                    | 202 N·m (149 ft. lbs.) @ 3250 rpm  |
| Firing Order .....              | 1-3-4-2                            |
| Lubrication .....               | Pressure Feed—Full Flow Filtration |
| Engine Oil Capacity .....       | 3.8 L (4 Quarts)                   |
| Cooling System .....            | Liquid Cooled—Forced Circulation   |
| Cooling System Capacity .....   | 9.5L (10 Quarts)                   |
| Cylinder Block .....            | Cast Iron                          |
| Crankshaft .....                | Cast Nodular Iron                  |
| Cylinder Head .....             | Cast Nodular Iron                  |
| Camshaft .....                  | Cast Nodular Iron                  |
| Pistons .....                   | Aluminum Alloy (with Struts)       |
| Pistons Combustion Cavity ..... | Double Quench                      |
| Connecting Rods .....           | Cast Nodular Iron                  |

This engine is designed for unleaded fuel.

The engine cylinder head has dual quench-type combustion chambers that create turbulence and fast burning of the air/fuel mixture. This results in good fuel economy.

The cylinders are numbered 1 through 4 from front to rear. The firing order is 1-3-4-2 (Fig. 1).

The crankshaft rotation is clockwise, when viewed from the front of the engine. The crankshaft rotates within five main bearings and the camshaft rotates within four bearings.

#### BUILD DATE CODE

The engine Build Date Code is located on a machined surface on the right side of the cylinder block between the No.3 and No.4 cylinders (Fig. 2).

The digits of the code identify:

- 1st Digit—The year (5 = 1995).
- 2nd & 3rd Digits—The month (01 - 12).
- 4th & 5th Digits—The engine type/fuel system/compression ratio (HX = A 2.5 liter (150 CID) 9.1:1 compression ratio engine with a multi-point fuel injection system).

## DESCRIPTION AND OPERATION (Continued)

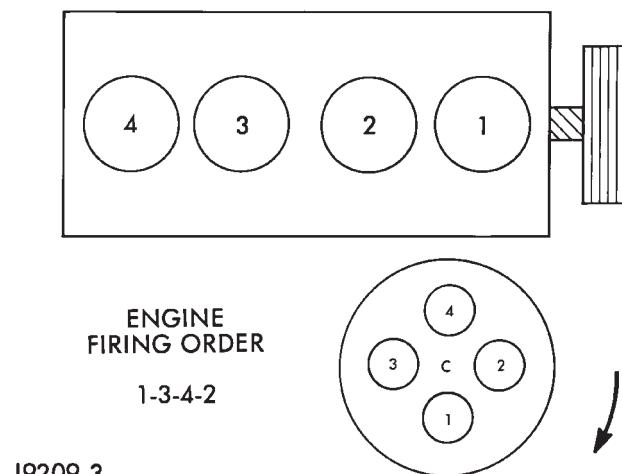



Fig. 1 Engine Firing Order

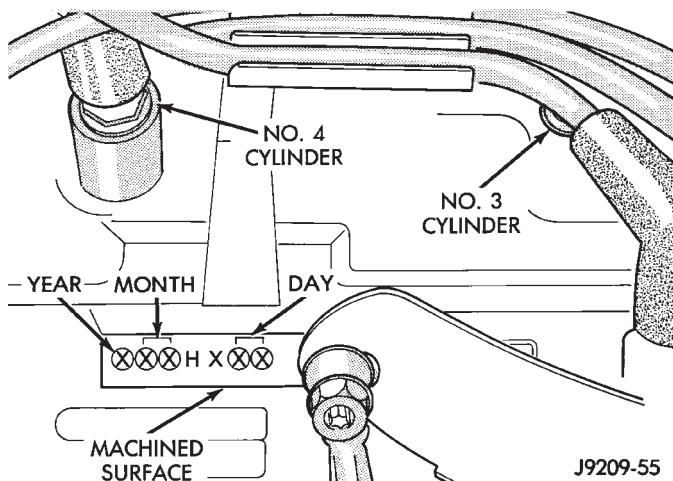



Fig. 2 Build Date Code Location

- 6th & 7th Digits—The day of engine build (01 - 31).

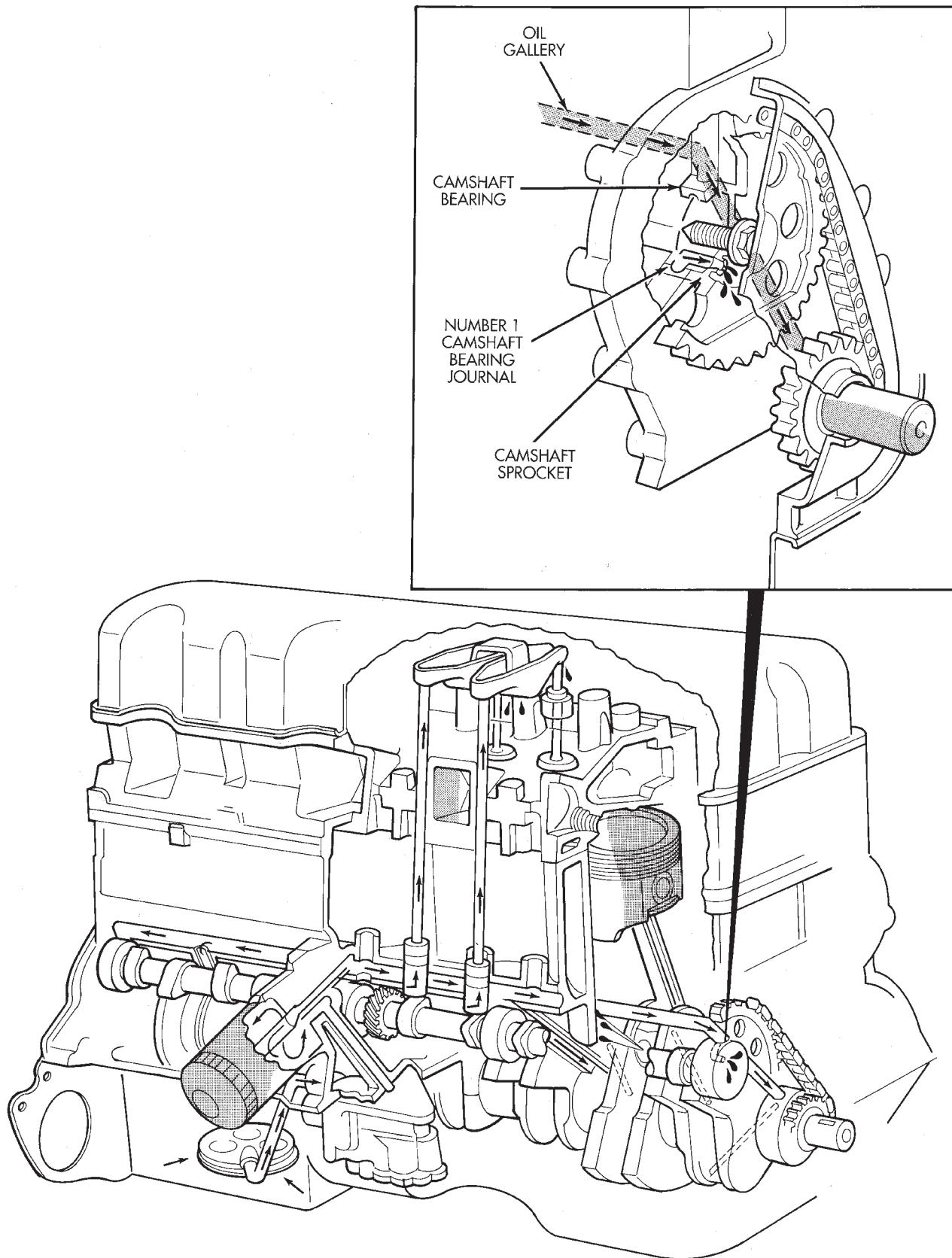
**FOR EXAMPLE:** Code \* 501HX23 \* identifies a 2.5 liter (150 CID) engine with a multi-point fuel injection system, 9.1:1 compression ratio and built on January 23, 1995.

## LUBRICATION SYSTEM

A gear-type positive displacement pump is mounted at the underside of the block opposite the

No. 4 main bearing. The pump draws oil through the screen and inlet tube from the sump at the rear of the oil pan. The oil is driven between the drive and idler gears and pump body, then forced through the outlet to the block. An oil gallery in the block channels the oil to the inlet side of the full flow oil filter. After passing through the filter element, the oil passes from the center outlet of the filter through an oil gallery that channels the oil up to the main gallery which extends the entire length of the block.

Galleries extend downward from the main oil gallery to the upper shell of each main bearing. The crankshaft is drilled internally to pass oil from the main bearing journals (except number 4 main bearing journal) to the connecting rod journals. Each connecting rod bearing cap has a small squirt hole, oil passes through the squirt hole and is thrown off as the rod rotates. This oil throwoff lubricates the cam-shaft lobes, distributor drive gear, cylinder walls, and piston pins.


The hydraulic valve tappets receive oil directly from the main oil gallery. Oil is provided to the cam-shaft bearing through galleries. The front camshaft bearing journal passes oil through the camshaft sprocket to the timing chain. Oil drains back to the oil pan under the number one main bearing cap.

The oil supply for the rocker arms and bridged pivot assemblies is provided by the hydraulic valve tappets which pass oil through hollow push rods to a hole in the corresponding rocker arm. Oil from the rocker arm lubricates the valve train components, then passes down through the push rod guide holes in the cylinder head past the valve tappet area, and returns to the oil pan.

## OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 89.6 kPa (13 psi) at 600 rpm. The MAXIMUM oil pump pressure is 255-517 kPa (37-75 psi) at 1600 rpm or more.

## DESCRIPTION AND OPERATION (Continued)



## DESCRIPTION AND OPERATION (Continued)

## OVERSIZE AND UNDERSIZE COMPONENT CODES

Some engines may be built with oversize or undersize components such as:

- Oversize cylinder bores.
- Oversize camshaft bearing bores.
- Undersize crankshaft main bearing journals.
- Undersize connecting rod journals.

These engines are identified by a letter code (Fig. 3) stamped on the oil filter boss near the distributor (Fig. 4).

| CODE | COMPONENT                                                                    | UNDERSIZE           |
|------|------------------------------------------------------------------------------|---------------------|
| P    | One or more connecting rod bearing journals                                  | 0.254 mm (0.010 in) |
| M    | All crankshaft main bearing journals                                         | 0.254 mm (0.010 in) |
| PM   | All crankshaft main bearing journals and one or more connecting rod journals | 0.254 mm (0.010 in) |

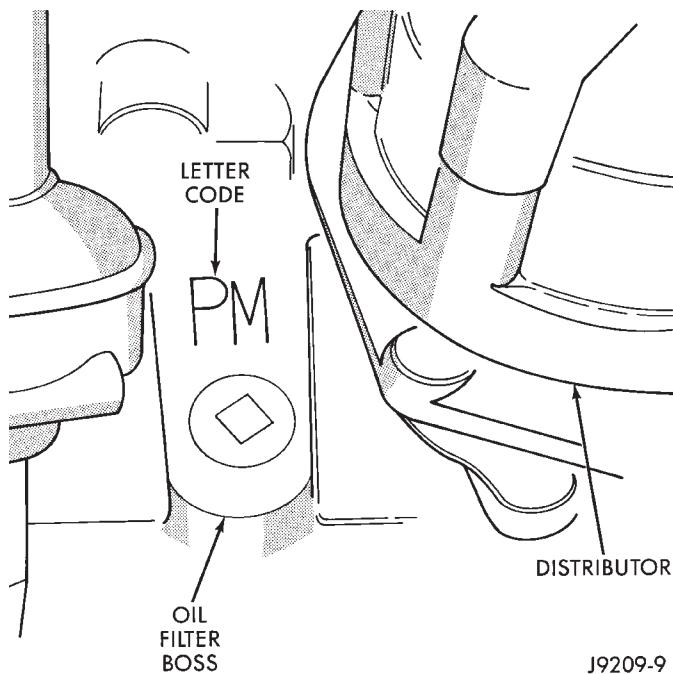
| CODE | COMPONENT                  | Oversize            |
|------|----------------------------|---------------------|
| B    | All cylinder bores         | 0.254 mm (0.010 in) |
| C    | All camshaft bearing bores | 0.254 mm (0.010 in) |

J8909-54

**Fig. 3 Oversize and Undersize Component Codes**

## DIAGNOSIS AND TESTING

## HYDRAULIC TAPPETS


## LEAK-DOWN TEST

After cleaning and inspection, test each tappet for specified leak-down rate tolerance to ensure zero-lash operation (Fig. 5).

Swing the weighted arm of the hydraulic valve tappet tester away from the ram of the Universal Leak-Down Tester.

(1) Place a 7.925-7.950 mm (0.312-0.313 inch) diameter ball bearing on the plunger cap of the tappet.

(2) Lift the ram and position the tappet (with the ball bearing) inside the tester cup.

**Fig. 4 Oversize and Undersize Component Code Location**

(3) Lower the ram, then adjust the nose of the ram until it contacts the ball bearing. DO NOT tighten the hex nut on the ram.

(4) Fill the tester cup with hydraulic valve tappet test oil until the tappet is completely submerged.

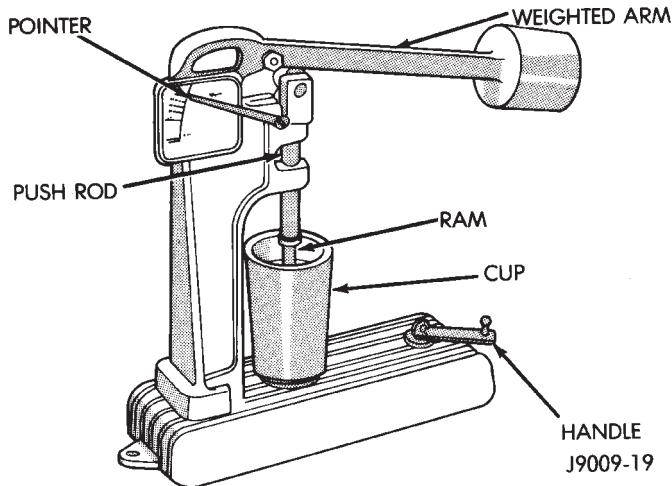
(5) Swing the weighted arm onto the push rod and pump the tappet plunger up and down to remove air. When the air bubbles cease, swing the weighted arm away and allow the plunger to rise to the normal position.

(6) Adjust the nose of the ram to align the pointer with the SET mark on the scale of the tester and tighten the hex nut.

(7) Slowly swing the weighted arm onto the push rod.

(8) Rotate the cup by turning the handle at the base of the tester clockwise one revolution every 2 seconds.

(9) Observe the leak-down time interval from the instant the pointer aligns with the START mark on the scale until the pointer aligns with the 0.125 mark. A normally functioning tappet will require 20-110 seconds to leak-down. Discard tappets with leak-down time interval not within this specification.


## SERVICE PROCEDURES

## VALVE TIMING

Disconnect the spark plug wires and remove the spark plugs.

Remove the engine cylinder head cover.

## SERVICE PROCEDURES (Continued)

**Fig. 5 Leak-Down Tester**

Remove the capscrews, bridge and pivot assembly, and rocker arms from above the No.1 cylinder.

Alternately loosen each capscrew, one turn at a time, to avoid damaging the bridge.

Rotate the crankshaft until the No.4 piston is at top dead center (TDC) on the compression stroke.

Rotate the crankshaft counterclockwise (viewed from the front of the engine) 90°.

Install a dial indicator on the end of the No.1 cylinder intake valve push rod. Use rubber tubing to secure the indicator stem on the push rod.

Set the dial indicator pointer at zero.

Rotate the crankshaft clockwise (viewed from the front of the engine) until the dial indicator pointer indicates 0.305 mm (0.012 inch) travel distance (lift).

The timing notch index on the vibration damper should be aligned with the TDC mark on the timing degree scale.

If the timing notch is more than 13 mm (1/2 inch) away from the TDC mark in either direction, the valve timing is incorrect.

If the valve timing is incorrect, the cause may be a broken camshaft pin. It is not necessary to replace the camshaft because of pin failure. A spring pin is available for service replacement.

**PISTON FITTING****BORE GAGE METHOD**

(1) To correctly select the proper size piston, a cylinder bore gauge, capable of reading in 0.003 mm (.0001 in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.

(2) Measure the inside diameter of the cylinder bore at a point 49.5 mm (1-15/16 inches) below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft at point A and then take an additional bore reading 90 degrees to that at point B (Fig. 6).

(3) The coated pistons will be serviced with the piston pin and connecting rod pre-assembled. The coated piston connecting rod assembly can be used to service previous built engines and MUST be replaced as complete sets. Tin coated pistons should not be used as replacements for coated pistons.

(4) The coating material is applied to the piston after the final piston machining process. Measuring the outside diameter of a coated piston will not provide accurate results. Therefore measuring the inside diameter of the cylinder bore with a dial Bore Gauge is MANDATORY. To correctly select the proper size piston, a cylinder bore gauge capable of reading in 0.001 mm (.0001 in.) increments is required.

(5) Piston installation into the cylinder bore requires slightly more pressure than that required for non-coated pistons. The bonded coating on the piston will give the appearance of a line-to-line fit with the cylinder bore.



805dd884

**Fig. 6 Bore Gauge****PISTON SIZE CHART****CYLINDER BORE SIZE PISTON LETTER SIZE**

|                                            |       |   |
|--------------------------------------------|-------|---|
| 98.438 to 98.448 mm (3.8755 to 3.8759 in.) | ..... | A |
| 98.448 to 98.458 mm (3.8759 to 3.8763 in.) | ..... | B |
| 98.458 to 98.468 mm (3.8763 to 3.8767 in.) | ..... | C |
| 98.468 to 98.478 mm (3.8767 to 3.8771 in.) | ..... | D |
| 98.478 to 98.488 mm (3.8771 to 3.8775 in.) | ..... | E |
| 98.488 to 98.498 mm (3.8775 to 3.8779 in.) | ..... | F |

## SERVICE PROCEDURES (Continued)

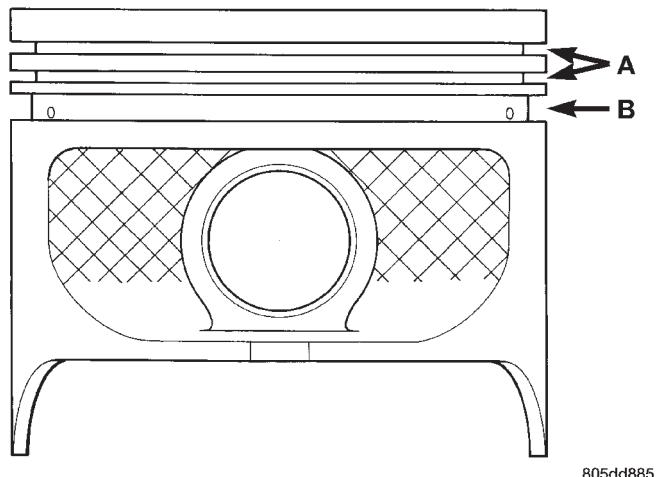
## PISTON RING FITTING

(1) Carefully clean the carbon from all ring grooves. Oil drain openings in the oil ring groove and pin boss must be clear. DO NOT remove metal from the grooves or lands. This will change ring-to-groove clearances and will damage the ring-to-land seating.

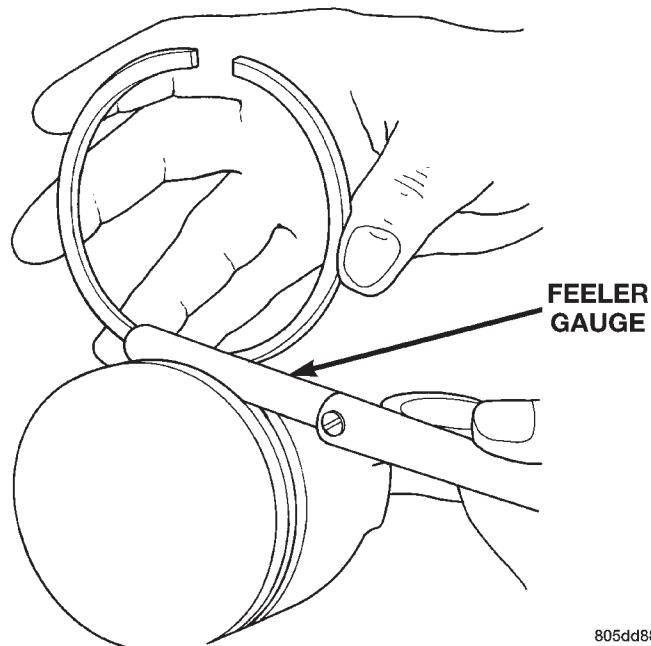
(2) Be sure the piston ring grooves are free of nicks and burrs.

(3) Measure the ring side clearance with a feeler gauge fitted snugly between the ring land and ring (Fig. 7) (Fig. 8). Rotate the ring in the groove. It must move freely around circumference of the groove.

**Ring Side Clearance Measurement**


Top Compression Ring . . . . . 0.042 to 0.084 mm  
(0.0017 to 0.0033 in.)

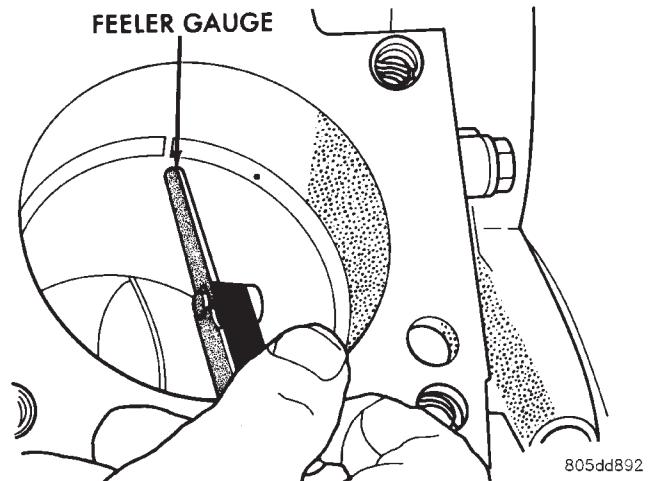
Second Compression Ring . . . . . 0.042 to 0.084 mm  
(0.0017 to 0.0033 in.)


Oil Control Ring . . . . . 0.06 to 0.21 mm  
(0.0024 to 0.0083 in.)

**GROOVE HEIGHT**

A 1.530-1.555 mm (0.0602-0.0612 in)  
B 4.035-4.060 mm (0.1589-0.1598 in)

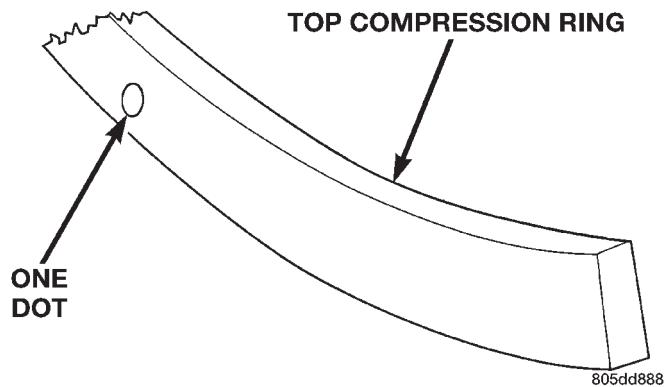
**Fig. 7 Piston Dimensions**


(4) Place ring in the cylinder bore and push down with inverted piston to position near lower end of the ring travel. Measure ring gap with a feeler gauge fitting snugly between ring ends (Fig. 9).

**Fig. 8 Ring Side Clearance Measurement****Ring Gap Measurement**

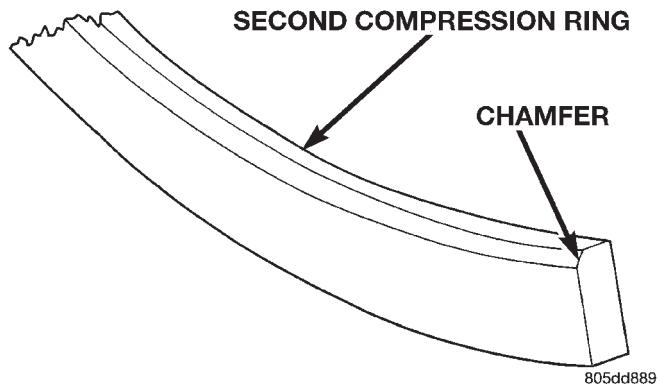
Top Compression Ring . . . . . 0.229 to 0.610 mm  
(0.0090 to 0.0240 inch)

Second Compression Ring . . . . . 0.483 to 0.965 mm  
(0.0190 to 0.0380 inch)


Oil Control Ring . . . . . 0.254 to 1.500 mm  
(0.010 to 0.060 inch)

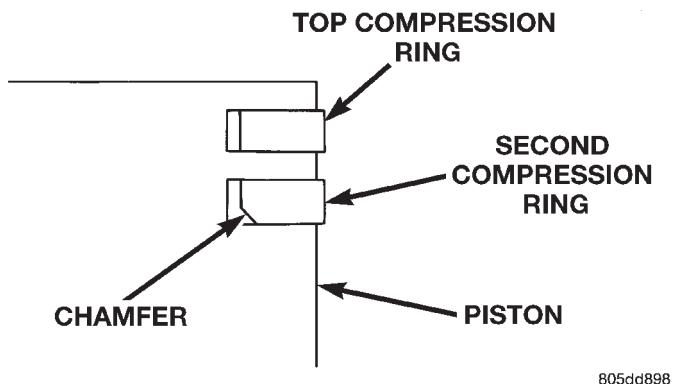
**Fig. 9 Gap Measurement**

(5) Install the oil control rings according to instructions in the package. It is not necessary to use a tool to install the upper and lower rails. Insert oil rail spacer first, then side rails.


## SERVICE PROCEDURES (Continued)

(6) The two compression rings are different and cannot be interchanged. The TOP compression ring can be identified by 1 dot on the top surface of the ring (Fig. 10).



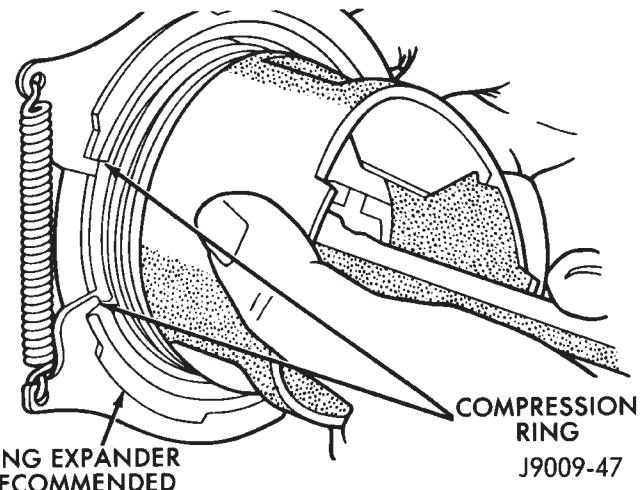

**Fig. 10 Top Compression Ring Identification**

(7) The second compression ring has a chamfer on the BOTTOM of the inside edge (Fig. 11).



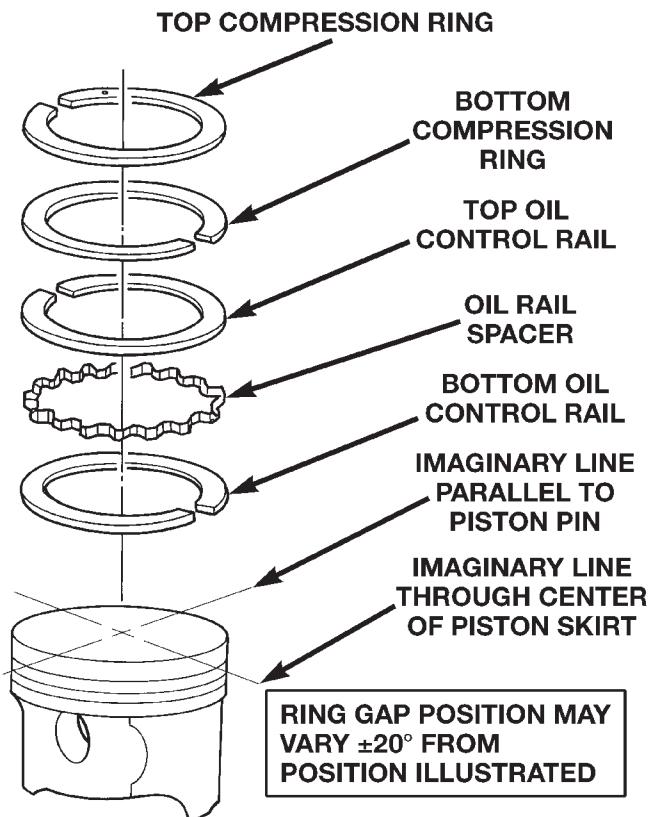
**Fig. 11 Second Compression Ring Identification**

(8) Using a ring installer, install the second compression ring with the chamfer facing down (Fig. 12) (Fig. 13).




**Fig. 12 Compression Ring Chamfer Location**

(9) The top compression ring has a dot located on the top surface (Fig. 10).


(10) Using a ring installer, install the top ring with the dot facing up (Fig. 13).

(11) Position the gaps on the piston (Fig. 14):



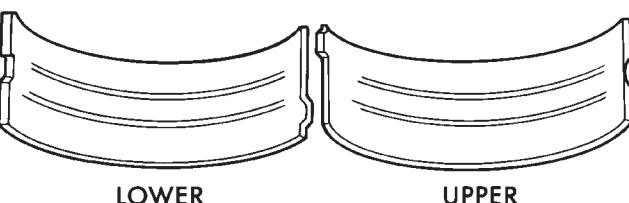
**Fig. 13 Compression Ring Installation**

- Oil spacer - Gap on center line of piston pin bore.
- Oil rails - Gap 180° apart on centerline of piston skirt.
- No. 2 Compression ring - Gap 180° from top oil rail gap.
- No. 1 Compression ring - Gap 180° from No. 2 compression ring gap.



**Fig. 14 Ring Gap Position**

## SERVICE PROCEDURES (Continued)

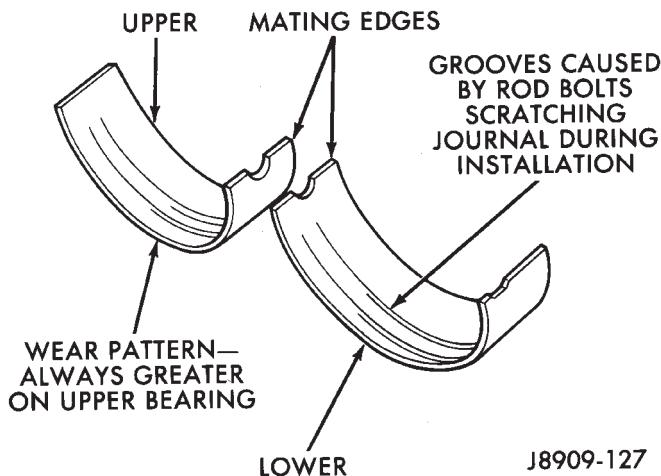

## FITTING CONNECTING ROD BEARINGS

## INSPECTION

## BEARINGS

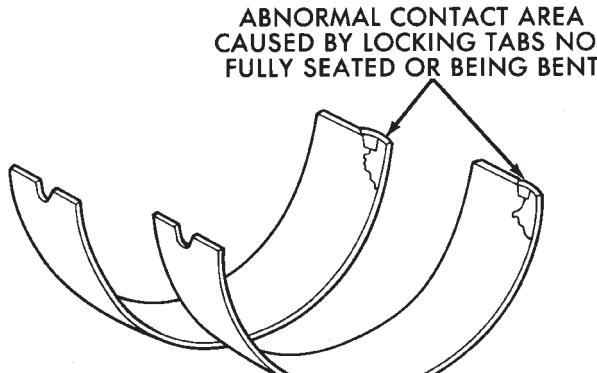
Inspect the connecting rod bearings for scoring and bent alignment tabs (Fig. 15) (Fig. 16). Check the bearings for normal wear patterns, scoring, grooving, fatigue and pitting (Fig. 17). Replace any bearing that shows abnormal wear.

Inspect the connecting rod journals for signs of scoring, nicks and burrs.




J8909-129

**Fig. 17 Scoring Caused by Insufficient Lubrication or by Damaged Crankshaft Pin Journal**

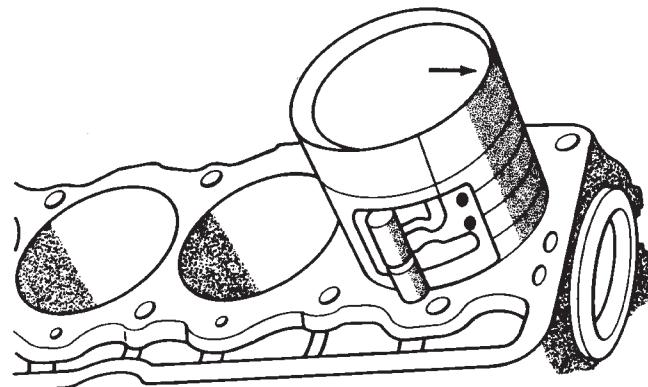

## BEARING-TO-JOURNAL CLEARANCE

- (1) Wipe the oil from the connecting rod journal.
- (2) Use short rubber hose sections over rod bolts during installation.
- (3) Lubricate the upper bearing insert and install in connecting rod.
- (4) Use piston ring compressor to install the rod and piston assemblies. The oil squirt holes in the rods must face the camshaft. The arrow on the piston crown should point to the front of the engine (Fig. 18). Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.



J8909-127

**Fig. 15 Connecting Rod Bearing Inspection**



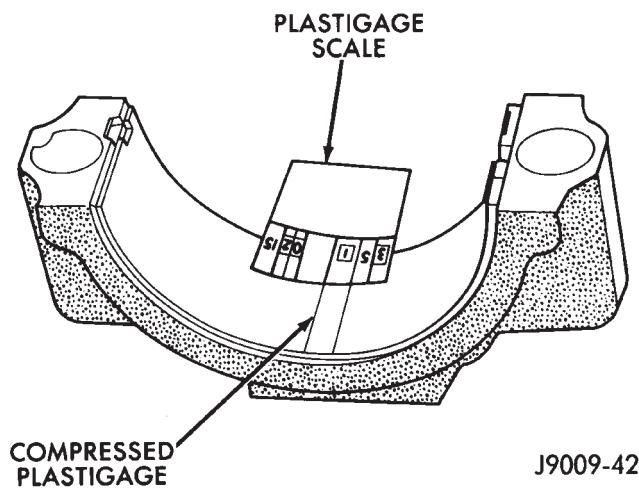

J8909-128

**Fig. 16 Locking Tab Inspection**

## CONNECTING RODS

Misaligned or bent connecting rods can cause abnormal wear on pistons, piston rings, cylinder walls, connecting rod bearings and crankshaft connecting rod journals. If wear patterns or damage to any of these components indicate the probability of a misaligned connecting rod, inspect it for correct rod alignment. Replace misaligned, bent or twisted connecting rods.




J9009-41

**Fig. 18 Rod and Piston Assembly Installation**

- (5) Install the lower bearing insert in the bearing cap. The lower insert must be dry. Place strip of Plastigage across full width of the lower insert at the center of bearing cap. Plastigage must not crumble in use. If brittle, obtain fresh stock.
- (6) Install bearing cap and connecting rod on the journal and tighten nuts to 45 N·m (33 ft. lbs.) torque. DO NOT rotate crankshaft. Plastigage will smear, resulting in inaccurate indication.

## SERVICE PROCEDURES (Continued)

(7) Remove the bearing cap and determine amount of bearing-to-journal clearance by measuring the width of compressed Plastigage (Fig. 19). Refer to Engine Specifications for the proper clearance. **Plastigage should indicate the same clearance across the entire width of the insert. If the clearance varies, it may be caused by either a tapered journal, bent connecting rod or foreign material trapped between the insert and cap or rod.**



J9009-42

**Fig. 19 Measuring Bearing Clearance with Plastigage**

(8) If the correct clearance is indicated, replacement of the bearing inserts is not necessary. Remove the Plastigage from crankshaft journal and bearing insert. Proceed with installation.

(9) If bearing-to-journal clearance exceeds the specification, install a pair of 0.0254 mm (0.001 inch) undersize bearing inserts. All the odd size inserts must be on the bottom. The sizes of the service replacement bearing inserts are stamped on the backs of the inserts. Measure the clearance as described in the previous steps.

(10) The clearance is measured with a pair of 0.0254 mm (0.001 inch) undersize bearing inserts installed. This will determine if two 0.0254 mm (0.001 inch) undersize inserts or another combination is needed to provide the correct clearance (refer to Connecting Rod Bearing Fitting Chart).

(11) **FOR EXAMPLE:** If the initial clearance was 0.0762 mm (0.003 inch), 0.025 mm (0.001 inch) undersize inserts would reduce the clearance by 0.025 mm (0.001 inch). The clearance would be 0.002 inch and within specification. A 0.051 mm (0.002 inch) undersize insert would reduce the initial clearance an additional 0.013 mm (0.0005 inch). The clearance would then be 0.038 mm (0.0015 inch).

(12) Repeat the Plastigage measurement to verify your bearing selection prior to final assembly.

(13) Once you have selected the proper insert, install the insert and cap. Tighten the connecting rod bolts to 45 N·m (33 ft. lbs.) torque.

#### SIDE CLEARANCE MEASUREMENT

Slide snug-fitting feeler gauge between the connecting rod and crankshaft journal flange. Refer to Engine Specifications for the proper clearance. Replace the connecting rod if the side clearance is not within specification.

| Crankshaft Journal |                                                                               | Corresponding Connecting Rod Bearing Insert |                                          |
|--------------------|-------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|
| Color Code         | Diameter                                                                      | Upper Insert Size                           | Lower Insert Size                        |
| Yellow             | 53.2257-53.2079 mm (2.0955-2.0948 in.)                                        | Yellow - Standard                           | Yellow - Standard                        |
| Orange             | 53.2079-53.1901 mm (2.0948-2.0941 in.)<br>0.0178 mm (0.0007 in.)<br>Undersize | Yellow - Standard                           | Blue - Undersize<br>0.025 mm (0.001 in.) |
| Blue               | 53.1901-53.1724 mm (2.0941-2.0934 in.)<br>0.0356 mm (0.0014 in.)<br>Undersize | Blue - Undersize<br>0.025 mm (0.001 in.)    | Blue - Undersize<br>0.025 mm (0.001 in.) |
| Red                | 52.9717-52.9539 mm (2.0855-2.0848 in.)<br>0.254 mm (0.010 in.)<br>Undersize   | Red - Undersize<br>0.254 mm (0.010 in.)     | Red - Undersize<br>0.254 mm (0.010 in.)  |

J9409-24

## SERVICE PROCEDURES (Continued)

## FITTING CRANKSHAFT MAIN BEARINGS

## INSPECTION

Wipe the inserts clean and inspect for abnormal wear patterns and for metal or other foreign material imbedded in the lining. Normal main bearing insert wear patterns are illustrated (Fig. 20).

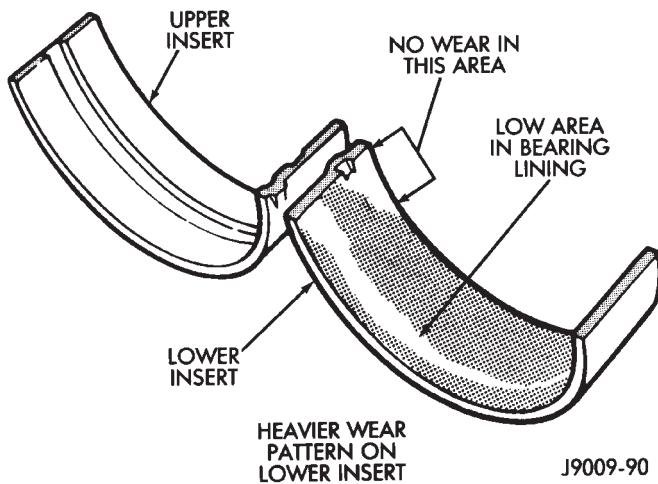



Fig. 20 Main Bearing Wear Patterns

**NOTE:** If any of the crankshaft journals are scored, remove the engine for crankshaft repair.

Inspect the back of the inserts for fractures, scrapings or irregular wear patterns.

Inspect the upper insert locking tabs for damage. Replace all damaged or worn bearing inserts.

## FITTING BEARINGS (CRANKSHAFT INSTALLED)

The main bearing caps, numbered (front to rear) from 1 through 5 have an arrow to indicate the forward position. The upper main bearing inserts are grooved to provide oil channels while the lower inserts are smooth.

Each bearing insert pair is selectively fitted to its respective journal to obtain the specified operating clearance. In production, the select fit is obtained by using various-sized color-coded bearing insert pairs as listed in the Main Bearing Fitting Chart. The bearing color code appears on the edge of the insert. **The size is not stamped on bearing inserts used for engine production.**

The main bearing journal size (diameter) is identified by a color-coded paint mark on the adjacent cheek. The rear main journal, is identified by a color-coded paint mark on the crankshaft rear flange.

When required, upper and lower bearing inserts of different sizes may be used as a pair. A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce the clearance by 0.013 mm (0.0005 inch). **Never use a pair**

of bearing inserts with greater than a 0.025 mm (0.001 inch) difference in size (Fig. 21).

| Insert | Correct                        | Incorrect                      |
|--------|--------------------------------|--------------------------------|
| Upper  | Standard                       | Standard                       |
| Lower  | 0.025 mm (0.001 in.) Undersize | 0.051 mm (0.002 in.) Undersize |

J9109-179

Fig. 21 Bearing Insert Pairs

**NOTE:** When replacing inserts, the odd size inserts must be either all on the top (in cylinder block) or all on the bottom (in main bearing cap).

Once the bearings have been properly fitted, proceed to Crankshaft Main Bearing—Installation.

## BEARING-TO-JOURNAL CLEARANCE (CRANKSHAFT INSTALLED)

When using Plastigage, check only one bearing clearance at a time.

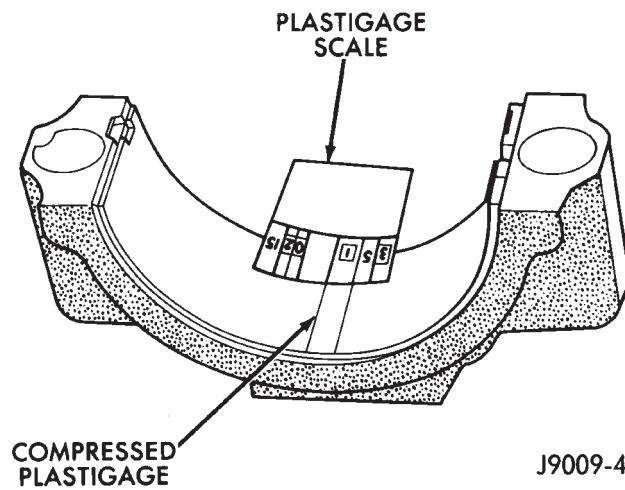
Install the grooved main bearings into the cylinder block and the non-grooved bearings into the bearing caps.

Install the crankshaft into the upper bearings dry.

Place a strip of Plastigage across full width of the crankshaft journal to be checked.

Install the bearing cap and tighten the bolts to 108 N·m (80 ft. lbs.) torque.

**NOTE: DO NOT rotate the crankshaft. This will cause the Plastigage to shift, resulting in an inaccurate reading. Plastigage must not be permitted to crumble. If brittle, obtain fresh stock.**


Remove the bearing cap. Determine the amount of clearance by measuring the width of the compressed Plastigage with the scale on the Plastigage envelope (Fig. 22). Refer to Engine Specifications for the proper clearance.

Plastigage should indicate the same clearance across the entire width of the insert. If clearance varies, it may indicate a tapered journal or foreign material trapped behind the insert.

If the specified clearance is indicated and there are no abnormal wear patterns, replacement of the bearing inserts is not necessary. Remove the Plastigage from the crankshaft journal and bearing insert. Proceed to Crankshaft Main Bearing—Installation.

If the clearance exceeds specification, install a pair of 0.025 mm (0.001 inch) undersize bearing inserts

## SERVICE PROCEDURES (Continued)



**Fig. 22 Measuring Bearing Clearance with Plastigage**

and measure the clearance as described in the previous steps.

The clearance indicated with the 0.025 mm (0.001 inch) undersize insert pair installed will determine if this insert size or some other combination will provide the specified clearance. **FOR EXAMPLE:** If the clearance was 0.0762 mm (0.003 inch) originally, a pair of 0.0254 mm (0.001 inch) undersize inserts would reduce the clearance by 0.0254 mm (0.001 inch). The clearance would then be 0.0508 mm (0.002 inch) and within the specification. A 0.051 mm (0.002 inch) undersize bearing insert and a 0.0254 mm (0.001 inch) undersize insert would reduce the original clearance an additional 0.0127 mm (0.0005 inch). The clearance would then be 0.0381 mm (0.0015 inch).

**CAUTION:** Never use a pair of inserts that differ more than one bearing size as a pair.

**FOR EXAMPLE:** DO NOT use a standard size upper insert and a 0.051 mm (0.002 inch) undersize lower insert.

If the clearance exceeds specification using a pair of 0.051 mm (0.002 inch) undersize bearing inserts, measure crankshaft journal diameter with a micrometer. If the journal diameter is correct, the crankshaft bore in the cylinder block may be misaligned, which requires cylinder block replacement or machining to true bore.

If journals 1 through 5 diameters are less than 63.4517 mm (2.4981 inches), replace crankshaft or grind crankshaft down to accept the appropriate undersize bearing inserts.

Once the proper clearances have been obtained, proceed to Crankshaft Main Bearing—Installation.

#### MAIN BEARING JOURNAL DIAMETER (CRANKSHAFT REMOVED)

Remove the crankshaft from the cylinder block (refer to Cylinder Block - Disassemble).

Clean the oil off the main bearing journal.

Determine the maximum diameter of the journal with a micrometer. Measure at two locations 90° apart at each end of the journal.

The maximum allowable taper and out of round is 0.013 mm (0.0005 inch). Compare the measured diameter with the journal diameter specification (Main Bearing Fitting Chart). Select inserts required to obtain the specified bearing-to-journal clearance.

Once the proper clearances have been obtained, proceed to Crankshaft Main Bearing—Installation.

## SERVICE PROCEDURES (Continued)

## MAIN BEARING FITTING CHART

| Crankshaft Journals #1 - #4 |                                                                                  | Corresponding Crankshaft Bearing Insert  |                                           |
|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|
| Color Code                  | Diameter                                                                         | Upper Insert Size                        | Lower Insert Size                         |
| Yellow                      | 63.5025-63.4898 mm<br>(2.5001-2.4996 in.)                                        | Yellow - Standard                        | Yellow - Standard                         |
| Orange                      | 63.4898-63.4771 mm<br>(2.4996-2.4991 in.)<br>0.0127 mm (0.0005 in.)<br>Undersize | Blue - Undersize<br>0.025 mm (0.001 in.) | Yellow - Standard                         |
| Blue                        | 63.4771-63.4644 mm<br>(2.4991-2.4986 in.)<br>0.0254 mm (0.001 in.)<br>Undersize  | Blue - Undersize<br>0.025 mm (0.001 in.) | Blue - Undersize<br>0.025 mm (0.001 in.)  |
| Green                       | 63.4644-63.4517 mm<br>(2.4986-2.4981 in.)<br>0.0381 mm (0.0015 in.)<br>Undersize | Blue - Undersize<br>0.025 mm (0.001 in.) | Green - Undersize<br>0.051 mm (0.002 in.) |
| Red                         | 63.2485-63.2358 mm<br>(2.4901-2.4896 in.)<br>0.254 mm (0.010 in.)<br>Undersize   | Red - Undersize<br>0.254 mm (0.010 in.)  | Red - Undersize<br>0.254 mm (0.010 in.)   |

| Crankshaft Journals #5 Only |                                                                                  | Corresponding Crankshaft Bearing Insert  |                                           |
|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|
| Color Code                  | Diameter                                                                         | Upper Insert Size                        | Lower Insert Size                         |
| Yellow                      | 63.4873-63.4746 mm<br>(2.4995-2.4990 in.)                                        | Yellow - Standard                        | Yellow - Standard                         |
| Orange                      | 63.4746-63.4619 mm<br>(2.4990-2.4985 in.)<br>0.0127 mm (0.0005 in.)<br>Undersize | Blue - Undersize<br>0.025 mm (0.001 in.) | Yellow - Standard                         |
| Blue                        | 63.4619-63.4492 mm<br>(2.4985-2.4980 in.)<br>0.0254 mm (0.001 in.)<br>Undersize  | Blue - Undersize<br>0.025 mm (0.001 in.) | Blue - Undersize<br>0.025 mm (0.001 in.)  |
| Green                       | 63.4492-63.4365 mm<br>(2.4980-2.4975 in.)<br>0.0381 mm (0.0015 in.)<br>Undersize | Blue - Undersize<br>0.025 mm (0.001 in.) | Green - Undersize<br>0.051 mm (0.002 in.) |
| Red                         | 63.2333-63.2206 mm<br>(2.4895-2.4890 in.)<br>0.254 mm (0.010 in.)<br>Undersize   | Red - Undersize<br>0.254 mm (0.010 in.)  | Red - Undersize<br>0.254 mm (0.010 in.)   |

## REMOVAL AND INSTALLATION

### ENGINE MOUNTS—FRONT

The front mounts support the engine at each side. These supports are made of resilient rubber.

#### REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Support the engine.
- (4) Remove through bolt nut. DO NOT remove the through bolt (Fig. 23) (Fig. 24).
- (5) Remove the retaining bolts attaching insulator assembly to cross member.
- (6) Remove the through bolt.
- (7) Remove the insulator assembly.

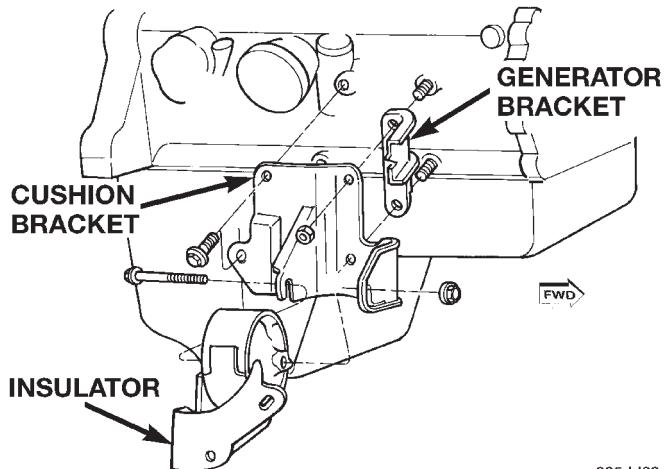



Fig. 23 Right Front Engine Mount Assembly

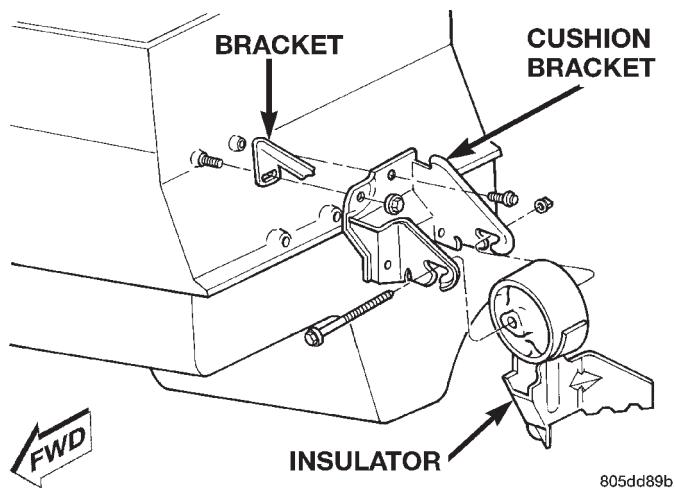



Fig. 24 Left Front Engine Mount Assembly

#### INSTALLATION

- (1) If the engine cushion brackets were removed, position the LEFT bracket and the RIGHT bracket with generator brace onto the cylinder block. Install the bolts and stud nuts.

(a) **RIGHT SIDE** —Tighten the bolts to 41 N·m (30 ft. lbs.) torque. Tighten the stud nuts to 41 N·m (30 ft. lbs.) torque.

(b) **LEFT SIDE** —Tighten the bolts to 61 N·m (45 ft. lbs.) torque.

(2) Position insulator assembly on crossmember. Tighten the bolts to 54 N·m (40 ft. lbs.) torque.

(3) Install the through bolt and the retaining nut. Tighten the through bolt nut to 68 N·m (50 ft. lbs.) torque.

(4) Remove the engine support.

(5) Lower the vehicle.

(6) Connect negative cable to battery.

### ENGINE REAR SUPPORT

#### REMOVAL

- (1) Disconnect the negative cable from the battery.
- (2) Raise vehicle on hoist.
- (3) Support the transmission with a jack.
- (4) **Automatic transmission:** Remove the rear engine support bracket through bolt (Fig. 25).
- (5) **Manual transmission:** Remove nuts securing insulator to transmission (Fig. 26).

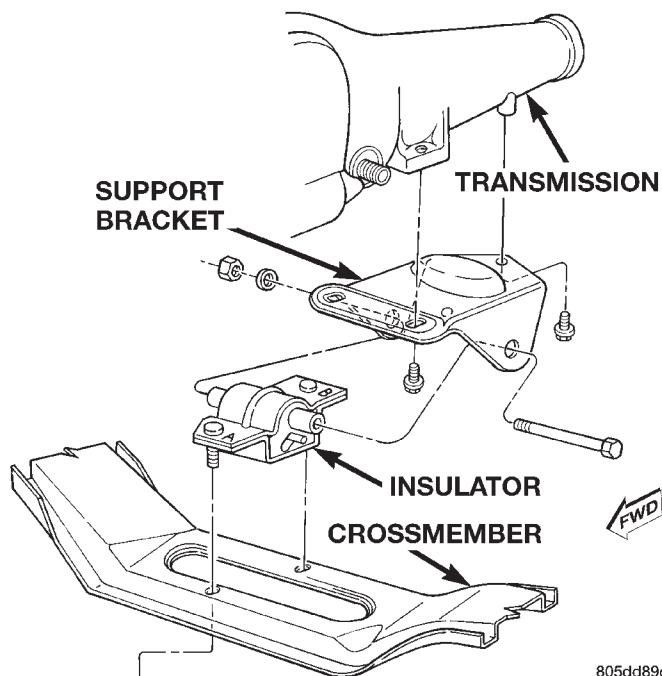
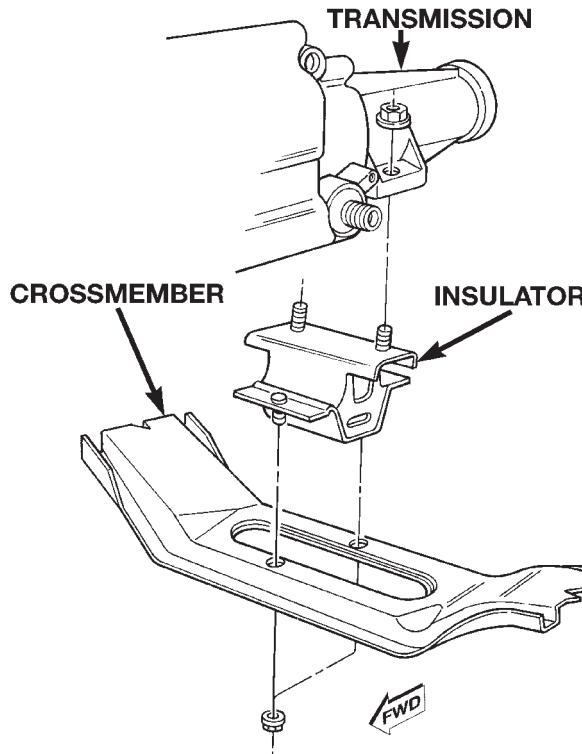



Fig. 25 Rear Engine Support—Automatic Transmission


(6) Raise the transmission and engine slightly.

(7) Remove stud nuts and insulator from transmission mounting crossmember (Fig. 25) (Fig. 26). Remove insulator.

#### INSTALLATION

- (1) **Automatic transmission:** If the rear engine support bracket was removed, position the bracket to

## REMOVAL AND INSTALLATION (Continued)

**Fig. 26 Rear Engine Support—Manual Transmission**

the transmission (Fig. 25). Tighten the stud nuts to 41 N·m (30 ft. lbs.) torque.

(2) Install the insulator onto the transmission mounting crossmember. Tighten the stud nuts to 41 N·m (30 ft. lbs.) torque.

(3) **Automatic transmission:** Lower the transmission and engine while aligning the rear engine support bracket to the insulator.

(a) Install through-bolt in bracket and insulator. Tighten through-bolt nut to 68 Nm (50 ft. lbs.) torque.

(4) **Manual transmission:** Lower the transmission and engine while aligning the rear engine insulator with the transmission. Tighten the stud nuts to 41 N·m (30 ft. lbs.) torque.

(5) Remove transmission jack

(6) Lower the vehicle.

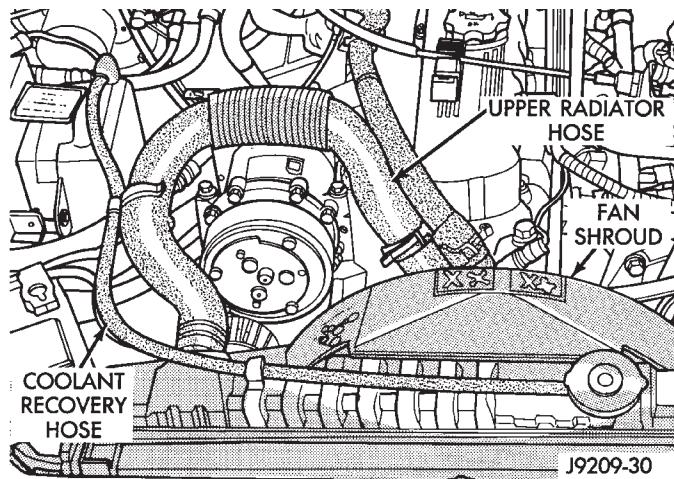
(7) Connect the negative cable to the battery.

**ENGINE ASSEMBLY****REMOVAL**

(1) Disconnect the battery cables. Remove the battery.

(2) Mark the hinge locations on the hood panel for alignment reference during installation. Remove the engine compartment lamp. Remove the hood.

**WARNING: THE COOLANT IN A RECENTLY OPERATED ENGINE IS HOT AND PRESSURIZED. USE**


**CARE TO PREVENT SCALDING BY HOT COOLANT. CAREFULLY RELEASE THE PRESSURE BEFORE REMOVING THE RADIATOR DRAIN COCK AND CAP.**

(3) Remove the radiator drain cock and radiator cap to drain the coolant. DO NOT waste usable coolant. If the solution is clean, drain the coolant into a clean container for reuse.

(4) Remove the lower radiator hose.

(5) Remove the upper radiator hose and coolant recovery hose (Fig. 27).

(6) Remove the fan shroud (Fig. 27).

**Fig. 27 Upper Radiator Hose, Coolant Recovery Hose & Fan Shroud**

(7) Disconnect the transmission fluid cooler tubing (automatic transmission).

(8) Remove the radiator/condenser (if equipped with air conditioning).

(9) Remove fan assembly and install a 5/16 x 1/2-inch SAE capscrew through fan pulley into water pump flange. This will maintain the pulley and water pump in alignment when crankshaft is rotated.

(10) Disconnect the heater hoses.

(11) Disconnect the throttle linkages, speed control cable (if equipped) and throttle valve rod.

(12) Disconnect the oxygen sensor wire connector.

(13) Disconnect the wires from the starter motor solenoid.

(14) Disconnect all fuel injection harness connections.

**WARNING: THE FUEL SYSTEM IS UNDER A CONSTANT PRESSURE (EVEN WITH THE ENGINE TURNED OFF). BEFORE DISCONNECTING FUEL LINES, THE FUEL SYSTEM PRESSURE MUST BE RELEASED.**

(15) Disconnect the quick-connect fuel line at the fuel rail (refer to Group 14, Fuel System for the proper procedure).

## REMOVAL AND INSTALLATION (Continued)

(16) Remove the fuel line bracket from the intake manifold.

(17) Remove the air cleaner assembly.

(18) If equipped with air conditioning, remove the service valves and cap the compressor ports.

(19) Remove the power brake vacuum check valve from the booster, if equipped.

(20) If equipped with power steering:

- (a) Disconnect the power steering hoses from the fittings at the steering gear.
- (b) Drain the pump reservoir.
- (c) Cap the fittings on the hoses and steering gear to prevent foreign material from entering the system.

(21) Disconnect the coolant hoses from the rear of the intake manifold.

(22) Identify, tag and disconnect all necessary wire connectors and vacuum hoses.

(23) Raise the vehicle.

(24) Remove the oil filter.

(25) Remove the starter motor.

(26) Disconnect the exhaust pipe from the exhaust manifold.

(27) Remove the flywheel and converter housing access cover.

(28) If equipped with an automatic transmission, mark the converter and drive plate location in reference to each other and remove the converter-to-drive plate bolts.

(29) Remove the upper flywheel and converter housing bolts and loosen the bottom bolts.

(30) Remove the engine support cushion-to-engine compartment bracket bolts.

(31) Remove the engine shock damper bracket from the sill.

(32) Lower the vehicle.

(33) Attach a lifting device to the engine.

(34) Raise the engine slightly off the front supports.

(35) Place a support stand under the converter or flywheel housing.

(36) Remove the remaining bottom converter or flywheel housing bolts.

(37) Lift the engine out of the engine compartment and install on an engine stand.

(38) Install the oil filter to keep foreign material out of the engine.

**INSTALLATION**

(1) Remove the oil filter.

(2) Lift the engine off the stand and lower it into the engine compartment. For easier installation, it may be useful to remove the engine support cushions from the engine support brackets as an aide for alignment of the engine-to-transmission.

(3) If equipped with a manual transmission:

- (a) Insert the transmission shaft into the clutch spline.
- (b) Align the flywheel housing with the engine.
- (c) Install and tighten the flywheel housing lower bolts finger tight.

(4) If equipped with an automatic transmission:

- (a) Align the transmission torque converter housing with the engine.
- (b) Loosely install the converter housing lower bolts and install the next higher bolt and nut on each side.
- (c) Tighten all 4 bolts finger-tight.

(5) Install the engine support cushions (if removed).

(6) Lower the engine and engine support cushions onto the engine compartment brackets.

(7) Remove the engine lifting device.

(8) Raise the vehicle.

(9) If equipped with an automatic transmission:

- (a) Install the converter-to-drive plate bolts. Ensure the installation reference marks are aligned. Tighten the bolts to 54 N·m (40 ft. lbs.) torque.
- (b) Install the converter-housing access cover.
- (c) Install the exhaust pipe support.

(10) Install the remaining converter or flywheel housing bolts.

(11) Install the starter motor and connect the cable. Tighten the bolts to 45 N·m (33 ft. lbs.) torque.

(12) Tighten the engine support cushion through-bolt nuts.

(13) Install the remaining flywheel and converter housing bolts. Tighten the bolts to 38 N·m (28 ft. lbs.) torque.

(14) Connect the exhaust pipe to the manifold.

(15) Install the oil filter.

(16) Lower the vehicle.

(17) Connect the coolant hoses and tighten the clamps.

(18) If equipped with power steering:

- (a) Remove the protective caps
- (b) Connect the hoses to the fittings at the steering gear. Tighten the nut to 52 N·m (38 ft. lbs.) torque.
- (c) Fill the pump reservoir with fluid.

(19) Remove the pulley-to-water pump flange alignment capscrew and install the fan and spacer or Tempatrol fan assembly.

(20) Install the fan shroud and radiator and condenser (if equipped with air conditioning).

(21) Connect the radiator hoses.

(22) Connect the automatic transmission fluid cooler pipes, if equipped.

(23) Connect the oxygen sensor wire connector.

## REMOVAL AND INSTALLATION (Continued)

(24) Connect the throttle valve rod and retainer. Connect the throttle cable and install the rod. Install the throttle valve rod spring.

(25) Connect the speed control cable, if equipped.

(26) Connect the fuel supply and return lines to the throttle body.

(27) Connect all the vacuum hoses and wire connectors.

(28) Connect the service valves to the A/C compressor ports, if equipped with air conditioning.

(29) Fill the power steering reservoir.

(30) Connect the battery cables.

(31) Install the hood.

(32) Install the air cleaner.

(33) Start the engine and inspect for leaks.

(34) Fill the cooling system.

(35) Stop the engine and check the fluid levels. Add fluid, as required.

## CYLINDER HEAD COVER

A cured gasket is part of the engine cylinder head cover.

## REMOVAL

(1) Disconnect negative cable from battery.

(2) Disconnect the Crankcase Ventilation (CCV) vacuum hose from engine cylinder head cover (Fig. 28).

(3) Disconnect the fresh air inlet hose from the engine cylinder head cover (Fig. 28).

(4) Remove the engine cylinder head cover mounting bolts.

(5) Remove the engine cylinder head cover.

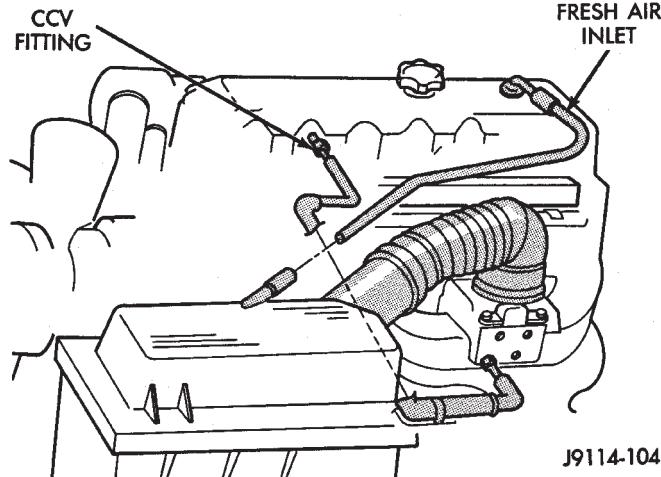



Fig. 28 Engine Cylinder Head Cover

(6) Remove any original sealer from the cover sealing surface of the engine cylinder head and clean the surface using a fabric cleaner.

(7) Remove all residue from the sealing surface using a clean, dry cloth.

## INSTALLATION

(1) Inspect the engine cylinder head cover for cracks. Replace the cover, if cracked.

**NOTE:** The original dark grey gasket material should NOT be removed. If sections of the gasket material are missing or are compressed, replace the engine cylinder head cover. However, sections with minor damage such as small cracks, cuts or chips may be repaired with a hand held applicator. The new material must be smoothed over to maintain gasket height. Allow the gasket material to cure prior to engine cylinder head cover installation.

(2) If a replacement cover is installed, transfer the CCV valve grommet the oil filler cap from the original cover to the replacement cover.

(3) Install engine cylinder head cover. Tighten the mounting bolts to 10 N·m (85 in. lbs.) torque.

(4) Connect the CCV hoses (Fig. 28).

(5) Connect negative cable to battery.

## ROCKER ARMS AND PUSH RODS

This procedure can be done with the engine in or out of the vehicle.

## REMOVAL

(1) Remove the engine cylinder head cover.

(2) Remove the capscrews at each bridge and pivot assembly (Fig. 29). Alternately loosen the capscrews one turn at a time to avoid damaging the bridges.

(3) Check for rocker arm bridges which are causing misalignment of the rocker arm to valve tip area.

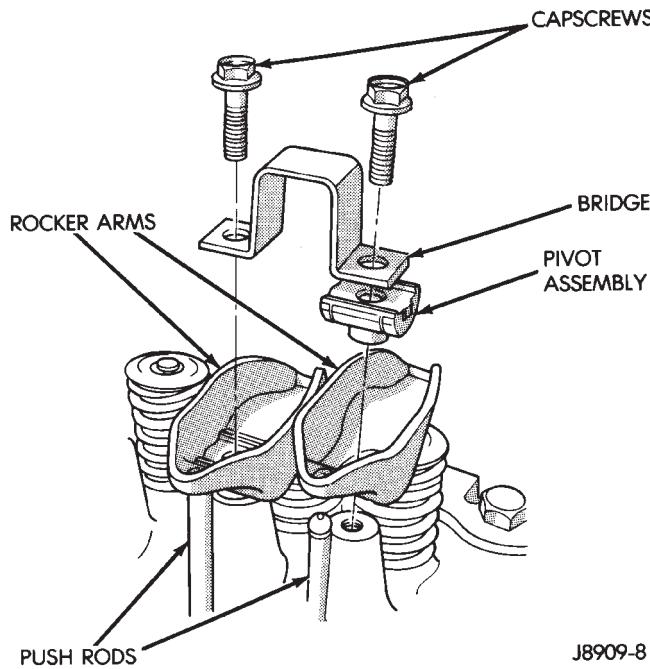
(4) Remove the bridges, pivots and corresponding pairs of rocker arms (Fig. 29). Place them on a bench in the same order as removed.

(5) Remove the push rods and place them on a bench in the same order as removed.

(6) Clean all the components with cleaning solvent.

(7) Use compressed air to blow out the oil passages in the rocker arms and push rods.

## INSTALLATION


(1) Lubricate the ball ends of the push rods with Mopar Engine Oil Supplement, or equivalent and install push rods in their original locations. Ensure that the bottom end of each push rod is centered in the tappet plunger cap seat.

(2) Using Mopar Engine Oil Supplement, or equivalent, lubricate the area of the rocker arm that the pivot contacts. Install rocker arms, pivots and bridge above each cylinder in their original position.

(3) Loosely install the capscrews through each bridge.

(4) At each bridge, tighten the capscrews alternately, one turn at a time, to avoid damaging the

## REMOVAL AND INSTALLATION (Continued)

**Fig. 29 Rocker Arm Assembly**

bridge. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.

(5) Install the engine cylinder head cover.

**VALVE SPRINGS AND OIL SEALS**

This procedure can be done with the engine cylinder head installed on the block.

**REMOVAL**

Each valve spring is held in place by a retainer and a set of conical valve locks. The locks can be removed only by compressing the valve spring.

(1) Remove the engine cylinder head cover.

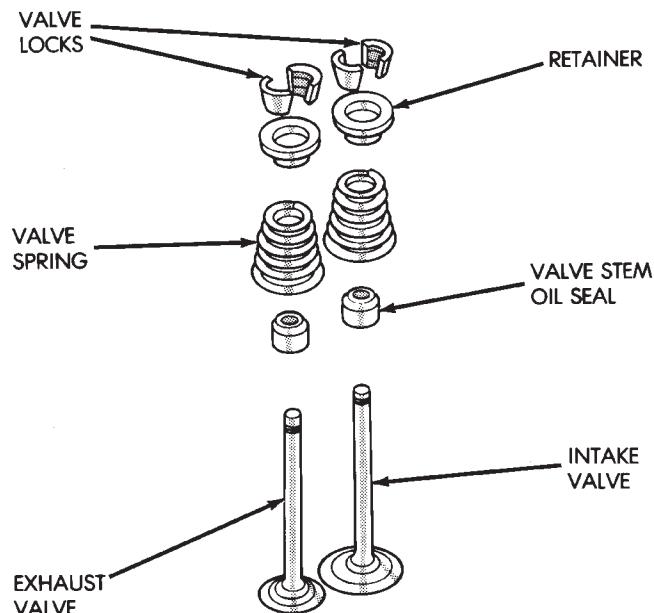
(2) Remove capscrews, bridge and pivot assemblies and rocker arms for access to each valve spring to be removed.

(3) Remove push rods. Retain the push rods, bridges, pivots and rocker arms in the same order and position as removed.

(4) Inspect the springs and retainer for cracks and possible signs of weakening.

(5) Remove the spark plug(s) adjacent to the cylinder(s) below the valve springs to be removed.

(6) Install a 14 mm (1/2 inch) (thread size) air hose adaptor in the spark plug hole.


(7) Connect an air hose to the adapter and apply air pressure slowly. Maintain at least 621 kPa (90 psi) of air pressure in the cylinder to hold the valves against their seats. For vehicles equipped with an air conditioner, use a flexible air adaptor when servicing the No.1 cylinder.

(8) Tap the retainer or tip with a rawhide hammer to loosen the lock from the retainer. Use Valve Spring

Compressor Tool MD-998772A to compress the spring and remove the locks (Fig. 30).

(9) Remove valve spring and retainer (Fig. 30).

(10) Remove valve stem oil seals (Fig. 30). Note the valve seals are different for intake and exhaust valves. The top of each seal is marked either INT (Intake) or EXH (Exhaust). DO NOT mix the seals.

**Fig. 30 Valve and Valve Components****INSTALLATION**

Inspect the valve stems, especially the grooves. An Arkansas smooth stone should be used to remove nicks and high spots.

**CAUTION: Install oil seals carefully to prevent damage from the sharp edges of the valve spring lock groove.**

(1) Lightly push the valve seal over the valve stem and valve guide boss. Be sure the seal is completely seated on the valve guide boss.

(2) Install valve spring and retainer.

(3) Compress the valve spring with Valve Spring Compressor Tool MD-998772A and insert the valve locks. Release the spring tension and remove the tool. Tap the spring from side-to-side to ensure that the spring is seated properly on the engine cylinder head.

(4) Disconnect the air hose. Remove the adaptor from the spark plug hole and install the spark plug.

(5) Repeat the procedures for each remaining valve spring to be removed.

(6) Install the push rods. Ensure the bottom end of each rod is centered in the plunger cap seat of the hydraulic valve tappet.

## REMOVAL AND INSTALLATION (Continued)

(7) Install the rocker arms, pivots and bridge at their original location.

(8) Tighten the bridge capscrews alternately, one at a time, to avoid damaging the bridge. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.

(9) Install the engine cylinder head cover.

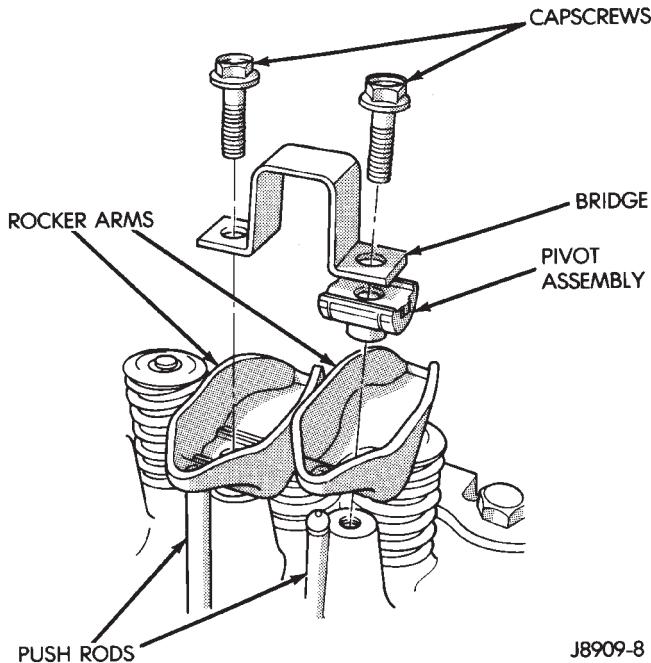
## ENGINE CYLINDER HEAD

This procedure can be done with the engine in or out of the vehicle.

## REMOVAL

(1) Disconnect negative cable from battery.

**WARNING: DO NOT REMOVE THE CYLINDER BLOCK DRAIN PLUGS OR LOOSEN THE RADIATOR DRAIN COCK WITH THE SYSTEM HOT AND PRESSURIZED BECAUSE SERIOUS BURNS FROM THE COOLANT CAN OCCUR.**


(2) Drain the coolant and disconnect the hoses at the engine thermostat housing. DO NOT waste reusable coolant. If the solution is clean and is being drained only to service the engine or cooling system, drain the coolant into a clean container for reuse.

(3) Remove the air cleaner assembly.

(4) Remove the engine cylinder head cover.

(5) Remove the capscrews, bridge and pivot assemblies and rocker arms (Fig. 31).

(6) Remove the push rods (Fig. 31). **Retain the push rods, bridges, pivots and rocker arms in the same order as removed.**



J8909-8

Fig. 31 Rocker Arm Assembly

(7) Loosen the serpentine drive belt at the power steering pump, if equipped or at the idler pulley (refer to Group 7, Cooling System for the proper procedure).

(8) If equipped with air conditioning, perform the following:

(a) Remove the bolts from the A/C compressor mounting bracket and set the compressor aside.

(b) Remove the air conditioner compressor bracket bolts from the engine cylinder head.

(c) Loosen the through bolt at the bottom of the bracket.

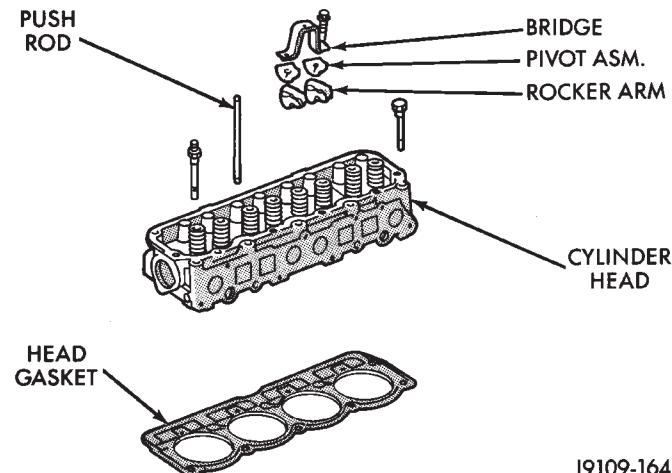
(9) If equipped, disconnect the power steering pump bracket. Set the pump and bracket aside. DO NOT disconnect the hoses.

(10) Remove the fuel lines and vacuum advance hose.

(11) Remove the intake and engine exhaust manifolds from the engine cylinder head (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).

(12) Disconnect the ignition wires and remove the spark plugs.

(13) Disconnect the temperature sending unit wire connector.


(14) Remove the ignition coil and bracket assembly.

(15) Remove the engine cylinder head bolts.

(16) Remove the engine cylinder head and gasket (Fig. 32).

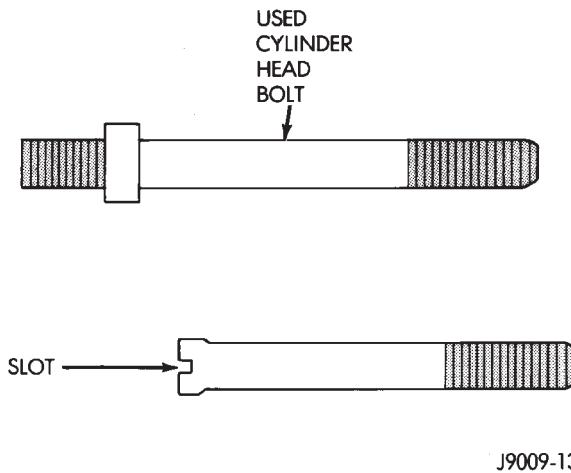
(17) If this was the first time the bolts were removed, put a paint dab on the top of the bolt. If the bolts have a paint dab on the top of the bolt or it isn't known if they were used before, discard the bolts.

(18) Stuff clean lint free shop towels into the cylinder bores.



J9109-164

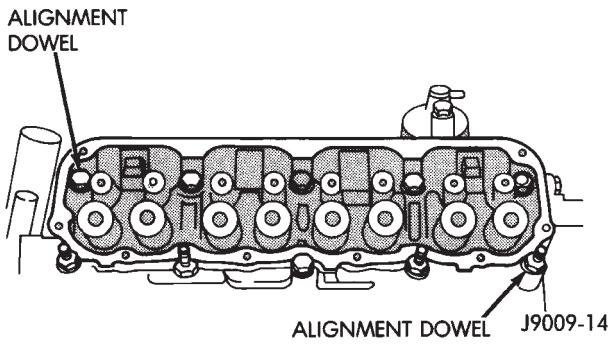
Fig. 32 Engine Cylinder Head Assembly


## REMOVAL AND INSTALLATION (Continued)

## INSTALLATION

The engine cylinder head gasket is a composition gasket. The gasket is to be installed DRY. **DO NOT use a gasket sealing compound on the gasket.**

If the engine cylinder head is to be replaced and the original valves used, measure the valve stem diameter. Only standard size valves can be used with a service replacement engine cylinder head unless the replacement head valve stem guide bores are reamed to accommodate oversize valve stems. Remove all carbon buildup and reface the valves.


(1) Fabricate two engine cylinder head alignment dowels from used head bolts (Fig. 33). Use the longest head bolt. Cut the head of the bolt off below the hex head. Then cut a slot in the top of the dowel to allow easier removal with a screwdriver.



J9009-13

**Fig. 33 Fabricate Alignment Dowels**

(2) Install one dowel in bolt hole No.10 and the other dowel in bolt hole No.8 (Fig. 34).

**Fig. 34 Alignment Dowel Locations**

(3) Remove the shop towels from the cylinder bores. Coat the bores with clean engine oil.

(4) Place the engine cylinder head gasket (with the numbers facing up) over the dowels.

(5) Place the engine cylinder head over the dowels.

**CAUTION: Engine cylinder head bolts should be reused only once. Replace the head bolts if they**

were used before or if they have a paint dab on the top of the bolt.

(6) Coat the threads of bolt No.7, only, with Loctite PST sealant or equivalent.

(7) Install all head bolts, except No.8 and No.10.

(8) Remove the dowels.

(9) Install No.8 and No.10 head bolts.

**CAUTION: During the final tightening sequence, bolt No.7 will be tightened to a lower torque than the rest of the bolts. DO NOT overtighten bolt No.7.**

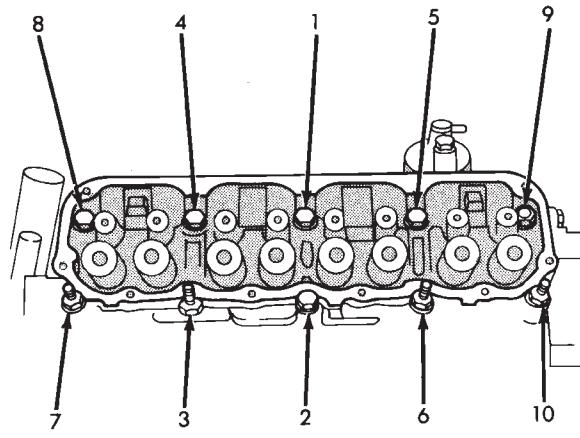
(10) Tighten the engine cylinder head bolts in sequence according to the following procedure (Fig. 35):

(a) Tighten all bolts in sequence (1 through 10) to 30 N·m (22 ft. lbs.) torque.

(b) Tighten all bolts in sequence (1 through 10) to 61 N·m (45 ft. lbs.) torque.

(c) Check all bolts to verify they are set to 61 N·m (45 ft. lbs.) torque.

(d) Tighten bolts (in sequence):


- Bolts 1 through 6 to 149 N·m (110 ft. lbs.) torque.

- Bolt 7 to 136 N·m (100 ft. lbs.) torque.

- Bolts 8 through 10 to 149 N·m (110 ft. lbs.) torque.

(e) Check all bolts in sequence to verify the correct torque.

(f) If not already done, clean and mark each bolt with a dab of paint after tightening. Should you encounter bolts which were painted in an earlier service operation, replace them.



J9009-15

**Fig. 35 Engine cylinder head Bolt Tightening Sequence**

(11) Install the ignition coil and bracket assembly.

(12) Connect the temperature sending unit wire connector.

(13) Install the spark plugs and tighten to 37 N·m (27 ft. lbs.) torque. Connect the ignition wires.

## REMOVAL AND INSTALLATION (Continued)

(14) Install the intake and exhaust manifolds (refer to Group 11, Exhaust System and Intake Manifold for the proper procedures).

(15) Install the fuel lines and the vacuum advance hose.

(16) If equipped, attach the power steering pump and bracket.

(17) Install the push rods, rocker arms, pivots and bridges in the order they were removed.

(18) Install the engine cylinder head cover.

(19) Attach the air conditioning compressor mounting bracket to the engine cylinder head and block. Tighten the bolts to 40 N·m (30 ft. lbs.) torque.

(20) Attach the air conditioning compressor to the bracket. Tighten the bolts to 27 N·m (20 ft. lbs.) torque.

**CAUTION: The serpentine drive belt must be routed correctly. Incorrect routing can cause the water pump to turn in the opposite direction causing the engine to overheat.**

(21) Install the serpentine drive belt and correctly tension the belt (refer to Group 7, Cooling System for the proper procedure).

(22) Install the air cleaner and ducting.

(23) Install the engine cylinder head cover.

(24) Connect the hoses to the thermostat housing and fill the cooling system to the specified level (refer to Group 7, Cooling Systems for the proper procedure).

(25) The automatic transmission throttle linkage and cable must be adjusted after completing the engine cylinder head installation (refer to Group 21, Transmissions for the proper procedures).

(26) Install the temperature sending unit and connect the wire connector.

(27) Connect the fuel pipe and vacuum advance hose.

(28) Connect negative cable to battery.

(29) Connect the upper radiator hose and heater hose at the thermostat housing.

(30) Fill the cooling system. Check for leaks.

**WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN DIRECT LINE WITH THE FAN. DO NOT PUT HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.**

(31) Operate the engine with the radiator cap off. Inspect for leaks and continue operating the engine until the thermostat opens. Add coolant, if required.

## VALVES AND VALVE SPRINGS

This procedure is done with the engine cylinder head removed from the block.

## REMOVAL

(1) Remove the engine cylinder head from the cylinder block.

(2) Use Valve Spring Compressor Tool MD-998772A and compress each valve spring.

(3) Remove the valve locks, retainers, springs and valve stem oil seals. Discard the oil seals.

(4) Use an Arkansas smooth stone or a jewelers file to remove any burrs on the top of the valve stem, especially around the groove for the locks.

(5) Remove the valves, and place them in a rack in the same order as removed.

## INSTALLATION

(1) Thoroughly clean the valve stems and the valve guide bores.

(2) Lightly lubricate the stem.

(3) Install the valve in the original valve guide bore.

(4) Install the replacement valve stem oil seals on the valve stems. If the 0.381 mm (0.015 inch) oversize valve stems are used, oversize oil seals are required.

(5) Position the valve spring and retainer on the engine cylinder head and compress the valve spring with Valve Spring Compressor Tool MD-998772A.

(6) Install the valve locks and release the tool.

(7) Tap the valve spring from side to side with a hammer to ensure that the spring is properly seated at the engine cylinder head. Also tap the top of the retainer to seat the valve locks.

(8) Install the engine cylinder head.

## HYDRAULIC TAPPETS

## REMOVAL

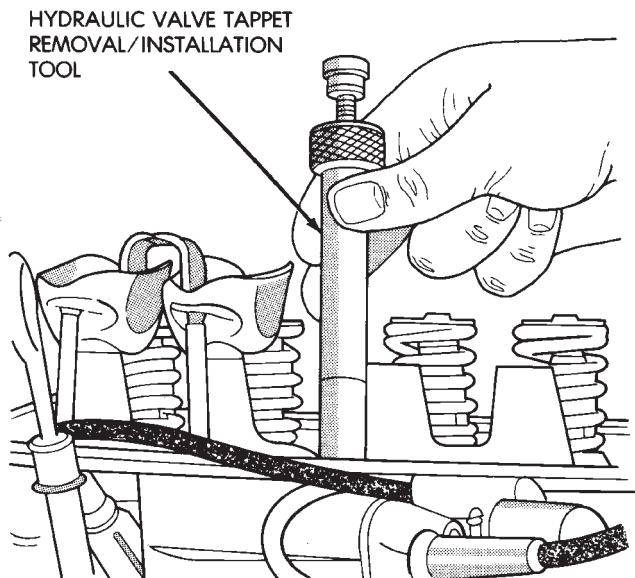
Retain all the components in the same order as removed.

(1) Remove the engine cylinder head cover.

(2) Remove the bridge and pivot assemblies and rocker arms by removing the capscrews at each bridge. Alternately loosen each capscrew, one turn at a time, to avoid damaging the bridges.

(3) Remove the push rods.

(4) Remove the tappets through the push rod openings in the cylinder head with a Hydraulic Valve Tappet Removal/Installation Tool (Fig. 36).


## INSTALLATION

It is not necessary to charge the tappets with engine oil. They will charge themselves within a very short period of engine operation.

(1) Dip each tappet in Mopar Engine Oil Supplement, or equivalent.

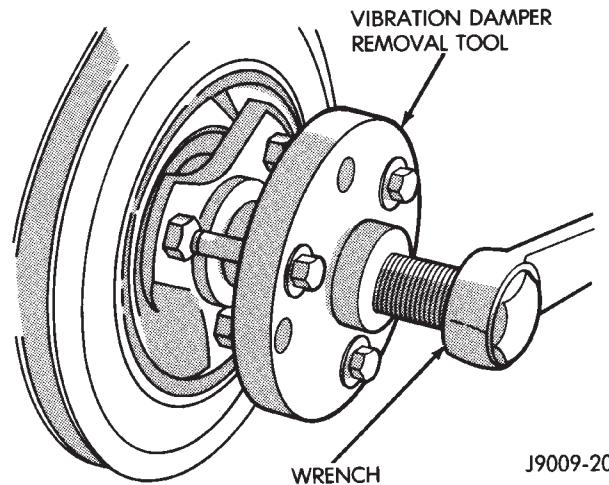
(2) Use Hydraulic Valve Tappet Removal/Installation Tool to install each tappet in the same bore from where it was originally removed.

## REMOVAL AND INSTALLATION (Continued)



**Fig. 36 Hydraulic Valve Tappet Removal/Installation Tool**

- (3) Install the push rods in their original locations.
- (4) Install the rocker arms and bridge and pivot assemblies at their original locations. Loosely install the capscrews at each bridge.
- (5) Tighten the capscrews alternately, one turn at a time, to avoid damaging the bridges. Tighten the capscrews to 28 N·m (21 ft. lbs.) torque.
- (6) Pour the remaining Mopar Engine Oil Supplement, or equivalent over the entire valve actuating assembly. The Mopar Engine Oil Supplement, or equivalent must remain with the engine oil for at least 1 600 km (1,000 miles). The oil supplement need not be drained until the next scheduled oil change.
- (7) Install the engine cylinder head cover.


## VIBRATION DAMPER

### REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt and fan shroud.
- (3) Remove the vibration damper retaining bolt and washer.
- (4) Use Vibration Damper Removal Tool 7697 to remove the damper from the crankshaft (Fig. 37).

### INSTALLATION

- (1) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key in position, align the keyway on the vibration damper hub with the crankshaft key and tap the damper onto the crankshaft.



**Fig. 37 Vibration Damper Removal Tool 7697**

- (2) Install the vibration damper retaining bolt and washer.
- (3) Tighten the damper retaining bolt to 108 N·m (80 ft. lbs.) torque.
- (4) Install the serpentine drive belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).
- (5) Connect negative cable to battery.

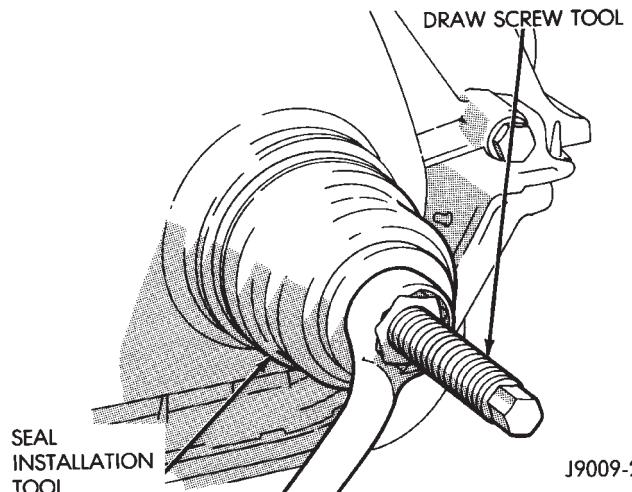
## TIMING CASE COVER OIL SEAL

### REMOVAL

This procedure is done with the timing case cover installed.

- (1) Disconnect negative cable from battery.
- (2) Remove the serpentine drive belt.
- (3) Remove the vibration damper.
- (4) Remove the radiator shroud.
- (5) Carefully remove the oil seal. Make sure seal bore is clean.

### INSTALLATION


- (1) Position the replacement oil seal on Timing Case Cover Alignment and Seal Installation Tool 6139 with seal open end facing inward. Apply a light film of Perfect Seal, or equivalent, on the outside diameter of the seal. Lightly coat the crankshaft with engine oil.

(2) Position the tool and seal over the end of the crankshaft and insert a draw screw tool into Seal Installation Tool 6139 (Fig. 38). Tighten the nut against the tool until it contacts the cover.

(3) Remove the tools. Apply a light film of engine oil on the vibration damper hub contact surface of the seal.

(4) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt.

## REMOVAL AND INSTALLATION (Continued)



J9009-24

**Fig. 38 Timing Case Cover Oil Seal Installation**

Lubricate and tighten the bolt to 108 N·m (80 ft. lbs.) torque.

(5) Install the serpentine belt and tighten to the specified tension (refer to Group 7, Cooling Systems for the proper specifications and procedures).

(6) Install the radiator shroud.

(7) Connect negative cable to battery.

**TIMING CASE COVER****REMOVAL**

(1) Disconnect negative cable from battery.

(2) Remove the vibration damper (Fig. 39).

(3) Remove the fan and hub assembly and remove the fan shroud.

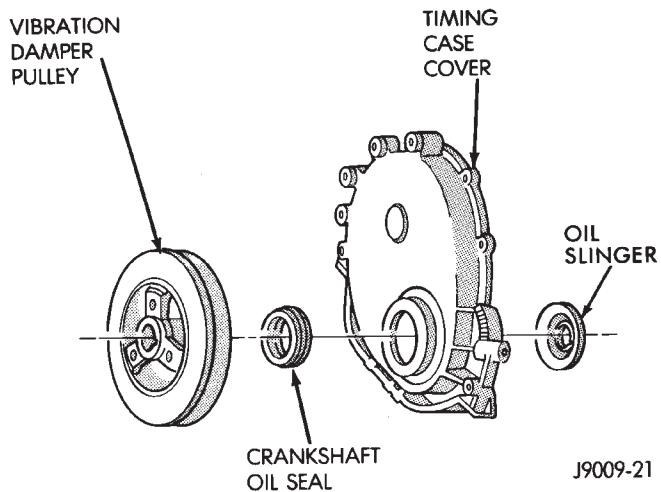
(4) Remove the accessory drive brackets that are attached to the timing case cover.

(5) Remove the A/C compressor (if equipped) and generator bracket assembly from the engine cylinder head and move to one side.

(6) Remove the oil pan-to-timing case cover bolts and timing case cover-to-cylinder block bolts.

(7) Remove the timing case cover and gasket from the engine.

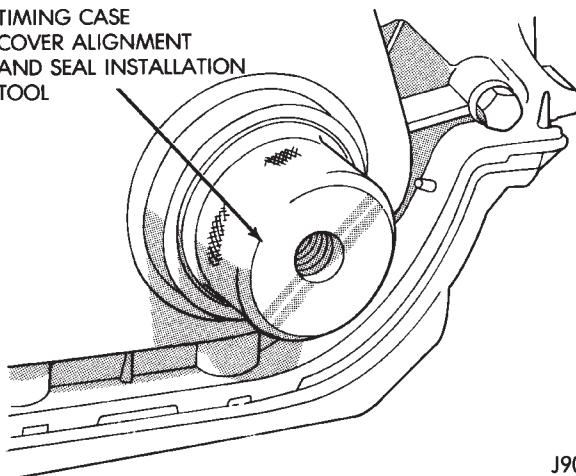
(8) Pry the crankshaft oil seal from the front of the timing case cover (Fig. 39).


**INSTALLATION**

(1) Clean the timing case cover, oil pan and cylinder block gasket surfaces.

(2) Install a new crankshaft oil seal in the timing case cover. The open end of the seal should be toward the inside of the cover. Support the cover at the seal area while installing the seal. Force it into position with Seal Installation Tool 6139.

(3) Position the gasket on the cylinder block.


(4) Position the timing case cover on the oil pan gasket and the cylinder block.



J9009-21

**Fig. 39 Timing Case Cover Components**

(5) Insert Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening in the cover (Fig. 40).



J9009-23

**Fig. 40 Timing Case Cover Alignment and Seal Installation Tool 6139**

(6) Install the timing case cover-to-cylinder block and the oil pan-to-timing case cover bolts.

(7) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover 1/4 inch bolts to 14 N·m (120 in. lbs.) torque. Tighten the oil pan-to-cover 5/16 inch bolts to 18 N·m (156 in. lbs.) torque.

(8) Remove the cover alignment tool.

(9) Apply a light film of engine oil on the vibration damper hub contact surface of the seal.

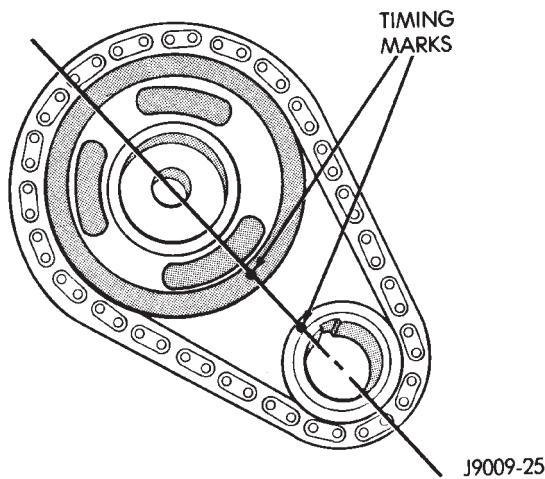
(10) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to 108 N·m (80 ft. lbs.) torque.

## REMOVAL AND INSTALLATION (Continued)

(11) Install the A/C compressor (if equipped) and generator bracket assembly.

(12) Install the engine fan and hub assembly and shroud.

(13) Install the serpentine drive belt and tighten to obtain the specified tension.


(14) Connect negative cable to battery.

## TIMING CHAIN AND SPROCKETS

The timing chain tensioner reduces noise and prolongs timing chain life. In addition, it compensates for slack in a worn or stretched chain and maintains the correct valve timing.

## REMOVAL

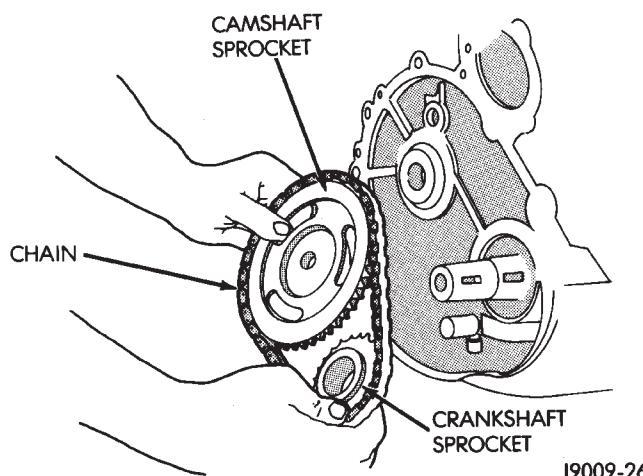
- (1) Disconnect negative cable from battery.
- (2) Remove the fan and shroud.
- (3) Remove the serpentine drive belt.
- (4) Remove the crankshaft vibration damper.
- (5) Remove the timing case cover.
- (6) Rotate crankshaft until the "0" timing mark is closest to and on the center line with camshaft sprocket timing mark (Fig. 41).



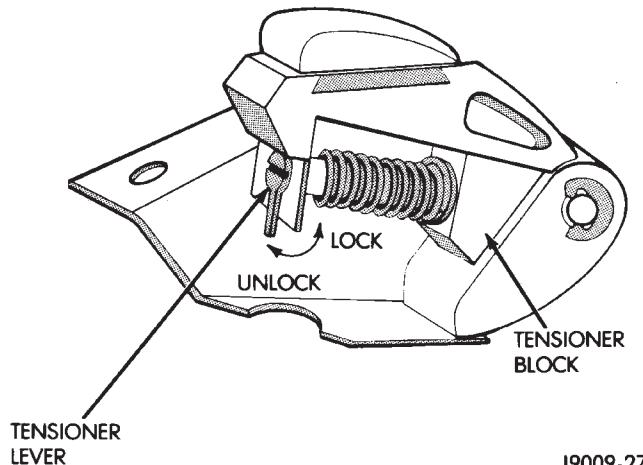
**Fig. 41 Crankshaft—Camshaft Alignment**

(7) Remove the oil slinger from the crankshaft.

(8) Remove the camshaft retaining bolt and remove the sprockets and chain as an assembly (Fig. 42).


(9) To replace the timing chain tensioner, the oil pan must be removed.

## INSTALLATION


(1) Turn the tensioner lever to the unlocked (down) position (Fig. 43).

(2) Pull the tensioner block toward the tensioner lever to compress the spring. Hold the block and turn the tensioner lever to the lock position (Fig. 43).

(3) Apply Mopar Silicone Rubber Adhesive Sealant to the keyway in the crankshaft and insert the key. With the key in the crankshaft keyway, install the



**Fig. 42 Camshaft and Crankshaft Sprockets and Chain**



**Fig. 43 Loading Timing Chain Tensioner**

crankshaft, camshaft sprockets and timing chain. Ensure the timing marks on the sprockets are properly aligned (Fig. 41).

(4) Install the camshaft sprocket retaining bolt and washer. Tighten the bolt to 108 N·m (80 ft. lbs.) torque.

(5) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 44). Count the number of chain pins between the timing marks of both sprockets. There must be 20 pins.

(6) Turn the chain tensioner lever to the unlocked (down) position (Fig. 43).

(7) Install the oil slinger.

(8) Replace the oil seal in the timing case cover.

(9) Install the timing case cover and gasket.

(10) With the key inserted in the keyway in the crankshaft, install the vibration damper, washer and bolt. Lubricate and tighten the bolt to 108 N·m (80 ft. lbs.) torque.

(11) Install the fan and shroud.

## REMOVAL AND INSTALLATION (Continued)

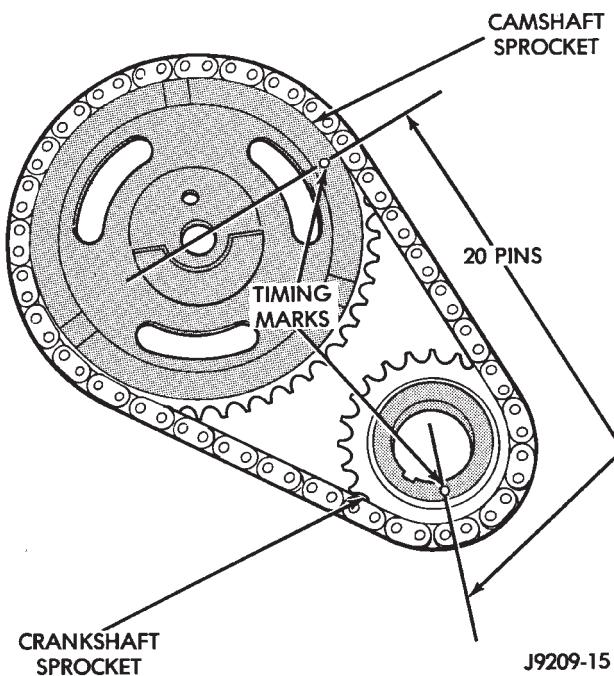



Fig. 44 Verify Sprocket—Chain Installation

(12) Connect negative cable to battery.

## CAMSHAFT

## REMOVAL

**WARNING: THE COOLANT IN A RECENTLY OPERATED ENGINE IS HOT AND PRESSURIZED. RELEASE THE PRESSURE BEFORE REMOVING THE DRAIN COCK, CAP AND DRAIN PLUGS.**

- (1) Disconnect negative cable from battery.
- (2) Drain the cooling system. DO NOT waste reusable coolant. If the solution is clean, drain it into a clean container for reuse.
- (3) Remove the radiator or radiator and condenser, if equipped with A/C.
- (4) Scribe a mark on the distributor housing in line with the lip of the rotor.
- (5) Scribe a mark on the distributor housing near the clamp and continue the scribe mark on the cylinder block in line with the distributor mark.
- (6) For ease of installation, note the position of the rotor and distributor housing in relation to adjacent engine components.
- (7) Remove the distributor and ignition wires.
- (8) Remove the engine cylinder head cover.
- (9) Remove the rocker arms, bridges and pivots.
- (10) Remove the push rods.
- (11) Remove the hydraulic valve tappets from the engine cylinder head.
- (12) Remove the vibration damper.
- (13) Remove the timing case cover.
- (14) Remove the timing chain and sprockets.

(15) Remove the camshaft (Fig. 45).

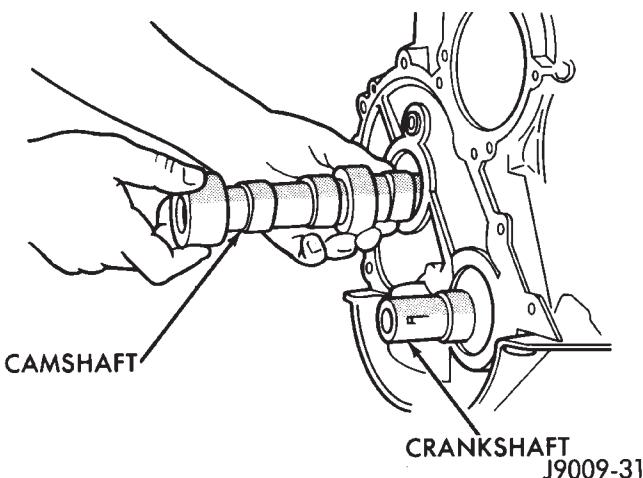



Fig. 45 Camshaft

## INSTALLATION

- (1) Inspect the cam lobes for wear.
- (2) Inspect the bearing journals for uneven wear pattern or finish.
- (3) Inspect the bearings for wear.
- (4) Inspect the distributor drive gear for wear.
- (5) If the camshaft appears to have been rubbing against the timing case cover, examine the oil pressure relief holes in the rear cam journal. The oil pressure relief holes must be free of debris.
- (6) Lubricate the camshaft with Mopar Engine Oil Supplement, or equivalent.
- (7) Carefully install the camshaft to prevent damage to the camshaft bearings (Fig. 45).
- (8) Turn the tensioner lever to the unlocked (down) position (Fig. 46).

**NOTE: Pull the tensioner block toward the tensioner lever to compress the spring. Hold the block and turn the tensioner lever to the lock position (Fig. 46).**

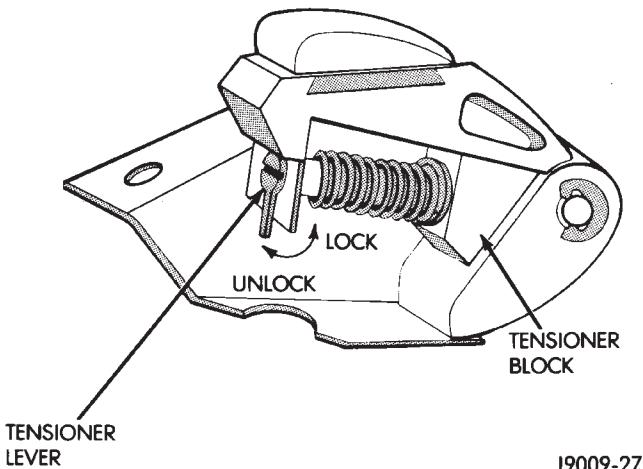
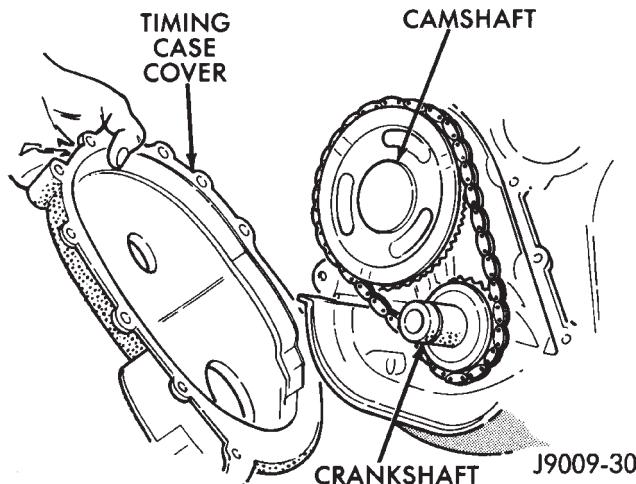



Fig. 46 Loading Timing Chain Tensioner


## REMOVAL AND INSTALLATION (Continued)

(9) Install the timing chain, crankshaft sprocket and camshaft sprocket with the timing marks aligned.

(10) Install the camshaft sprocket retaining bolt and washer. Tighten the bolt to 108 N·m (80 ft. lbs.) torque.

(11) Install the timing case cover with a replacement oil seal (Fig. 47). Refer to Timing Case Cover Installation.

(12) Install the vibration damper.



**Fig. 47 Timing Case Cover**

(13) Install the hydraulic valve tappets.

(14) Install the push rods.

(15) Install the rocker arms, bridges and pivots.

(16) Install the engine cylinder head cover.

(17) Position the oil pump gear. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.

(18) Install the distributor and ignition wires. Refer to Distributor in the Component Removal/Installation section of Group 8D, Ignition Systems.

(19) Install the radiator or radiator and condenser, if equipped with A/C.

(20) Fill the cooling system.

(21) Connect negative cable to battery.

## CAMSHAFT PIN REPLACEMENT

## REMOVAL

**WARNING: DO NOT LOOSEN THE RADIATOR DRAIN COCK WITH THE SYSTEM HOT AND PRESSURIZED BECAUSE SERIOUS BURNS FROM COOLANT CAN OCCUR.**

(1) Disconnect negative cable from battery.

(2) Drain the radiator. DO NOT waste reusable coolant. Drain the coolant into a clean container.

(3) Remove the fan and shroud.

(4) Disconnect the radiator overflow tube, radiator hoses, automatic transmission fluid cooler pipes (if equipped).

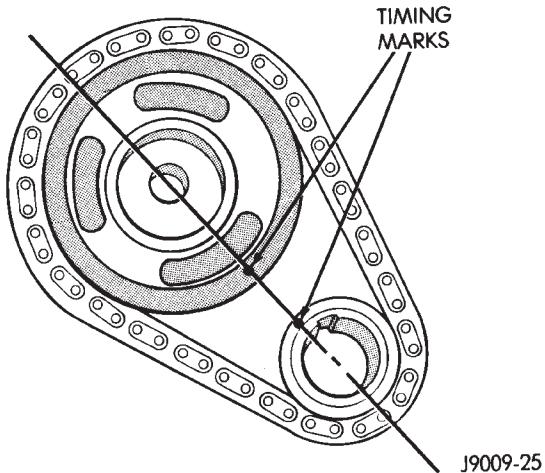
(5) Remove the radiator.

(6) If equipped with air conditioning:

**CAUTION: DO NOT loosen or disconnect any air conditioner system fittings. Move the condenser and receiver/drier aside as a complete assembly.**

(a) Remove the A/C compressor serpentine drive belt idler pulley.

(b) Disconnect and remove the generator.


(c) Remove the A/C condenser attaching bolts and move the condenser and receiver/drier assembly up and out of the way.

(7) Remove the serpentine drive belt.

(8) Remove the crankshaft vibration damper.

(9) Remove the timing case cover. Clean the gasket material from the cover.

(10) Rotate crankshaft until the crankshaft sprocket timing mark is closest to and on the center line with the camshaft sprocket timing mark (Fig. 48).



**Fig. 48 Timing Chain Alignment**

(11) Remove camshaft sprocket retaining bolt.

(12) Remove the crankshaft oil slinger.


(13) Remove the sprockets and chain as an assembly (Fig. 49).

**CAUTION: The following procedural step must be accomplished to prevent the camshaft from damaging the rear camshaft plug during pin installation.**

(14) Inspect the damaged camshaft pin.

(15) If the pin is a spring-type pin, remove the broken pin by inserting a self-tapping screw into the pin and carefully pulling the pin from the camshaft.

## REMOVAL AND INSTALLATION (Continued)



**Fig. 49 Camshaft and Crankshaft Sprocket and Chain**

(16) If the pin is a dowel-type pin, center-punch it. Ensure the exact center is located when center-punching the pin.

**CAUTION:** Cover the opened oil pan area to prevent metal chips from entering the pan.

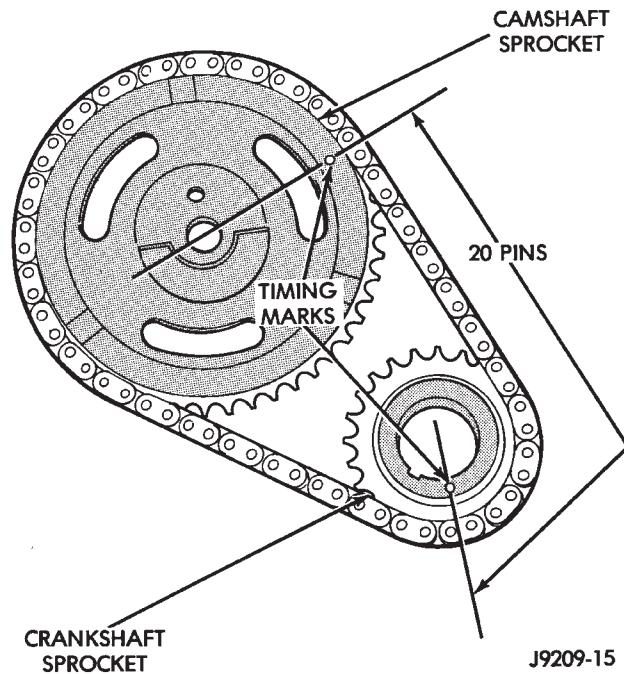
(17) Drill into the pin center with a 4 mm (5/32 inch) drill bit.

(18) Insert a self-tapping screw into the drilled pin and carefully pull the pin from the camshaft.

#### CAMSCHAFT BEARINGS

The camshaft rotates within four steel-shelled, babbitt-lined bearings that are pressed into the cylinder block and then line reamed. The camshaft bearing bores and bearing diameters are not the same size. They are stepped down in 0.254 mm (0.010 inch) increments from the front bearing (largest) to the rear bearing (smallest). This permits easier removal and installation of the camshaft. The camshaft bearings are pressure lubricated.

**NOTE: It is not advisable to attempt to replace camshaft bearings unless special removal and installation tools are available.**


Camshaft end play is maintained by the load placed on the camshaft by the oil pump and distributor drive gear. The helical cut of the gear holds the camshaft sprocket thrust face against the cylinder block face.

#### INSTALLATION

- (1) Clean the camshaft pin hole.
- (2) Compress the center of the replacement spring pin with vise grips.
- (3) Carefully drive the pin into the camshaft pin hole until it is seated.

(4) Install the camshaft sprocket, crankshaft sprocket and timing chain with the timing marks aligned (Fig. 48).

(5) To verify correct installation of the timing chain, turn the crankshaft to position the camshaft sprocket timing mark as shown in (Fig. 50). Count the number of chain pins between the timing marks of both sprockets. There must be 20 pins.



**Fig. 50 Verify Crankshaft—Camshaft Installation**

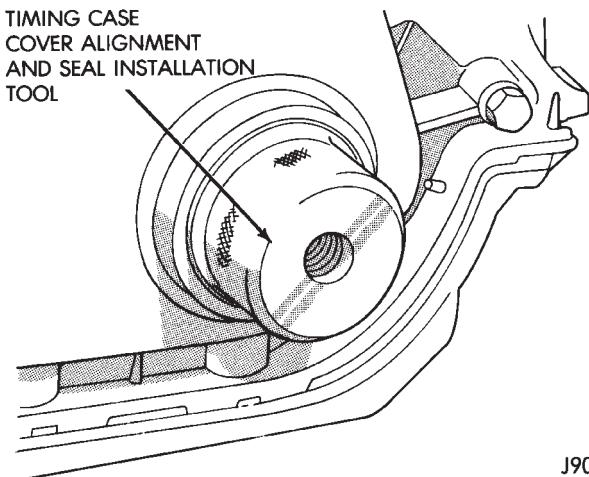
(6) Install the crankshaft oil slinger.

(7) Tighten the camshaft sprocket bolt to 108 N·m (80 ft. lbs.) torque.

(8) Check the valve timing.

(9) Coat both sides of the replacement timing case cover gasket with gasket sealer. Apply a 3 mm (1/8 inch) bead of Mopar Silicone Rubber Adhesive Sealant, or equivalent to the joint formed at the timing case cover and cylinder block.

(10) Position the timing case cover on the oil pan gasket and the cylinder block.


(11) Place Timing Case Cover Alignment and Seal Installation Tool 6139 in the crankshaft opening of the cover (Fig. 51).

(12) Install the timing case cover-to-cylinder block bolts. Install the oil pan-to-timing case cover bolts.

(13) Tighten the 1/4 inch cover-to-block bolts to 7 N·m (60 in. lbs.) torque. Tighten the 5/16 inch front cover-to-block bolts to 22 N·m (192 in. lbs.) torque. Tighten the oil pan-to-cover 1/4 inch bolts to 14 N·m (120 in. lbs.) torque. Tighten the oil pan-to-cover 5/16 inch bolts to 18 N·m (156 in. lbs.) torque.

(14) Remove the cover alignment tool and install a replacement oil seal into the cover.

## REMOVAL AND INSTALLATION (Continued)



J9009-23

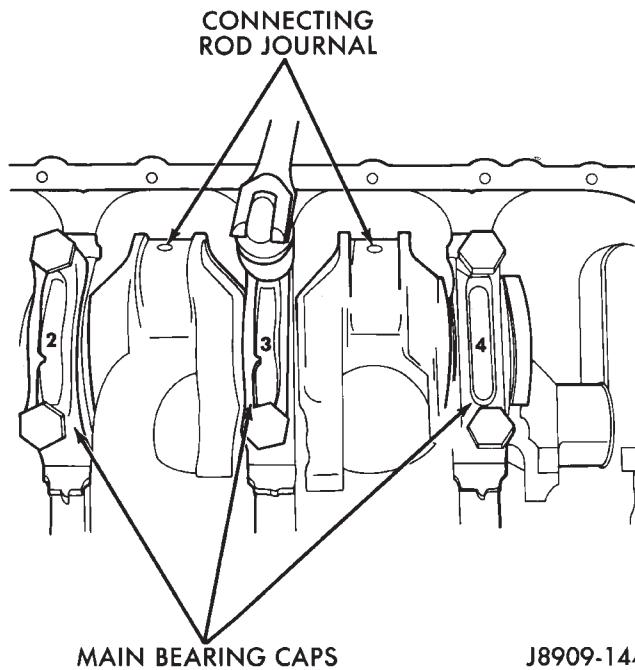
**Fig. 51 Timing Case Cover Alignment and Seal Installation Tool 6139**

- (15) Install the vibration damper on the crank-shaft.
- (16) Lubricate and tighten the damper bolt to 108 N·m (80 ft. lbs.) torque.
- (17) If equipped with air conditioning:
  - (a) Install the A/C compressor serpentine drive belt idler pulley.
  - (b) Install the generator.
  - (c) Install the A/C condenser and receiver/drier assembly.
- (18) Install the serpentine drive belt on the pulleys and tighten (refer to Group 7, Cooling System for the specifications and procedures).
- (19) Install the radiator. Connect the radiator hoses and automatic transmission fluid cooler pipes, if equipped. Fill the cooling system.
- (20) Install the fan and shroud.
- (21) Connect negative cable to battery.

## CAMSHAFT BEARINGS

The camshaft rotates within four steel-shelled, babbitt-lined bearings that are pressed into the cylinder block and then line reamed. The camshaft bearing bores and bearing diameters are not the same size. They are stepped down in 0.254 mm (0.010 inch) increments from the front bearing (largest) to the rear bearing (smallest). This permits easier removal and installation of the camshaft. The camshaft bearings are pressure lubricated.

**NOTE: It is not advisable to attempt to replace camshaft bearings unless special removal and installation tools are available.**


Camshaft end play is maintained by the load placed on the camshaft by the oil pump and distributor drive gear. The helical cut of the gear holds the

camshaft sprocket thrust face against the cylinder block face.

## CRANKSHAFT MAIN BEARINGS

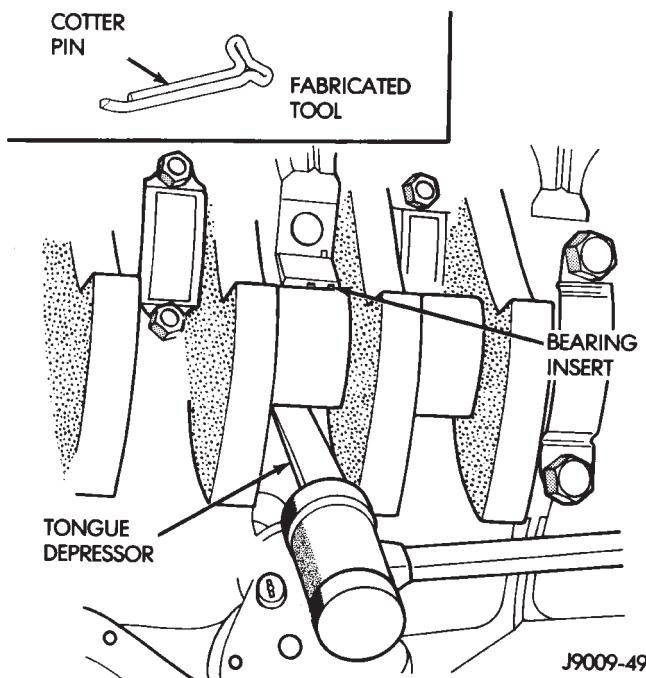
## REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Remove the spark plugs.
- (3) Raise the vehicle.
- (4) Remove the oil pan and oil pump.
- (5) Remove only one main bearing cap and lower insert at a time (Fig. 52).



J8909-144

**Fig. 52 Removing Main Bearing Caps and Lower Inserts**


- (6) Remove the lower insert from the bearing cap.
- (7) Remove the upper insert by LOOSENING (DO NOT REMOVE) all of the other bearing caps. Now insert a small cotter pin tool in the crankshaft journal oil hole. Bend the cotter pin as illustrated to fabricate the tool (Fig. 53). With the cotter pin tool in place, rotate the crankshaft so that the upper bearing insert will rotate in the direction of its locking tab. Because there is no hole in the No.3 main journal, use a tongue depressor or similar soft-faced tool to remove the bearing insert (Fig. 53). After moving the insert approximately 25 mm (1 inch), it can be removed by applying pressure under the tab.

- (8) Using the same procedure described above, remove the remaining bearing inserts one at a time for inspection.

## INSTALLATION

- (1) Lubricate the bearing surface of each insert with engine oil.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 53 Removing Upper Inserts**

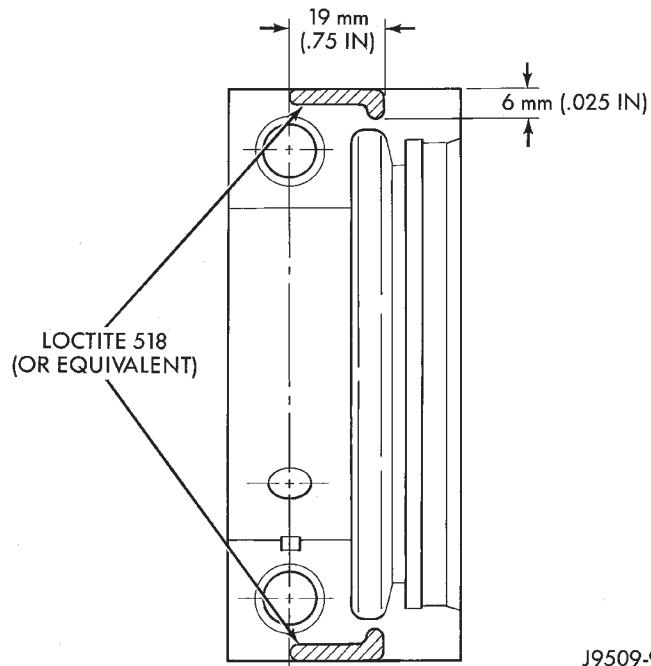
(2) Loosen all the main bearing caps. Install the main bearing upper inserts.

(3) Install the lower bearing inserts into the main bearing caps.

(4) Install the main bearing cap(s) and lower insert(s).

(5) Clean the rear main bearing cap (No.5) mating surfaces.

(6) Apply Loctite 518, or equivalent on the rear bearing cap (Fig. 54). The bead should be 3 mm (0.125 in) thick. DO NOT apply Loctite 518, or equivalent to the lip of the seal.


(7) Install the rear main bearing cap. DO NOT strike the cap more than twice for proper engagement.

(8) Tighten the bolts of caps 1, 3, 4 and 5 to 54 N·m (40 ft. lbs.) torque. Now tighten these bolts to 95 N·m (70 ft. lbs.) torque. Finally, tighten these bolts to 108 N·m (80 ft. lbs.) torque.

(9) Push the crankshaft forward and backward. Load the crankshaft front or rear and tighten cap bolt No.2 to 54 N·m (40 ft. lbs.) torque. Then tighten to 95 N·m (70 ft. lbs.) torque and finally tighten to 108 N·m (80 ft. lbs.) torque.

(10) Rotate the crankshaft after tightening each main bearing cap to ensure the crankshaft rotates freely.

(11) Check crankshaft end play. Crankshaft end play is controlled by the thrust bearing which is flange and installed at the No.2 main bearing position.

**Fig. 54 Location of Loctite 518 (or equivalent)**

(a) Attach a magnetic base dial indicator to the cylinder block at either the front or rear of the engine.

(b) Position the dial indicator rod so that it is parallel to the center line of the crankshaft.

(c) Position the dial indicator rod so that it is parallel to the center line of the crankshaft.

(d) Pry the crankshaft forward, position the dial indicator to zero.

(e) Pry the crankshaft forward and backward. Note the dial indicator readings. End play is the difference between the high and low measurements (Fig. 55). Correct end play is 0.038-0.165 mm (0.0015-0.0065 inch). The desired specifications are 0.051-0.064 mm (0.002-0.0025 inch).

(f) If end play is not within specification, inspect crankshaft thrust faces for wear. If no wear is apparent, replace the thrust bearing and measure end play. If end play is still not within specification, replace the crankshaft.

(12) If the crankshaft was removed, install the crankshaft into the cylinder block (refer to Cylinder Block - Assemble).

(13) Install the oil pan.

(14) Install the drain plug. Tighten the plug to 34 N·m (25 ft. lbs.) torque.

(15) Lower the vehicle.

(16) Install the spark plugs. Tighten the plugs to 37 N·m (27 ft. lbs.) torque.

(17) Fill the oil pan with engine oil to the full mark on the dipstick level.

(18) Connect negative cable to battery.

## REMOVAL AND INSTALLATION (Continued)

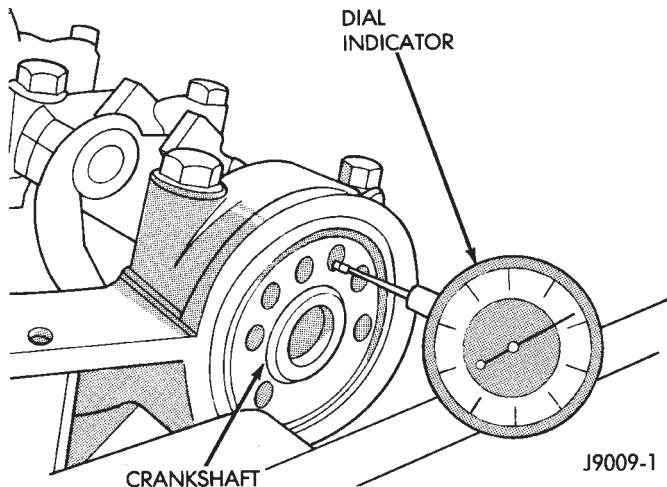



Fig. 55 Crankshaft End Play Measurement

## OIL PAN

## REMOVAL

- (1) Disconnect negative cable from battery.
- (2) Raise the vehicle.
- (3) Remove the oil pan drain plug and drain the engine oil.
- (4) Disconnect the exhaust pipe at the engine exhaust manifold.
- (5) Disconnect the exhaust hanger at the catalytic converter and lower the pipe.
- (6) Remove the engine starter motor.
- (7) Remove the flywheel/torque converter housing access cover.
- (8) Position a jack stand directly under the engine vibration damper.
- (9) Place a piece of wood (2 x 2) between the jack stand and the engine vibration damper.
- (10) Remove the engine mount through bolts.
- (11) Using the jack stand, raise the engine until adequate clearance is obtained to remove the oil pan.
- (12) Remove the oil pan bolts. Carefully remove the oil pan and gasket.

## INSTALLATION

- (1) Clean the block and pan gasket surfaces.
- (2) Fabricate 4 alignment dowels from  $1/4 \times 1 \frac{1}{2}$  inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 56).
- (3) Install two dowels in the timing case cover. Install the other two dowels in the cylinder block (Fig. 57).
- (4) Slide the one-piece gasket over the dowels and onto the block and timing case cover.
- (5) Position the oil pan over the dowels and onto the gasket.
- (6) Install the  $1/4$  inch oil pan bolts. Tighten these bolts to  $14$  N·m ( $120$  in. lbs.) torque. Install the  $5/16$

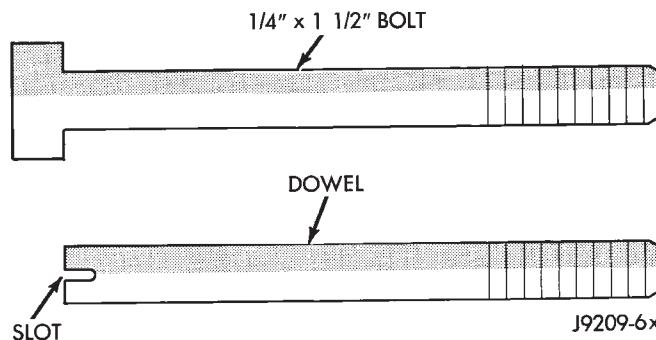



Fig. 56 Fabrication of Alignment Dowels

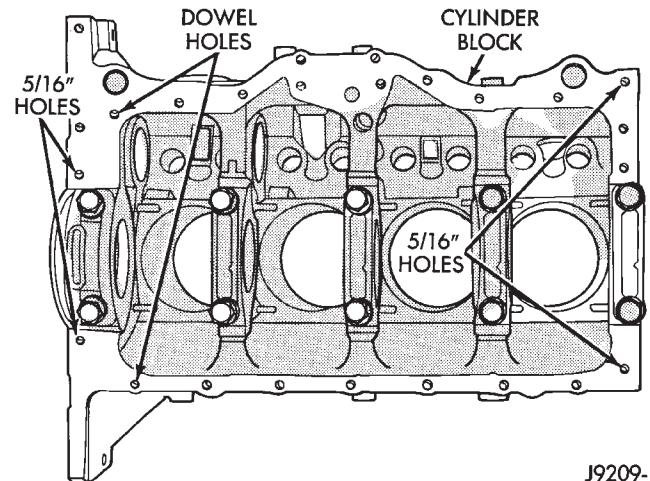



Fig. 57 Position of Dowels in Cylinder Block

inch oil pan bolts (Fig. 58). Tighten these bolts to  $18$  N·m ( $156$  in. lbs.) torque.

## (A) 5/16" BOLTS

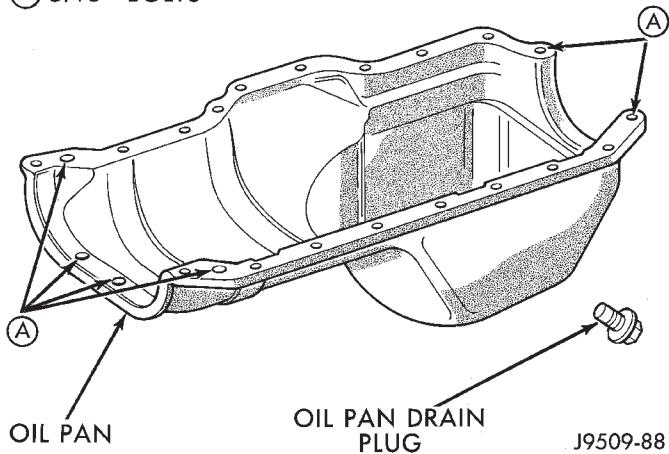



Fig. 58 Position of 5/16 inch Oil Pan Bolts

- (7) Remove the dowels. Install the remaining  $1/4$  inch oil pan bolts. Tighten these bolts to  $14$  N·m ( $120$  in. lbs.) torque.
- (8) Lower the engine until it is properly located on the engine mounts.
- (9) Install the through bolts and tighten the nuts.

## REMOVAL AND INSTALLATION (Continued)

(10) Lower the jack stand and remove the piece of wood.

(11) Install the flywheel and torque converter housing access cover.

(12) Install the engine starter motor.

(13) Connect the exhaust pipe to the hanger and to the engine exhaust manifold.

(14) Install the oil pan drain plug (Fig. 58). Tighten the plug to 34 N·m (25 ft. lbs.) torque.

(15) Lower the vehicle.

(16) Connect negative cable to battery.

(17) Fill the oil pan with engine oil to the specified level.

**WARNING: USE EXTREME CAUTION WHEN THE ENGINE IS OPERATING. DO NOT STAND IN A DIRECT LINE WITH THE FAN. DO NOT PUT YOUR HANDS NEAR THE PULLEYS, BELTS OR FAN. DO NOT WEAR LOOSE CLOTHING.**

(18) Start the engine and inspect for leaks.

## OIL PUMP

The positive-displacement gear-type oil pump is driven by the distributor shaft, which is driven by a gear on the camshaft. Oil is siphoned into the pump through an inlet tube and strainer assembly that is pressed into the pump body.

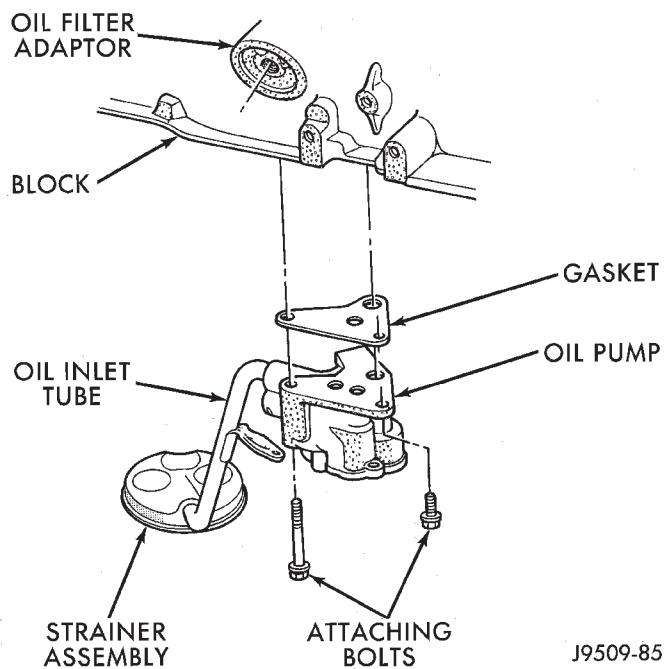
The pump incorporates a nonadjustable pressure relief valve to limit maximum pressure to 517 kPa (75 psi). In the relief position, the valve permits oil to bypass through a passage in the pump body to the inlet side of the pump.

Oil pump removal or replacement will not affect the distributor timing because the distributor drive gear remains in mesh with the camshaft gear.

## REMOVAL

(1) Drain the engine oil.

(2) Remove the oil pan.


(3) Remove the pump-to-cylinder block attaching bolts. Remove the pump assembly with gasket (Fig. 59).

**CAUTION: If the oil pump is not to be serviced, DO NOT disturb position of oil inlet tube and strainer assembly in pump body. If the tube is moved within the pump body, a replacement tube and strainer assembly must be installed to assure an airtight seal.**

## INSTALLATION

(1) Install the oil pump on the cylinder block using a replacement gasket. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.

(2) Install the oil pan and gasket.



J9509-85

**Fig. 59 Oil Pump Assembly**

(3) Fill the oil pan with oil to the specified level.

## PISTONS AND CONNECTING RODS

## REMOVAL

(1) Remove the engine cylinder head cover.

(2) Remove the rocker arms, bridges and pivots.

(3) Remove the push rods.

(4) Remove the engine cylinder head.

(5) Position the pistons one at a time near the bottom of the stroke. Use a ridge reamer to remove the ridge from the top end of the cylinder walls. Use a protective cloth to collect the cuttings.

(6) Raise the vehicle.

(7) Drain the engine oil.

(8) Remove the oil pan and gasket.

(9) Remove the connecting rod bearing caps and inserts. Mark the caps and rods with the cylinder bore location. The connecting rods and caps are stamped with a two letter combination (Fig. 60).

(10) Lower the vehicle until it is about 2 feet from the floor.

**CAUTION: Ensure that the connecting rod bolts DO NOT scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose, slipped over the rod bolts will provide protection during removal.**

(11) Have an assistant push the piston and connecting rod assemblies up and through the top of the cylinder bores (Fig. 61).

## REMOVAL AND INSTALLATION (Continued)

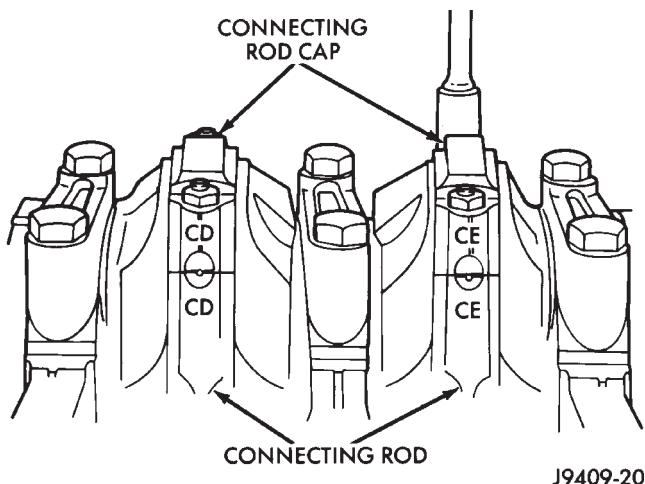



Fig. 60 Stamped Connecting Rods and Caps

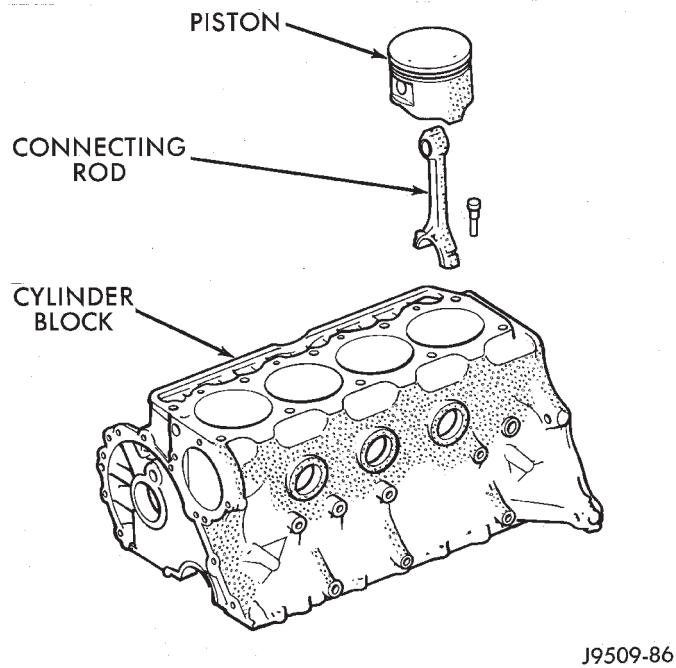



Fig. 61 Removal of Connecting Rod and Piston Assembly

## INSTALLATION

(1) Clean the cylinder bores thoroughly. Apply a light film of clean engine oil to the bores with a clean lint-free cloth.

(2) Install the piston rings on the pistons if removed.

(3) Lubricate the piston and rings with clean engine oil.

**CAUTION:** Ensure that connecting rod bolts do not scratch the crankshaft journals or cylinder walls. Short pieces of rubber hose slipped over the connecting rod bolts will provide protection during installation.

(4) Use a piston ring compressor to install the connecting rod and piston assemblies through the top of the cylinder bores (Fig. 62).

(5) Ensure the arrow on the piston top points to the front of the engine (Fig. 62).

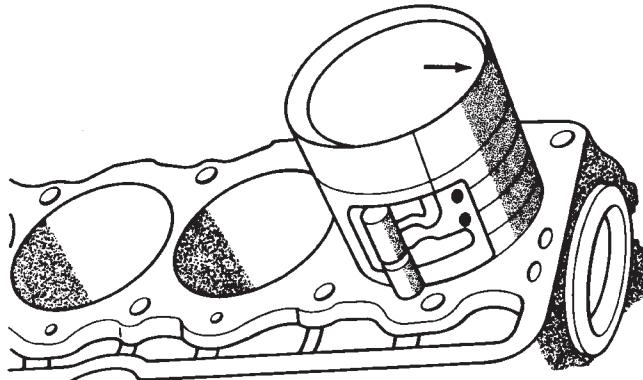



Fig. 62 Rod and Piston Assembly Installation

(6) Raise the vehicle.

(7) Each bearing insert is fitted to its respective journal to obtain the specified clearance between the bearing and the journal. In production, the select fit is obtained by using various-sized, color-coded bearing inserts as listed in the Connecting Rod Bearing Fitting Chart. The color code appears on the edge of the bearing insert. The size is not stamped on inserts used for production of engines.

(8) The rod journal is identified during the engine production by a color-coded paint mark on the adjacent cheek or counterweight toward the flange (rear) end of the crankshaft. The color codes used to indicate journal sizes are listed in the Connecting Rod Bearing Fitting Chart.

(9) When required, upper and lower bearing inserts of different sizes may be used as a pair (refer to Connecting Rod Bearing Fitting Chart). A standard size insert is sometimes used in combination with a 0.025 mm (0.001 inch) undersize insert to reduce clearance 0.013 mm (0.0005 inch).

**CAUTION: DO NOT intermix bearing caps.** Each connecting rod and bearing cap are stamped with the cylinder number. The stamp is located on a machined surface adjacent to the oil squirt hole that faces the camshaft side of the cylinder block.

(10) Install the connecting rod bearing caps and inserts in the same positions as removed.

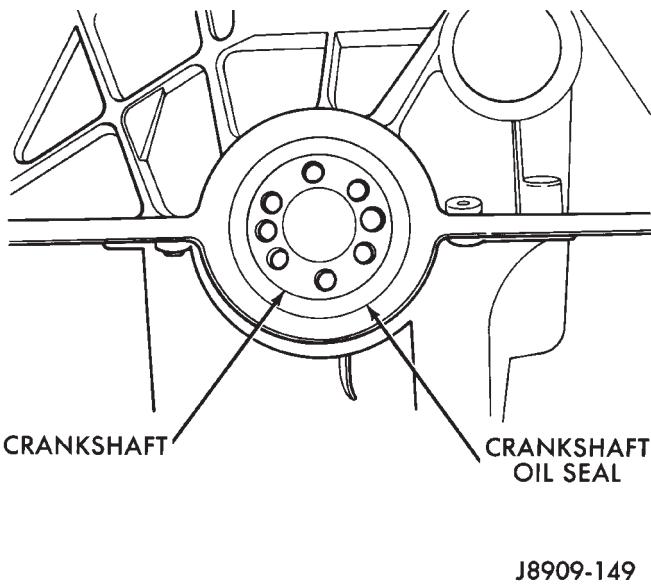
**CAUTION:** Verify that the oil squirt holes in the rods face the camshaft and that the arrows on the pistons face the front of the engine.

## REMOVAL AND INSTALLATION (Continued)

(11) Install the oil pan and gaskets as outlined in the installation procedure.

(12) Lower the vehicle.

(13) Install the engine cylinder head, push rods, rocker arms, bridges, pivots and engine cylinder head cover.


(14) Fill the crankcase with engine oil.

## REAR MAIN OIL SEALS

## REMOVAL

(1) Remove the flywheel or converter drive plate. Discard the old bolts.

(2) Pry out the seal from around the crankshaft flange (Fig. 63).



**Fig. 63 Replacement of Rear Crankshaft Oil Seal**

## INSTALLATION

(1) Coat the outer lip of the replacement rear main bearing seal with engine oil.

(2) Carefully position the seal into place. Use rear main Seal Installer Tool 6271A to install the seal flush with the cylinder block.

**CAUTION: The felt lip must be located inside the flywheel mounting surface. If the lip is not positioned correctly the flywheel could tear the seal.**

(3) Install the flywheel or converter drive plate. New bolts MUST be used when installing the flywheel or converter plate. Tighten the new bolts to 68 N·m (50 ft. lbs.) torque. Turn the bolts an additional 60°.

## DISASSEMBLY AND ASSEMBLY

## VALVE SERVICE

Clean all carbon deposits from the combustion chambers, valve ports, valve stems, valve stem guides and head.

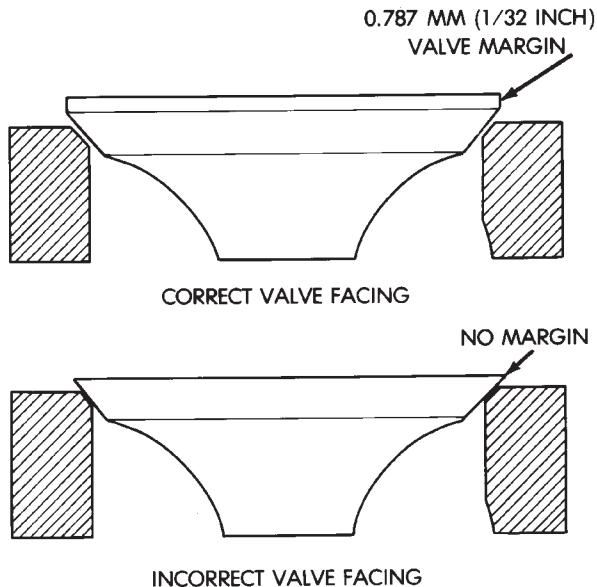
Clean all grime and gasket material from the engine cylinder head machined gasket surface.

Inspect for cracks in the combustion chambers and valve ports.

Inspect for cracks on the exhaust seat.

Inspect for cracks in the gasket surface at each coolant passage.

Inspect valves for burned, cracked or warped heads.


Inspect for scuffed or bent valve stems.

Replace valves displaying any damage.

## VALVE REFACING

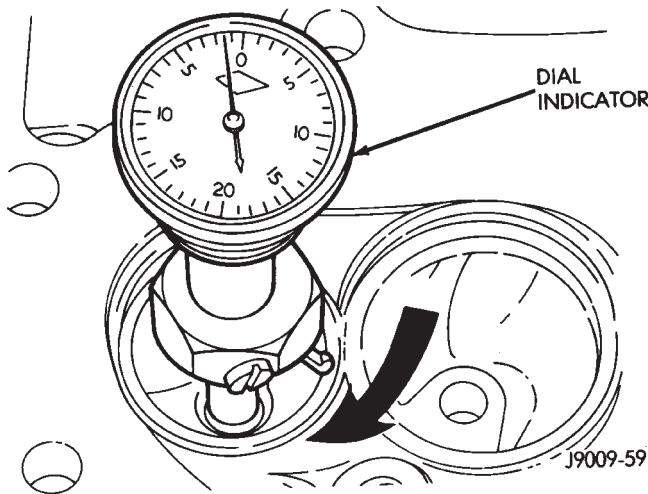
(1) Use a valve refacing machine to reface the intake and exhaust valves to the specified angle.

(2) After refacing, a margin of at least 0.787 mm (0.031 inch) must remain (Fig. 64). If the margin is less than 0.787 mm (0.031 inch), the valve must be replaced.



J8909-89

**Fig. 64 Valve Facing Margin**


## VALVE SEAT REFACING

(1) Install a pilot of the correct size in the valve guide bore. Reface the valve seat to the specified angle with a good dressing stone. Remove only enough metal to provide a smooth finish.

(2) Use tapered stones to obtain the specified seat width when required.

## DISASSEMBLY AND ASSEMBLY (Continued)

(3) Control valve seat runout to a maximum of 0.0635 mm (0.0025 in.)— (Fig. 65).



**Fig. 65 Measurement of Valve Seat Runout**

## VALVE STEM OIL SEAL REPLACEMENT

Valve stem oil seals are installed on each valve stem to prevent rocker arm lubricating oil from entering the combustion chamber through the valve guide bores. One seal is marked INT (intake valve) and the other is marked EXH (exhaust valve).

Replace the oil seals whenever valve service is performed or if the seals have deteriorated.

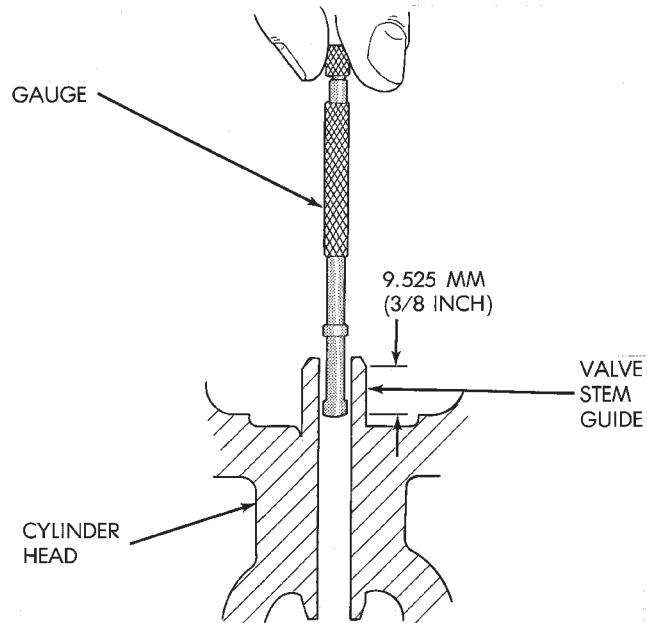
## VALVE GUIDES

The valve guides are an integral part of the engine cylinder head and are not replaceable.

When the valve stem guide clearance is excessive, the valve guide bores must be reamed oversize. Service valves with oversize stems are available in 0.076 mm (0.003 inch) and 0.381 mm (0.015 inch) increments.

Corresponding oversize valve stem seals are also available and must be used with valves having 0.381 mm (0.015 inch) oversize stems. 0.076mm (.003in.) oversize stems do not require oversize seals.

**NOTE: If the valve guides are reamed oversize, the valve seats must be ground to ensure that the valve seat is concentric to the valve guide.**


## VALVE STEM-TO-GUIDE CLEARANCE MEASUREMENT

Valve stem-to-guide clearance may be measured by either of the following two methods.

## PREFERRED METHOD:

- (1) Remove the valve from the head.
- (2) Clean the valve stem guide bore with solvent and a bristle brush.

(3) Insert a telescoping gauge into the valve stem guide bore approximately 9.525 mm (.375 inch) from the valve spring side of the head (Fig. 66).



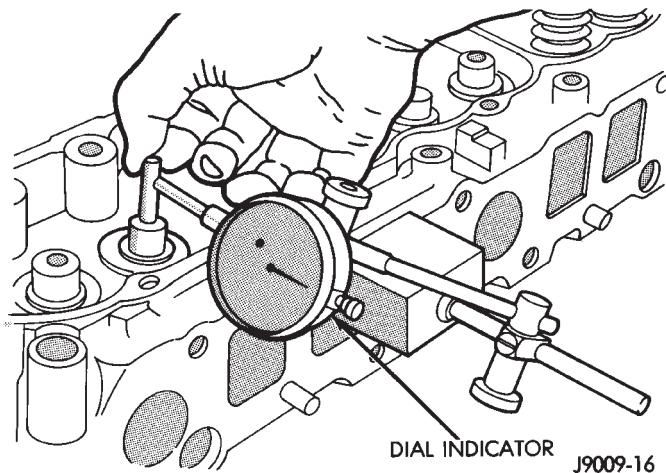
**Fig. 66 Measurement of Valve Guide Bore Diameter**

(4) Remove and measure telescoping gauge with a micrometer.

(5) Repeat the measurement with contacts lengthwise to engine cylinder head.

(6) Compare the crosswise to lengthwise measurements to determine out-of-roundness. If the measurements differ by more than 0.0635 mm (0.0025 in.), ream the guide bore to accommodate an oversize valve stem.

(7) Compare the measured valve guide bore diameter with specifications (7.95-7.97 mm or 0.313-0.314 inch). If the measurement differs from specification by more than 0.076 mm (0.003 inch), ream the guide bore to accommodate an oversize valve stem.

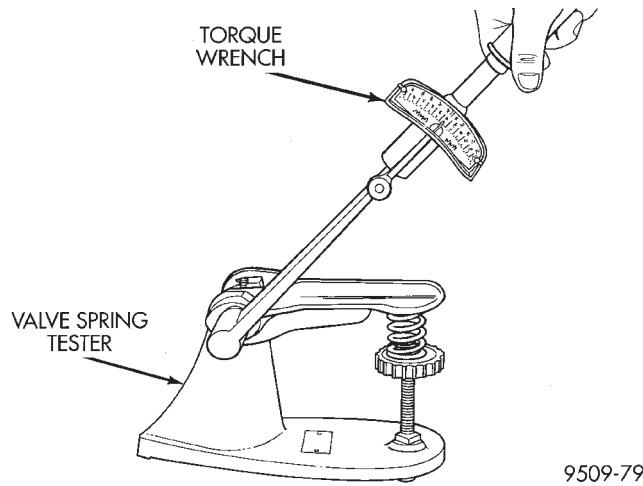

## ALTERNATIVE METHOD:

(1) Use a dial indicator to measure the lateral movement of the valve stem (stem-to-guide clearance). This must be done with the valve installed in its guide and just off the valve seat (Fig. 67).

(2) Correct clearance is 0.025-0.0762 mm (0.001-0.003 inch). If indicated movement exceeds the specification ream the valve guide to accommodate an oversize valve stem.

**NOTE: Valve seats must be ground after reaming the valve guides to ensure that the valve seat is concentric to the valve guide.**

## DISASSEMBLY AND ASSEMBLY (Continued)




**Fig. 67 Measurement of Lateral Movement Of Valve Stem**

## VALVE SPRING TENSION TEST

Use a Universal Valve Spring Tester and a torque wrench to test each valve spring for the specified tension value (Fig. 68).

Replace valve springs that are not within specifications.



**Fig. 68 Valve Spring Tester**

## CYLINDER BLOCK

Remove the Engine Assembly from the vehicle.

## DISASSEMBLY

- (1) Drain the engine oil. Remove and discard the oil filter.
- (2) Remove the water pump from the cylinder block.
- (3) Remove the distributor from the cylinder block.
- (4) Remove the vibration damper.
- (5) Remove the timing case cover and lay the cover upside down.
- (6) Position a drift punch into the slot in the back of the cover and tap the old seal out.

- (7) Remove the timing chain bumper.
- (8) Remove the oil slinger from crankshaft.
- (9) Remove the camshaft retaining bolt and remove the sprockets and chain as an assembly.
- (10) Remove the camshaft.
- (11) Remove the oil pan and gasket.
- (12) Remove the timing chain tensioner.
- (13) Remove the front and rear oil galley plugs.
- (14) Remove the connecting rods and the pistons. Remove the connecting rod and piston assemblies through the top of the cylinder bores.
- (15) Remove the crankshaft.

## ASSEMBLY

- (1) Install the crankshaft.
- (2) Install the connecting rods and the pistons through the top of the cylinder bores.
- (3) Install the front and rear oil galley plugs.
- (4) Install the timing chain tensioner.
- (5) Install the camshaft.
- (6) Install the sprockets and chain as an assembly.
- (7) Install the oil slinger to the crankshaft.
- (8) Install the timing chain bumper.
- (9) Install the timing case cover seal.
- (10) Install the timing case cover.
- (11) Install the oil pan gasket and oil pan.
- (12) Install the vibration damper.
- (13) Install the water pump. Tighten the mounting bolts to 31 N·m (270 in. lbs.) torque.
- (14) Remove the distributor from the cylinder block.
- (15) Lubricate the oil filter seal with clean engine oil. Tighten oil filter to 18 N·m (13 ft. lbs.) torque.
- (16) Install the engine into the vehicle.
- (17) Fill the engine with clean lubrication oil.
- (18) Fill the cooling system.

## CLEANING AND INSPECTION

## ROCKER ARMS AND PUSH RODS

## CLEANING

Clean all the components with cleaning solvent.

Use compressed air to blow out the oil passages in the rocker arms and push rods.

## INSPECTION

Inspect the pivot surface area of each rocker arm. Replace any that are scuffed, pitted, cracked or excessively worn.

Inspect the valve stem tip contact surface of each rocker arm and replace any rocker arm that is deeply pitted.

Inspect each push rod end for excessive wear and replace as required. If any push rod is excessively

## CLEANING AND INSPECTION (Continued)

worn because of lack of oil, replace it and inspect the corresponding hydraulic tappet for excessive wear.

Inspect the push rods for straightness by rolling them on a flat surface or by shining a light between the push rod and the flat surface.

A wear pattern along the length of the push rod is not normal. Inspect the engine cylinder head for obstruction if this condition exists.

## HYDRAULIC TAPPETS

## CLEANING

Clean each tappet assembly in cleaning solvent to remove all varnish, gum and sludge deposits.

## INSPECTION

Inspect for indications of scuffing on the side and base of each tappet body.

Inspect each tappet base for concave wear with a straightedge positioned across the base. If the base is concave, the corresponding lobe on the camshaft is also worn. Replace the camshaft and defective tappets.

## ENGINE CYLINDER HEAD

## CLEANING

Thoroughly clean the engine cylinder head and cylinder block mating surfaces. Clean the intake and exhaust manifold and engine cylinder head mating surfaces. Remove all gasket material and carbon.

Check to ensure that no coolant or foreign material has fallen into the tappet bore area.

Remove the carbon deposits from the combustion chambers and top of the pistons.

## INSPECTION

Use a straightedge and feeler gauge to check the flatness of the engine cylinder head and block mating surfaces.

## CYLINDER BLOCK

## CLEANING

Thoroughly clean the oil pan and engine block gasket surfaces.

Use compressed air to clean out:

- The galley at the oil filter adaptor hole, the filter bypass hole (Fig. 69).
- The front and rear oil galley holes (Fig. 70) (Fig. 71).
- The feed holes for the crankshaft main bearings.

Once the block has been completely cleaned, apply Loctite PST pipe sealant with Teflon 592 to the threads of the front and rear oil galley plugs. Tighten the plugs to 41 N·m (30 ft. lbs.) torque.

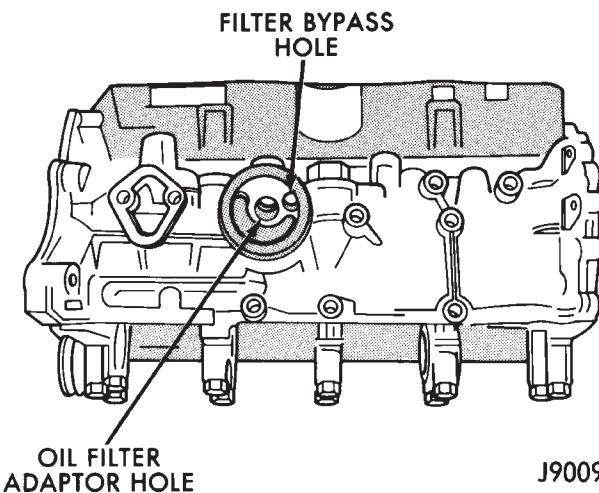



Fig. 69 Oil Filter Adaptor Hole

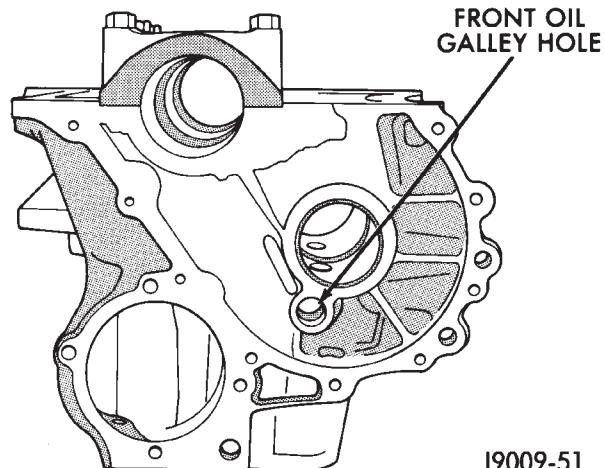
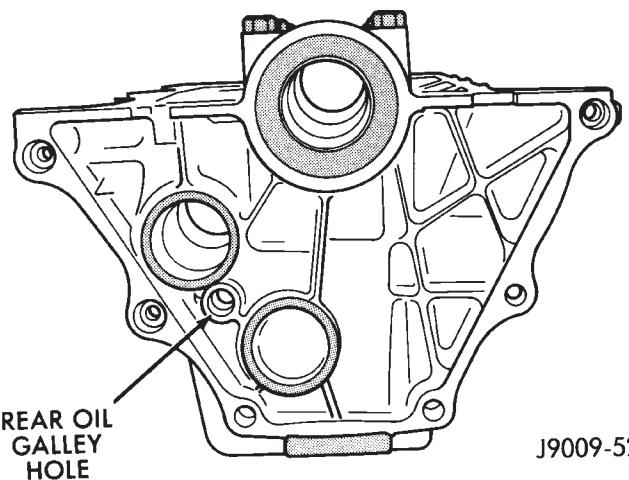
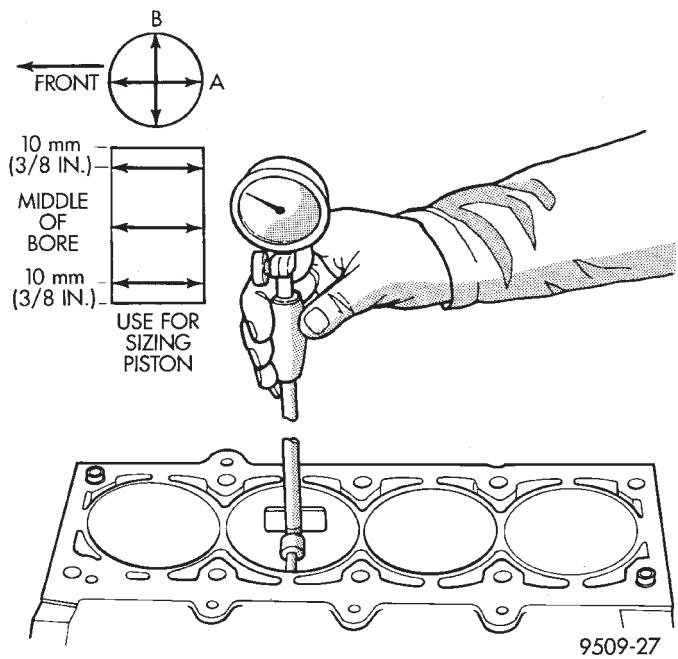



Fig. 70 Front Oil Galley Hole





Fig. 71 Rear Oil Galley Hole

## INSPECTION—CYLINDER BORE

(1) It is mandatory to use a dial bore gauge to measure each cylinder bore diameter (Fig. 72). To correctly select the proper size piston, a cylinder bore

## CLEANING AND INSPECTION (Continued)

gauge, capable of reading in 0.003 mm (.0001in.) INCREMENTS is required. If a bore gauge is not available, do not use an inside micrometer.



**Fig. 72 Cylinder Bore Measurement**

(2) Measure the inside diameter of the cylinder bore at three levels below top of bore. Start perpendicular (across or at 90 degrees) to the axis of the crankshaft and then take two additional readings.

(3) Measure the cylinder bore diameter crosswise to the cylinder block near the top of the bore. Repeat the measurement near the middle of the bore, then repeat the measurement near the bottom of the bore.

(4) Determine taper by subtracting the smaller diameter from the larger diameter.

(5) Rotate measuring device 90° and repeat steps above.

(6) Determine out-of-roundness by comparing the difference between each measurement.

(7) If cylinder bore taper does not exceed 0.025 mm (0.001 inch) and out-of-roundness does not exceed 0.025 mm (0.001 inch), the cylinder bore can be honed. If the cylinder bore taper or out-of-round condition exceeds these maximum limits, the cylinder must be bored and then honed to accept an oversize piston. A slight amount of taper always exists in the cylinder bore after the engine has been in use for a period of time.

#### HONING—CYLINDER BORE

The honing operation should be closely coordinated with the fitting of pistons and rings. This will ensure specified clearances are maintained.



## SPECIFICATIONS (Continued)

Valve Stem-to-Guide Clearance . . . . . 0.025 to 0.076 mm  
(0.001 to 0.003 in.)

Intake Valve Seat Angle . . . . . 44.5°

Exhaust Valve Seat Angle . . . . . 44.5°

Valve Seat Width . . . . . 1.01 to 1.52 mm  
(0.040 to 0.060 in.)

Valve Seat Runout . . . . . 0.064 mm (0.0025 in.)  
Flatness . . . . . 0.03 mm per 25 mm  
(0.001 in. per 1 in.)

Flatness . . . . . 0.05 mm per 152 mm  
(0.002 in. per 6 in.)

Flatness Max. . . . . 0.20 mm for total length  
(0.008 in. for total length)

**ROCKER ARMS, PUSH RODS & TAPPETS**

Rocker Arm Ratio . . . . . 1.6:1

Push Rod Length . . . . . 241.300 to 241.808 mm  
(9.500 to 9.520 in.)

Push Rod Diameter . . . . . 7.92 to 8.00 mm  
(0.312 to 0.315 in.)

Hydraulic Tappet Diameter . . . . . 22.962 to 22.974 mm  
(0.904 to 0.9045 in.)

Tappet-to-Bore Clearance . . . . . 0.025 to 0.063 mm (0.001 to 0.0025 in.)

**VALVES**

Length (Tip-to-Gauge Dimension Line)

Intake . . . . . 124.435 to 125.070 mm  
(4.899 to 4.924 in.)

Length (Tip-to-Gauge Dimension Line)

Exhaust . . . . . 125.120 to 125.755 mm  
(4.927 to 4.952 in.)

Valve Stem Diameter . . . . . 7.899 to 7.925 mm  
(0.311 to 0.312 in.)

Stem-to-Guide Clearance . . . . . 0.025 to 0.076 mm  
(0.001 to 0.003 in.)

Valve Head Diameter—Intake . . . . . 48.387 to 48.641 mm  
(1.905 to 1.915 in.)

Valve Head Diameter—  
Exhaust . . . . . 37.973 to 38.227 mm  
(1.495 to 1.505 in.)

Valve Face Angle—Intake . . . . . 45°

Valve Face Angle—Exhaust . . . . . 45°

Tip Refinishing (Max. Allowable) . . . . . 0.25 mm (0.010 in.)

**VALVE SPRINGS**

Free Length (Approx.) . . . . . 47.65 mm (1.876 in.)

Spring Tension—Valve Closed . . . . . 271 to 307 N  
@ 41.656 mm (61 to 69 lbf. @ 1.64 in.)

Spring Tension—Valve Open . . . . . 818.5 to 871.9 N @  
30.89 mm (184 to 196 lbf @ 1.216 in.)

Inside Diameter . . . . . 21.0 mm to 21.51 mm  
(0.827 to 0.847 in.)

**PISTONS**

Weight (Less Pin) . . . . . 563 to 567 grams  
(19.86 to 20.00 oz.)

**Piston Pin Bore**

(Centerline to Piston Top) . . . . . 40.61 to 40.72 mm  
(1.599 to 1.603 in.)

Piston-to-Bore Clearance . . . . . 0.033 to 0.053 mm  
(0.0013 to 0.0021 in.)

**Piston-to-Bore Clearance**

(Preferred) . . . . . 0.033 to 0.038 mm  
(0.0013 to 0.0015 in.)

**Ring Gap Clearance—**

Top Compression Ring . . . . . 0.229 to 0.610 mm  
(0.0090 to 0.0240 in.)

**Ring Gap Clearance—**

2nd Compression Ring . . . . . 0.483 to 0.965 mm  
(0.0190 to 0.0380 in.)

**Ring Gap Clearance—**

Oil Control Steel Rails . . . . . 0.254 to 1.500 mm  
(0.010 to 0.060 in.)

**Ring Side Clearance—**

Compression Rings . . . . . 0.042 to 0.084 mm  
(0.0017 to 0.0033 in.)

**Ring Side Clearance—**

Oil Control Ring . . . . . 0.06 to 0.21 mm  
(0.0024 to 0.0083 in.)

**Piston Ring Groove Height—**

Compression Rings . . . . . 1.530 to 1.555 mm  
(0.0602 to 0.0612 in.)

**Piston Ring Groove Height—**

Oil Control Ring . . . . . 4.035 to 4.060 mm  
(0.1589 to 0.1598 in.)

**Piston Ring Groove Diameter—**

Compression Rings . . . . . 87.78 to 87.90 mm  
(3.456 to 3.461 in.)

**Piston Ring Groove Diameter—**

Oil Control Ring . . . . . 87.50 to 87.75 mm  
(3.445 to 3.455 in.)

Piston Pin Bore Diameter . . . . . 23.647 to 23.655 mm  
(0.9310 to 0.9313 in.)

Piston Pin Diameter . . . . . 23.637 to 23.640 mm  
(0.9306 to 0.9307 in.)

Piston-to-Pin Clearance . . . . . 0.0076 to 0.0178 mm  
(0.0003 to 0.0007 in.)

**Piston-to-Pin Clearance**

(Preferred) . . . . . 0.015 mm—Loose  
(0.0006 in.—Loose)

**Piston-to-Pin Connecting Rod**

(Press Fit) . . . . . 8.9 kN (2000 lbf.)

**Oil Pump**

Gear-to-Body Clearance (Radial) . . . . . 0.051 to 0.102 mm  
(0.002 to 0.004 in.)

**Gear-to-Body Clearance (Radial)**

(Preferred) . . . . . 0.051 mm  
(0.002 in.)

**Gear End Clearance—**

Plastigage . . . . . 0.051 to 0.152 mm  
(0.002 to 0.006 in.)

## SPECIFICATIONS (Continued)

**Gear End Clearance—Plastigage**  
(Preferred) . . . . . 0.051 mm (0.002 in.)

**Gear End Clearance—**  
Feeler Gauge . . . . . 0.1016 to 0.2032 mm  
(0.004 to 0.008 in.)

**Gear End Clearance—Feeler Gauge**  
(Preferred) . . . . . 0.1778 mm (0.007 in.)

**Oil Pressure**

Min. Pressure (600 rpm) . . . . . 89.6 kPa (13 psi)

At Idle Speed (800 rpm) . . . . . 172 to 241 kPa  
(25 to 35 psi)

At 1600 rpm & Higher . . . . . 255 to 517 kPa  
(37 to 75 psi)

Oil Pressure Relief . . . . . 517 kPa (75 psi)

**TORQUE SPECIFICATIONS****DESCRIPTION** **TORQUE****A/C Compressor Bracket-to-Engine**

Bolts . . . . . 34 N·m (25 ft. lbs.)

**A/C Compressor**

Mounting Bolts . . . . . 27 N·m (20 ft. lbs.)

**A/C Low Pressure Service Valve**

Nut . . . . . 38 N·m (28 ft. lbs.)

**Block Heater**

Nut . . . . . 1.8 N·m (16 in. lbs.)

**Camshaft Sprocket**

Bolt . . . . . 108 N·m (80 ft. lbs.)

**Connecting Rod**

Nuts . . . . . 45 N·m (33 ft. lbs.)

**Converter Plate**

Bolts . . . . . 68 N·m +60° (50 ft. lbs. +60°)

**Cylinder Block**

Drain Plugs . . . . . 41 N·m (30 ft. lbs.)

**Cylinder Head**

Bolts #1-10 & #12-14 . . . . . 149 N·m (110 ft. lbs.)

Bolt #11 . . . . . 135 N·m (100 ft. lbs.)

**Cylinder Head Cover**

Bolts . . . . . 13 N·m (115 in. lbs.)

**Drive Plate-to-Torque Converter**

Bolts . . . . . 54 N·m (40 ft. lbs.)

**Engine Shock Damper**

Stud Nuts . . . . . 23 N·m (17 ft. lbs.)

**Engine Mounts—Front**

Support Bracket Bolts . . . . . 61 N·m (45 ft. lbs.)

Support Bracket Stud Nuts . . . . . 46 N·m (34 ft. lbs.)

Support Cushion Nuts—Right Side . . . . . 65 N·m  
(48 ft. lbs.)

Support Cushion Bolts/Nuts—Left Side . . . . . 41 N·m  
(30 ft. lbs.)

Support Cushion Bracket Bolts . . . . . 54 N·m (40 ft. lbs.)

Support Cushion Bracket Stud Nuts . . . . . 41 N·m  
(30 ft. lbs.)

Support Cushion Thru-Bolt . . . . . 65 N·m (48 ft. lbs.)

**DESCRIPTION** **TORQUE****Engine Mounts—Rear**

Crossmember-to-Sill Bolts  
(Automatic) . . . . . 41 N·m (30 ft. lbs.)

Support Cushion/Crossmember  
Nuts . . . . . 22 N·m (192 in. lbs.)

Support Cushion/Bracket Nuts  
(Manual) . . . . . 46 N·m (34 ft. lbs.)

Transmission Support Bracket Bolt  
(Manual) . . . . . 43 N·m (32 ft. lbs.)

Transmission Support Bracket/  
Cushion Bolt (4WD Auto) . . . . . 75 N·m (55 ft. lbs.)

Transmission Support Adaptor  
Bracket Bolts (2WD Auto) . . . . . 75 N·m (55 ft. lbs.)

**Exhaust Manifold/Pipe**

Nuts . . . . . 27 N·m (20 ft. lbs.)

**Flywheel/Converter Housing**

Bolts . . . . . 38 N·m (28 ft. lbs.)

**Flywheel/Crankshaft**

Bolts . . . . . 143 N·m (105 ft. lbs.)

**Front Cover-to-Block**

Bolts 1/4-20 . . . . . 7 N·m (60 in. lbs.)

Bolts 5/16-18 . . . . . 22 N·m (192 in. lbs.)

**Fuel Pump**

Bolts . . . . . 22 N·m (16 ft. lbs.)

**Generator**

Adjusting Bolt . . . . . 24 N·m (18 ft. lbs.)

Pivot Bolt/Nut . . . . . 38 N·m (28 ft. lbs.)

Mounting Bracket-to-Engine

Bolts . . . . . 38 N·m (28 ft. lbs.)

Mounting/Head Bolts . . . . . 45 N·m (33 ft. lbs.)

**Main Bearing**

Bolts . . . . . 108 N·m (80 ft. lbs.)

**Oil Filter**

Filter . . . . . 18 N·m (13 ft. lbs.)

**Oil Filter**

Connector . . . . . 54 N·m (40 ft. lbs.)

**Oil Galley**

Plug . . . . . 41 N·m (30 ft. lbs.)

**Oil Pan**

1/4-20 Bolts . . . . . 14 N·m (129 in. lbs.)

5/16-18 Bolts . . . . . 18 N·m (156 in. lbs.)

Drain Plug . . . . . 34 N·m (25 ft. lbs.)

**Oil Pump**

Short Attaching Bolts . . . . . 14 N·m (10 ft. lbs.)

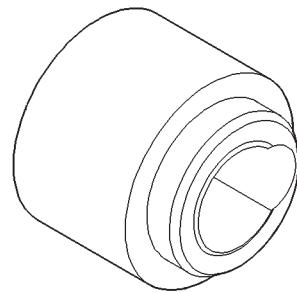
Long Attaching Bolts . . . . . 23 N·m (17 ft. lbs.)

Cover Bolts . . . . . 8 N·m (70 in. lbs.)

**Power Steering Pump Pressure Hose**

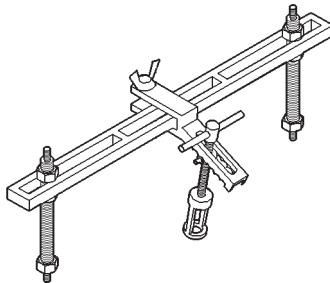
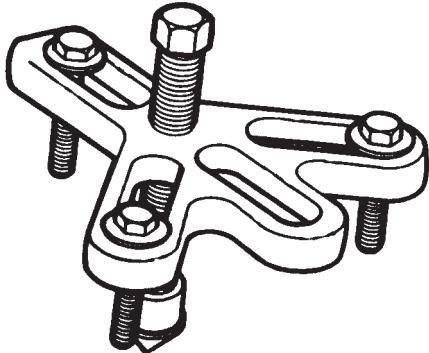
Nut . . . . . 52 N·m (38 ft. lbs.)

**Rocker Arm Assembly-to-Cylinder Head**


Capscrews . . . . . 28 N·m (21 ft. lbs.)

**Spark Plugs**

Plugs . . . . . 37 N·m (27 ft. lbs.)



## SPECIFICATIONS (Continued)

| DESCRIPTION               | TORQUE                |
|---------------------------|-----------------------|
| <b>Starting Motor</b>     |                       |
| Mounting Bolts            | 45 N·m (33 ft. lbs.)  |
| <b>Thermostat Housing</b> |                       |
| Bolts                     | 18 N·m (13 ft. lbs.)  |
| <b>Vibration Damper</b>   |                       |
| Bolts                     | 108 N·m (80 ft. lbs.) |
| <b>Water Pump/Block</b>   |                       |
| Bolts                     | 31 N·m (270 in. lbs.) |

*Timing Case Cover Alignment and Seal Tool 6139*

## SPECIAL TOOLS

## 2.5L ENGINE

*Valve Spring Compressor Tool MD-998772A**Vibration Damper Removal Tool 7697*

## 3.9L ENGINE

### INDEX

| page                                                                                                                                           | page |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>GENERAL INFORMATION</b>                                                                                                                     |      |
| OIL PUMP PRESSURE .....                                                                                                                        | 55   |
| PISTON AND CONNECTING ROD ASSEMBLY .....                                                                                                       | 55   |
| VALVES AND VALVE SPRINGS .....                                                                                                                 | 55   |
| <b>DESCRIPTION AND OPERATION</b>                                                                                                               |      |
| ENGINE COMPONENTS .....                                                                                                                        | 58   |
| ENGINE DESCRIPTION .....                                                                                                                       | 56   |
| ENGINE LUBRICATION SYSTEM .....                                                                                                                | 56   |
| <b>SERVICE PROCEDURES</b>                                                                                                                      |      |
| CONNECTING ROD BEARINGS .....                                                                                                                  | 60   |
| CRANKSHAFT MAIN BEARINGS .....                                                                                                                 | 61   |
| CRANKSHAFT .....                                                                                                                               | 61   |
| FITTING PISTONS .....                                                                                                                          | 59   |
| FITTING RINGS .....                                                                                                                            | 59   |
| TIMING CHAIN STRETCH .....                                                                                                                     | 59   |
| VALVE TIMING .....                                                                                                                             | 58   |
| <b>REMOVAL AND INSTALLATION</b>                                                                                                                |      |
| CAMSHAFT BEARINGS .....                                                                                                                        | 73   |
| CAMSHAFT .....                                                                                                                                 | 72   |
| CRANKSHAFT MAIN BEARINGS .....                                                                                                                 | 73   |
| CRANKSHAFT REAR OIL SEALS .....                                                                                                                | 78   |
| CRANKSHAFT .....                                                                                                                               | 76   |
| CYLINDER HEAD COMPONENTS—IN VEHICLE                                                                                                            |      |
| SERVICE .....                                                                                                                                  | 66   |
| CYLINDER HEAD COVER .....                                                                                                                      | 66   |
| CYLINDER HEADS .....                                                                                                                           | 67   |
| DISTRIBUTOR DRIVE SHAFT BUSHING .....                                                                                                          | 69   |
| ENGINE ASSEMBLY .....                                                                                                                          | 65   |
| ENGINE CORE OIL AND CAMSHAFT PLUGS .....                                                                                                       | 79   |
| ENGINE FRONT MOUNTS .....                                                                                                                      | 61   |
| <b>GENERAL INFORMATION</b>                                                                                                                     |      |
| <b>VALVES AND VALVE SPRINGS</b>                                                                                                                |      |
| The valves are arranged in-line and are inclined 18°. The rocker pivot support and the valve guides are cast integral with the heads.          |      |
| <b>OIL PUMP PRESSURE</b>                                                                                                                       |      |
| The MINIMUM oil pump pressure is 41.4 kPa (6 psi) at curb idle. The MAXIMUM oil pump pressure is 207-552 kPa (30-80 psi) at 3,000 RPM or more. |      |
| <b>CAUTION: If oil pressure is ZERO at curb idle, DO NOT run engine at 3,000 RPM.</b>                                                          |      |
| ENGINE REAR SUPPORT .....                                                                                                                      | 63   |
| FRONT CRANKSHAFT OIL SEAL .....                                                                                                                | 77   |
| HYDRAULIC TAPPETS .....                                                                                                                        | 68   |
| OIL PAN .....                                                                                                                                  | 74   |
| OIL PUMP .....                                                                                                                                 | 75   |
| PISTON AND CONNECTING ROD ASSEMBLY .....                                                                                                       | 75   |
| TIMING CHAIN COVER .....                                                                                                                       | 70   |
| TIMING CHAIN .....                                                                                                                             | 72   |
| VALVES AND VALVE SPRINGS—CYLINDER                                                                                                              |      |
| HEAD REMOVED .....                                                                                                                             | 68   |
| VIBRATION DAMPER .....                                                                                                                         | 70   |
| <b>DISASSEMBLY AND ASSEMBLY</b>                                                                                                                |      |
| CYLINDER BLOCK .....                                                                                                                           | 83   |
| HYDRAULIC TAPPETS .....                                                                                                                        | 80   |
| OIL PUMP .....                                                                                                                                 | 82   |
| VALVES, GUIDES AND SPRINGS .....                                                                                                               | 80   |
| <b>CLEANING AND INSPECTION</b>                                                                                                                 |      |
| CRANKSHAFT INSPECTION OF JOURNALS .....                                                                                                        | 83   |
| CYLINDER BLOCK .....                                                                                                                           | 85   |
| CYLINDER HEAD COVER .....                                                                                                                      | 83   |
| CYLINDER HEAD .....                                                                                                                            | 83   |
| OIL PAN .....                                                                                                                                  | 85   |
| OIL PUMP .....                                                                                                                                 | 84   |
| PISTON AND CONNECTING ROD INSPECTION .....                                                                                                     | 83   |
| <b>SPECIFICATIONS</b>                                                                                                                          |      |
| 3.9L ENGINE .....                                                                                                                              | 87   |
| TORQUE SPECIFICATIONS .....                                                                                                                    | 90   |
| <b>SPECIAL TOOLS</b>                                                                                                                           |      |
| SPECIAL TOOLS .....                                                                                                                            | 91   |

### PISTON AND CONNECTING ROD ASSEMBLY

The pistons are elliptically turned so that the diameter at the pin boss is less than its diameter across the thrust face. This allows for expansion under normal operating conditions. Under operating temperatures, expansion forces the pin bosses away from each other, causing the piston to assume a more nearly round shape.

All pistons are machined to the same weight, regardless of size, to maintain piston balance.

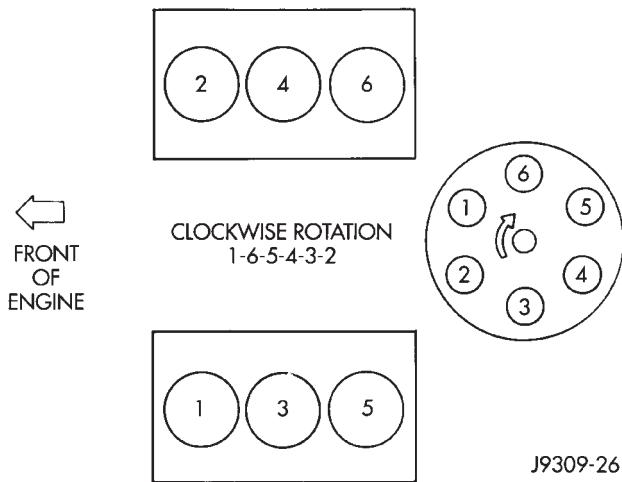
The piston pin rotates in the piston only and is retained by the press interference fit of the piston pin in the connecting rod.

## DESCRIPTION AND OPERATION

### ENGINE DESCRIPTION

The 3.9 Liter (238 CID) six-cylinder engine is a V-Type, lightweight, single cam, overhead valve engine with hydraulic roller tappets (Fig. 1).

|                           |                                    |
|---------------------------|------------------------------------|
| Engine Type .....         | 90° V-6 OHV                        |
| Bore and Stroke .....     | 99.3 x 84.0 mm (3.91 x 3.31 in.)   |
| Displacement .....        | 3.9L (238 cu. in.)                 |
| Compression Ratio .....   | 9.1:1                              |
| Torque .....              | 312 N•m (230 ft. lbs.) @ 3,200 rpm |
| Firing Order .....        | 1-6-5-4-3-2                        |
| Lubrication .....         | Pressure Feed-Full Flow Filtration |
| Engine Oil Capacity ..... | 3.8L (4.0 Qts) with Filter         |
| Cooling System .....      | Liquid Cooled-Forced Circulation   |
| Cooling Capacity .....    | 13.25L (14.0 Qts)                  |
| Max. Capacity .....       | 13.5L (14.3 Qts)                   |
| Cylinder Block .....      | Cast Iron                          |
| Crankshaft .....          | Nodular Iron                       |
| Cylinder Head .....       | Cast Iron                          |
| Combustion Chambers ..... | "Fast Burn" Design                 |
| Camshaft .....            | Nodular Cast Iron                  |
| Pistons .....             | Aluminum Alloy w/Strut             |
| Connecting Rods .....     | Forged Steel                       |


J9409-127

**Fig. 1 Engine Description**

This engine is designed for unleaded fuel.

Engine lubrication system consists of a rotor type oil pump and a full flow oil filter.

The cylinders are numbered from front to rear; 1, 3, 5 on the left bank and 2, 4, 6 on the right bank. The firing order is 1-6-5-4-3-2 (Fig. 2).



**Fig. 2 Firing Order**

The engine serial number is stamped into a machined pad located on the left, front corner of the cylinder block. When component part replacement is

necessary, use the engine type and serial number for reference (Fig. 3).

**X M 3.9L T XXXX XXXXXXXX**

X = Last Digit of Model Year

M = Plant - M Mound Road

S Saltillo

T Trenton

K Toluca

3.9L = Engine Displacement

T = Usage - T Truck

XXXX = Month/Day

XXXXXXX = Serial Code - Last 8 Digits of VIN No.

J9209-72

**Fig. 3 Engine Identification Number**

### ENGINE LUBRICATION SYSTEM

A gear-type positive displacement pump is mounted at the underside of the rear main bearing cap. The pump draws oil through the screen and inlet tube from the sump at the rear of the oil pan. The oil is driven between the drive and idler gears and pump body, then forced through the outlet to the block. An oil gallery in the block channels the oil to the inlet side of the full flow oil filter. After passing through the filter element, the oil passes from the center outlet of the filter through an oil gallery that channels the oil up to the main gallery, which extends the entire length on the right side of the block. The oil then goes down to the No. 1 main bearing, back up to the left side of the block, and into the oil gallery on the left side of the engine.

Galleries extend downward from the main oil gallery to the upper shell of each main bearing. The crankshaft is drilled internally to pass oil from the main bearing journals to the connecting rod journals. Each connecting rod bearing has half a hole in it, oil passes through the hole when the rods rotate and the hole lines up, oil is then thrown off as the rod rotates. This oil throwoff lubricates the camshaft lobes, distributor drive gear, cylinder walls, and piston pins.

The hydraulic valve tappets receive oil directly from the main oil gallery. The camshaft bearings receive oil from the main bearing galleries. The front camshaft bearing journal passes oil through the camshaft sprocket to the timing chain. Oil drains back to the oil pan under the No. 1 main bearing cap.

The oil supply for the rocker arms and bridged pivot assemblies is provided by the hydraulic valve tappets, which pass oil through hollow push rods to a hole in the corresponding rocker arm. Oil from the rocker arm lubricates the valve train components. The oil then passes down through the push rod guide holes and the oil drain-back passages in the cylinder head, past the valve tappet area, and then returns to the oil pan.

## DESCRIPTION AND OPERATION (Continued)

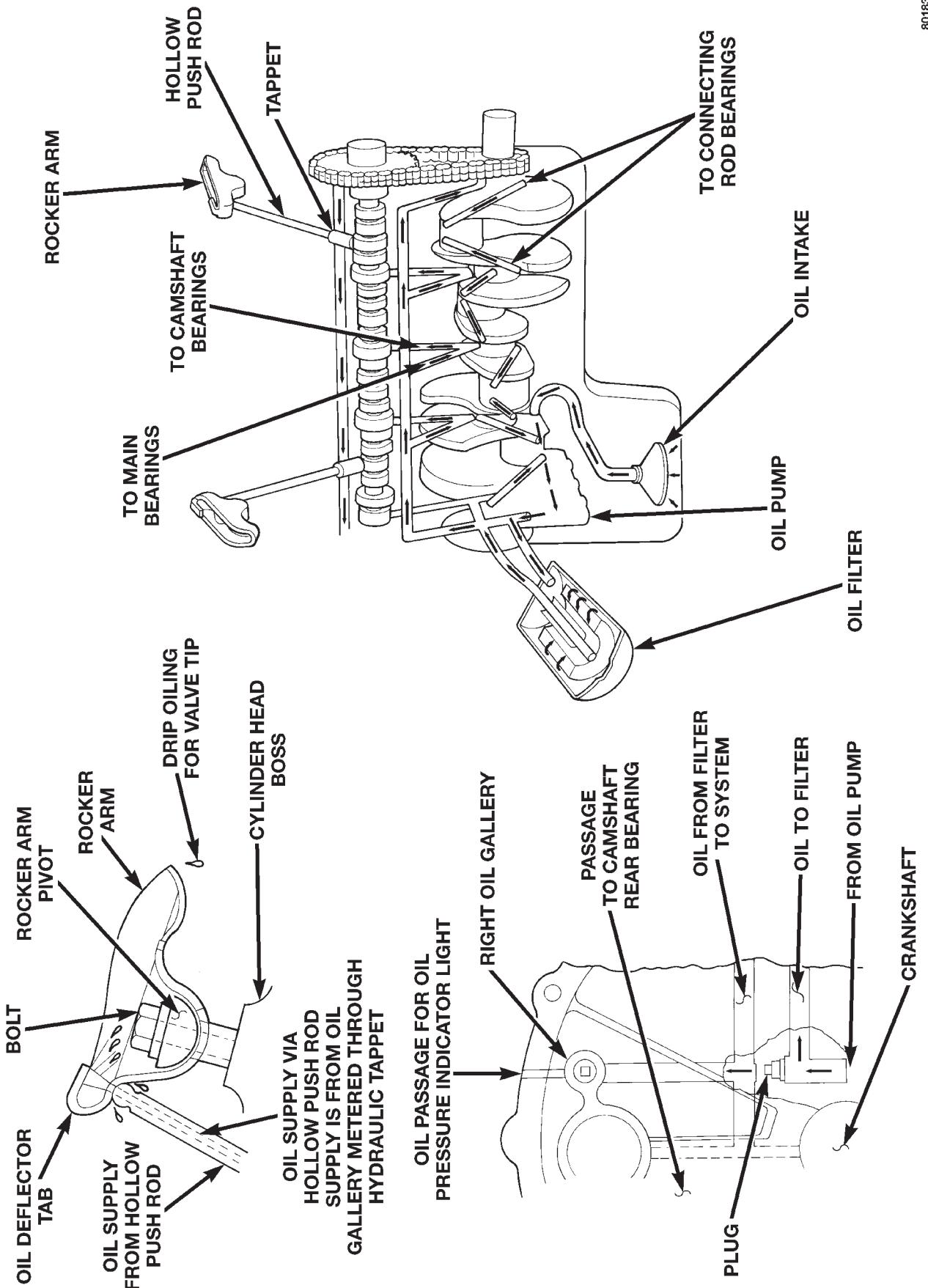
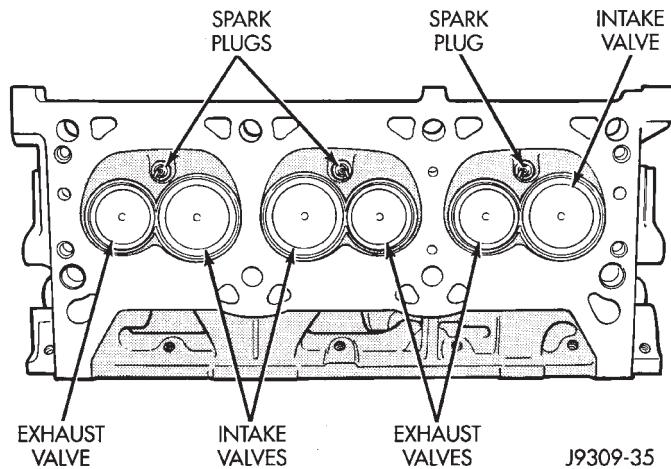



Fig. 4 Oil Lubrication System

## DESCRIPTION AND OPERATION (Continued)


## ENGINE COMPONENTS

## CYLINDER HEAD COVER

A steel-backed silicone gasket is used with the cylinder head cover. This gasket is reusable.

## CYLINDER HEADS

The alloy cast iron cylinder heads are held in place by eight bolts. The spark plugs are located in at peak of the wedge between the valves (Fig. 5).



**Fig. 5 Cylinder Head Assembly**

## VALVES AND VALVE SPRINGS

The valves are arranged in-line and inclined 18°. The rocker pivot support and the valve guides are cast integral with the heads.

## OIL PUMP

## OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 41.4 kPa (6 psi) at curb idle. The MAXIMUM oil pump pressure is 207-552 kPa (30-80 psi) at 3,000 RPM or more.

**CAUTION: If oil pressure is ZERO at curb idle, DO NOT run engine at 3,000 RPM.**

## PISTON AND CONNECTING ROD ASSEMBLY

The pistons are elliptically turned so that the diameter at the pin boss is less than its diameter across the thrust face. This allows for expansion under normal operating conditions. Under operating temperatures, expansion forces the pin bosses away from each other, causing the piston to assume a more nearly round shape.

All pistons are machined to the same weight, regardless of size, to maintain piston balance.

The piston pin rotates in the piston only and is retained by the press interference fit of the piston pin in the connecting rod.

## CRANKSHAFT

A crankshaft that has undersize journals is stamped with 1/4 inch letters near the notch of the No. 6 crankshaft counterweight.

**FOR EXAMPLE:** R2 stamped on the No. 6 crankshaft counterweight indicates that the No. 2 rod journal is 0.025 mm (0.001 in) undersize. M4 indicates that the No. 4 main journal is 0.025 mm (0.001 in) undersize. R3 M2 indicates that the No. 3 rod journal and the No. 2 main journal are both 0.025 mm (0.001 in) undersize.

When a crankshaft is replaced, all main and connecting rod bearings, should be replaced with new bearings. Therefore, selective fitting of the bearings is not required when a crankshaft and bearings are replaced.

## CRANKSHAFT MAIN BEARINGS

Bearing caps are NOT interchangeable and should be marked at removal to ensure correct assembly. Upper and lower bearing halves are NOT interchangeable. Lower main bearing halves of No. 1 and 3 are interchangeable.

Upper and lower No. 2 bearing halves are flanged to carry the crankshaft thrust loads. They are NOT interchangeable with any other bearing halves in the engine. Bearing shells are available in standard and the following undersizes: 0.25 mm (0.001 in.), 0.051 mm (0.002 in.), 0.076 mm (0.003 in.), 0.254 mm (0.010 in.) and 0.305 mm (0.012 in.). Never install an undersize bearing that will reduce clearance below specifications.

## CRANKSHAFT REAR OIL SEALS

The service seal is a two piece, Viton seal. The upper seal half can be installed with crankshaft removed from engine or with crankshaft installed. When a new upper seal is installed, install a new lower seal. The lower seal half can be installed only with the rear main bearing cap removed.

## SERVICE PROCEDURES

## VALVE TIMING

(1) Turn crankshaft until the No. 6 exhaust valve is closing and No. 6 intake valve is opening.

(2) Insert a 6.350 mm (1/4 in.) spacer between rocker arm pad and stem tip of No. 1 intake valve. Allow spring load to bleed tappet down giving, in effect, a solid tappet.

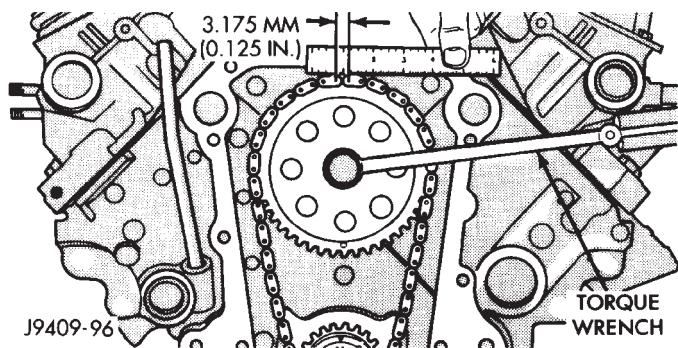
(3) Install a dial indicator so plunger contacts valve spring retainer as nearly perpendicular as possible. Zero the indicator.

(4) Rotate the crankshaft clockwise (normal running direction) until the valve has lifted 0.254 mm (0.010 inch). The timing of the crankshaft should

## SERVICE PROCEDURES (Continued)

now read from 10° before top dead center to 2° after top dead center. Remove spacer.

**CAUTION: DO NOT turn crankshaft any further clockwise, as valve spring might bottom and result in serious damage.**


- (5) If reading is not within specified limits:
  - (a) Check sprocket index marks.
  - (b) Inspect timing chain for wear.
  - (c) Check accuracy of DC mark on timing indicator.

## TIMING CHAIN STRETCH

(1) Place a scale next to the timing chain so that any movement of the chain can be measured.

(2) Place a torque wrench and socket over cam-shaft sprocket attaching bolt. Apply torque in the direction of crankshaft rotation to take up slack; 41 N·m (30 ft. lbs.) torque with cylinder head installed or 20 N·m (15 ft. lbs.) torque with cylinder head removed. With torque applied to the camshaft sprocket bolt, crankshaft should not be permitted to move. It may be necessary to block the crankshaft to prevent rotation.

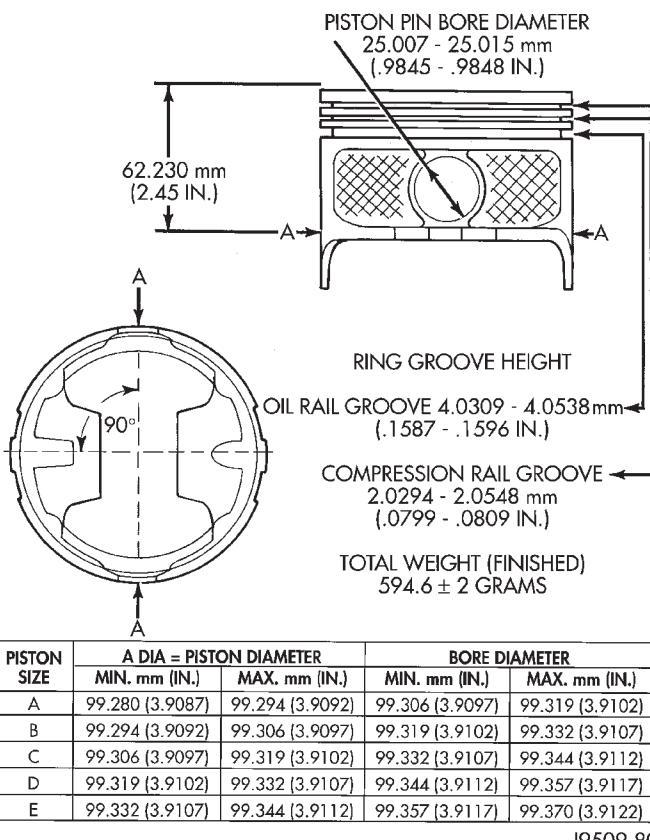
(3) Hold a scale with dimensional reading even with the edge of a chain link. With cylinder heads installed, apply 14 N·m (30 ft. lbs.) torque in the reverse direction. With the cylinder heads removed, apply 20 N·m (15 ft. lbs.) torque in the reverse direction. Note the amount of chain movement (Fig. 6).



**Fig. 6 Measuring Timing Chain Wear and Stretch**

(4) Install a new timing chain, if its movement exceeds 3.175 mm (1/8 inch).

## FITTING PISTONS


Check the cylinder block bore for out-of-round, taper, scoring, or scuffing.

Check the pistons for taper and elliptical shape before they are fitted into the cylinder bore (Fig. 7).

Piston and cylinder wall must be clean and dry. Specified clearance between the piston and the cylinder wall is 0.013-0.038 mm (0.0005-0.0015 in.) at 21°C (70°F).

Piston diameter should be measured at the top of skirt, 90° to piston pin axis. Cylinder bores should be measured halfway down the cylinder bore and transverse to the engine crankshaft center line.

Pistons and cylinder bores should be measured at normal room temperature, 21°C (70°F).



J9509-80

**Fig. 7 Piston Measurements**

## FITTING RINGS

(1) Measurement of end gaps:

(a) Measure piston ring gap 2 in. from bottom of cylinder bore. An inverted piston can be used to push the rings down to ensure positioning rings squarely in the cylinder bore before measuring.

(b) Insert feeler gauge in the gap. The top compression ring gap should be between 0.254-0.508 mm (0.010-0.020 in.). The second compression ring gap should be between 0.508-0.762 mm (0.020-0.030 in.). The oil ring gap should be 0.254-1.270 mm (0.010-0.050 in.).

(c) Rings with insufficient end gap may be properly filed to the correct dimension. Rings with excess gaps should not be used.

(2) Install rings, and confirm ring side clearance:

(a) Install oil rings being careful not to nick or scratch the piston. Install the oil control rings according to instructions in the package. It is not necessary to use a tool to install the upper and

## SERVICE PROCEDURES (Continued)

lower rails. Insert oil rail spacer first, then side rails.

(b) Install the second compression rings using Installation Tool C-4184. The compression rings must be installed with the identification mark face up (toward top of piston) and chamfer facing down. An identification mark on the ring is a drill point, a stamped letter "O", an oval depression, or the word "TOP" (Fig. 8) (Fig. 10).

(c) Using a ring installer, install the top compression ring with the chamfer facing up (Fig. 9) (Fig. 10). An identification mark on the ring is a drill point, a stamped letter "O", an oval depression or the word "TOP" facing up.

(d) Measure side clearance between piston ring and ring land. Clearance should be 0.074-0.097 mm (0.0029-0.0038 in.) for the compression rings. The steel rail oil ring should be free in groove, but should not exceed 0.246 mm (0.0097 in.) side clearance.

(e) Pistons with insufficient, or excessive, side clearance should be replaced.

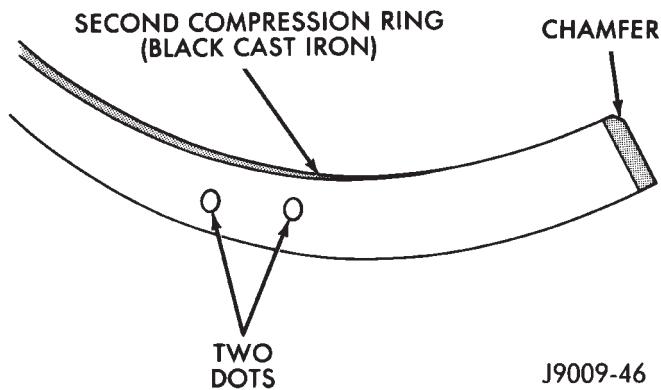



Fig. 8 Second Compression Ring Identification (Typical)

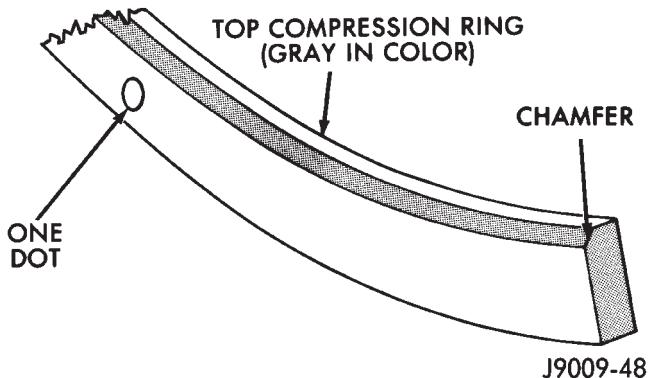



Fig. 9 Top Compression Ring Identification (Typical)

(3) Orient the rings:

(a) Arrange top compression ring 90° counter-clockwise from the oil ring rail gap (Fig. 11).

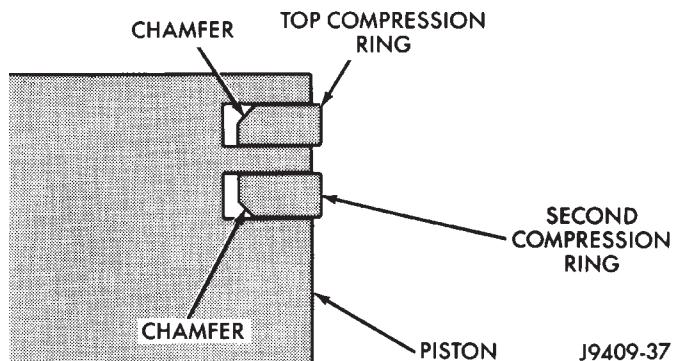



Fig. 10 Compression Ring Chamfer Location (Typical)

(b) Arrange second compression ring 90° clockwise from the oil ring rail gap (Fig. 11).

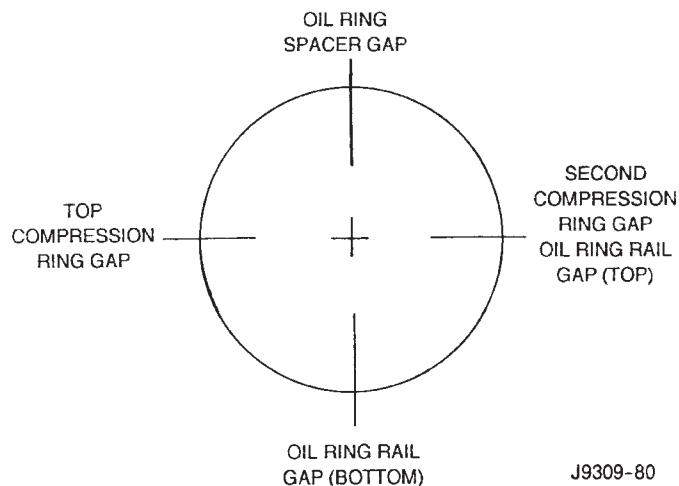



Fig. 11 Proper Ring Installation

## CONNECTING ROD BEARINGS

Fit all rods on a bank until completed. DO NOT alternate from one bank to another, because connecting rods and pistons are not interchangeable from one bank to another.

The bearing caps are not interchangeable and should be marked at removal to ensure correct assembly.

Each bearing cap has a small V-groove across the parting face. When installing the lower bearing shell, be certain that the V-groove in the shell is in line with the V-groove in the cap. This provides lubrication of the cylinder wall in the opposite bank.

The bearing shells must be installed so that the tangs are in the machined grooves in the rods and caps.

Limits of taper or out-of-round on any crankshaft journals should be held to 0.025 mm (0.001 in.). Bearings are available in 0.025 mm (0.001 in.), 0.051 mm (0.002 in.), 0.076 mm (0.003 in.), 0.254 mm (0.010 in.) and 0.305 mm (0.012 in.) undersize. **Install the bearings in pairs. DO NOT use a new bearing half with an old bearing half. DO NOT file the rods or bearing caps.**

## SERVICE PROCEDURES (Continued)

## CRANKSHAFT MAIN BEARINGS

Bearing caps are NOT interchangeable and should be marked at removal to ensure correct assembly. Upper and lower bearing halves are NOT interchangeable. Lower main bearing halves of No. 1 and 3 are interchangeable.

Upper and lower No. 2 bearing halves are flanged to carry the crankshaft thrust loads. They are NOT interchangeable with any other bearing halves in the engine (Fig. 12). Bearing shells are available in standard and the following undersizes: 0.25 mm (0.001 in.), 0.051 mm (0.002 in.), 0.076 mm (0.003 in.), 0.254 mm (0.010 in.) and 0.305 mm (0.012 in.). Never install an undersize bearing that will reduce clearance below specifications.

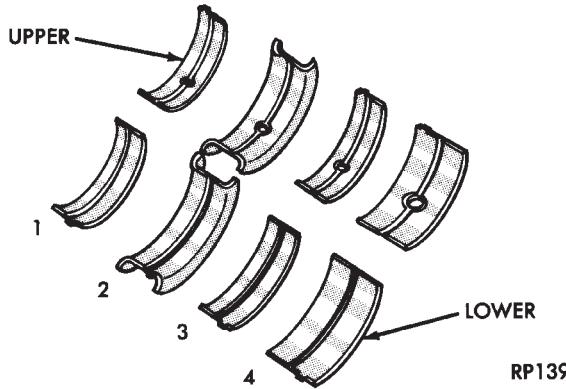



Fig. 12 Main Bearing Identification

## CRANKSHAFT

A crankshaft that has undersize journals will be stamped with 1/4 inch letters near the notch of the No.6 crankshaft counterweight (Fig. 13).

**FOR EXAMPLE:** R2 stamped on the No. 6 crankshaft counterweight indicates that the No. 2 rod journal is 0.025 mm (0.001 in.) undersize. M4 indicates that the No. 4 main journal is 0.025 mm (0.001 in.) undersize. R3 M2 indicates that the No. 3 rod journal and the No. 2 main journal are 0.025 mm (0.001 in.) undersize.

When a crankshaft is replaced, all main and connecting rod bearings should be replaced with new bearings. Therefore, selective fitting of the bearings is not required when a crankshaft and bearings are replaced.

## REMOVAL AND INSTALLATION

## ENGINE FRONT MOUNTS

## REMOVAL—2WD

- (1) Disconnect the negative cable from the battery.
- (2) Raise hood and position fan to assure clearance for radiator top tank and hose.

| Undersize Journal          | Identification Stamp |
|----------------------------|----------------------|
| ROD - 0.025mm (0.001 in.)  | R1-R2-R3-Etc.        |
| MAIN - 0.025mm (0.001 in.) | M1-M2-M3 or M4       |

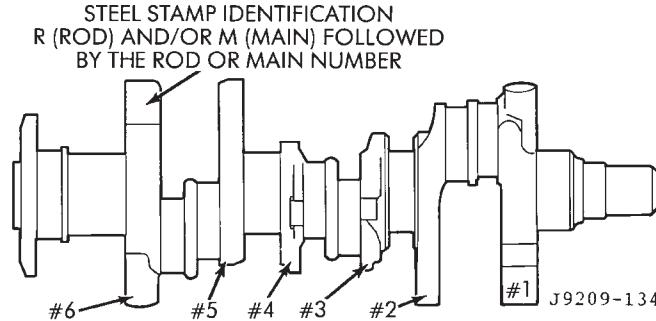



Fig. 13 Location of Crankshaft Identification

**CAUTION:** DO NOT lift the engine by the intake manifold.

- (3) Install engine lifting fixture.
- (4) Raise vehicle on hoist.
- (5) Remove bolts and washers holding front support insulator assembly and the strut to the engine block (Fig. 14) (Fig. 15). Move the strut out of the way.
- (6) Remove the insulator thru-bolt (Fig. 14) (Fig. 15).
- (7) Raise engine with lifting fixture SLIGHTLY. Remove the insulator assembly.

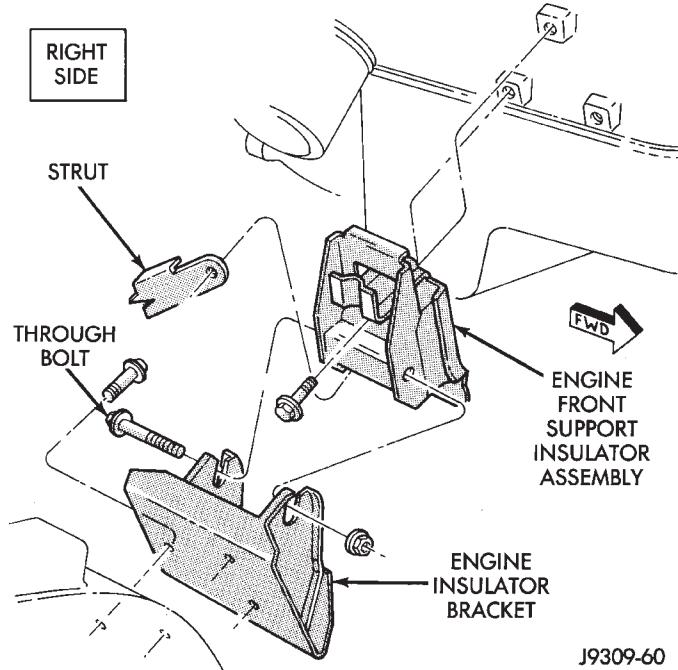
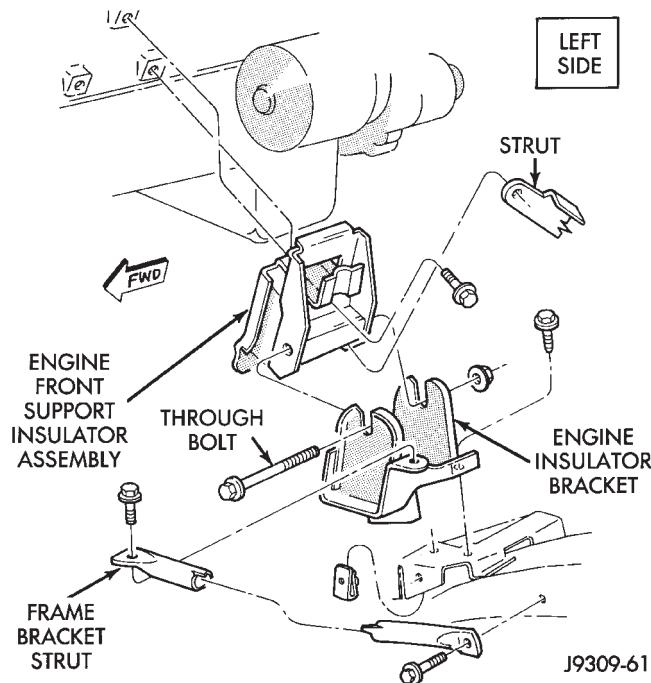




Fig. 14 Engine Right Front Insulator Mount—2WD Vehicles

## REMOVAL AND INSTALLATION (Continued)



**Fig. 15 Engine Left Front Insulator Mount—2WD Vehicles**

## INSTALLATION—2WD

(1) If the engine insulator bracket was removed, install the bracket to the crossmember. Tighten the bolts to 68 N·m (50 ft. lbs.) torque.

(2) With the engine raised SLIGHTLY, position insulator assembly onto the engine block (Fig. 14) (Fig. 15). Position the strut onto the insulator assembly and install bolts and washers. Tighten the bolts to 41 N·m (30 ft. lbs.) torque.

(3) Lower engine with lifting fixture while guiding insulator assembly into the engine insulator bracket.

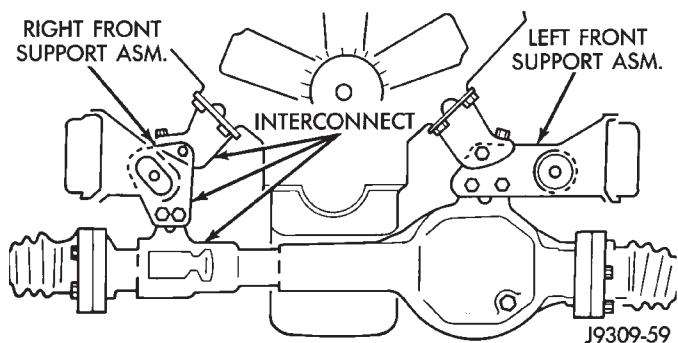
(4) Install insulator to bracket thru-bolt. Tighten the thru-bolt nut to 68 N·m (50 ft. lbs.) torque.

(5) Remove lifting fixture.

(6) Connect the negative cable to the battery.

## REMOVAL—4WD

On 4-WD vehicles the engine front support brackets attach directly to engine block and the axle housing. The brackets provide a solid interconnection for these units (Fig. 16). Engine and front axle must be supported during any service procedures involving the front support assemblies.


(1) Disconnect the negative cable from the battery.

(2) Position fan to assure clearance for radiator top tank and hose.

**CAUTION: DO NOT lift the engine by the intake manifold.**

(3) Install engine lifting fixture.

(4) Raise vehicle on hoist.



**Fig. 16 Engine and Axle Interconnect—4WD Vehicles**

(5) Install front axle support fixture.

(6) On the LEFT SIDE, remove the bolt that attaches the engine, pinion nose, transmission bracket and the engine front support bracket to the engine block (Fig. 17). On the RIGHT SIDE, remove the bolt that attaches the engine, disconnect housing, transmission bracket and the engine front support bracket to the engine block (Fig. 18).

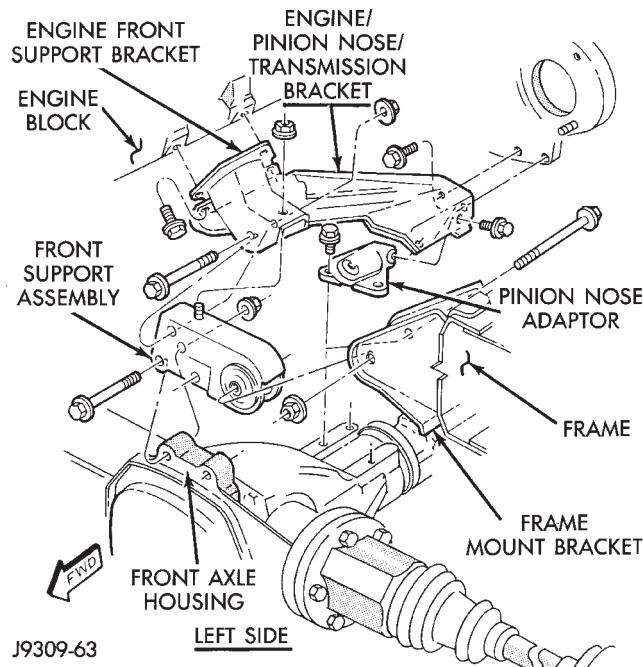
(7) Remove the thru-bolt and nut from the front support assembly and the engine front support bracket. Remove the stud nut and washer assembly attaching front support assembly to the engine front support bracket (Fig. 17) (Fig. 18).

(8) Remove thru-bolts attaching front support assembly to front axle housing (Fig. 17) or axle disconnect housing (Fig. 18).

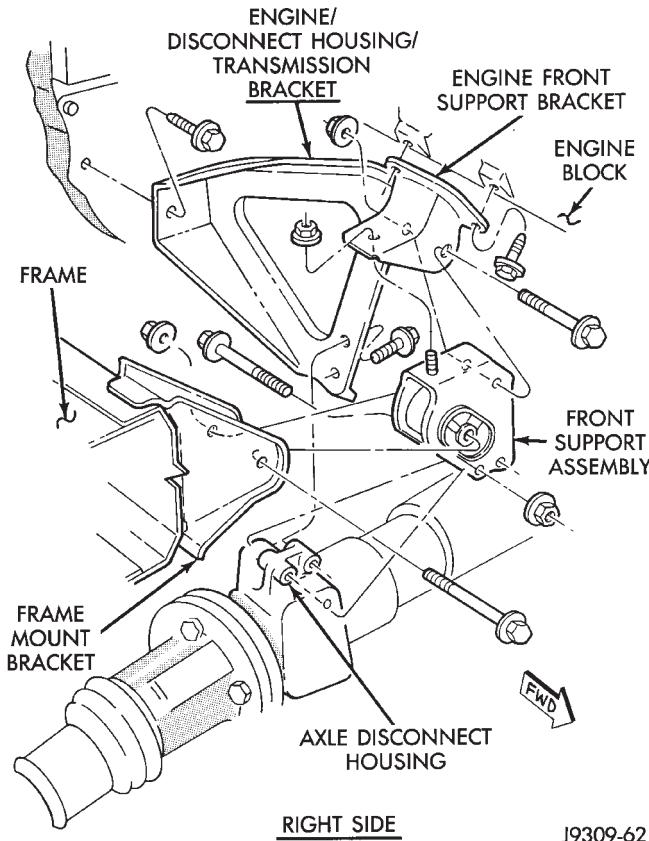
(9) Remove front support assembly to frame mount bracket thru-bolt. Raise engine slightly to clear front support assembly stud (Fig. 17) (Fig. 18). Remove the front support assembly.

## INSTALLATION—4WD

(1) Position front support assembly in frame mount bracket and align with axle housing (left side) attaching points or axle disconnect housing (right side). Install the thru-bolts (Fig. 17) (Fig. 18). Tighten the nuts to 102 N·m (75 ft. lbs.) torque.


(2) Lower engine while guiding engine front support bracket onto front support assembly stud. Install stud nut and thru-bolt (Fig. 17) (Fig. 18). Tighten stud nut to 41 N·m (30 ft. lbs.) torque. Tighten the thru-bolt nut to 102 N·m (75 ft. lbs.) torque.

(3) On the LEFT SIDE, position the bolt that attaches the engine, pinion nose, transmission bracket and the engine front support bracket to the engine block (Fig. 17). On the RIGHT SIDE, position the bolt that attaches the engine, disconnect housing, transmission bracket and the engine front support bracket to the engine block (Fig. 18). Tighten the bolts to 41 N·m (30 ft. lbs.) torque.


(4) Remove the front axle support fixture.

(5) Lower the vehicle.

## REMOVAL AND INSTALLATION (Continued)



**Fig. 17 Engine and Axle Front Support—4WD Vehicles**

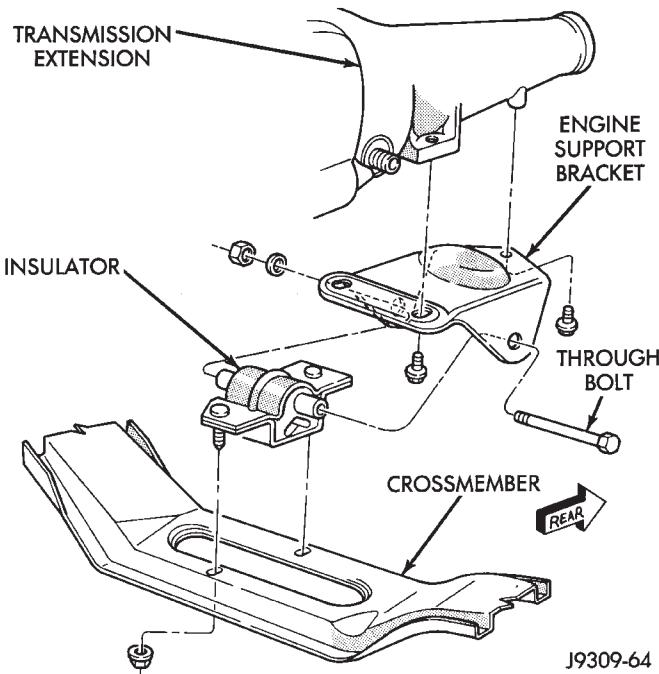


**Fig. 18 Engine and Axle Front Support—4WD Vehicles**

- (6) Remove engine lifting fixture.
- (7) Connect the negative cable to the battery.

## ENGINE REAR SUPPORT

## REMOVAL—2WD


- (1) Disconnect the negative cable from the battery.
- (2) Raise the vehicle on a hoist.
- (3) Support the transmission with a jack.

## NOTE: AUTOMATIC TRANSMISSION

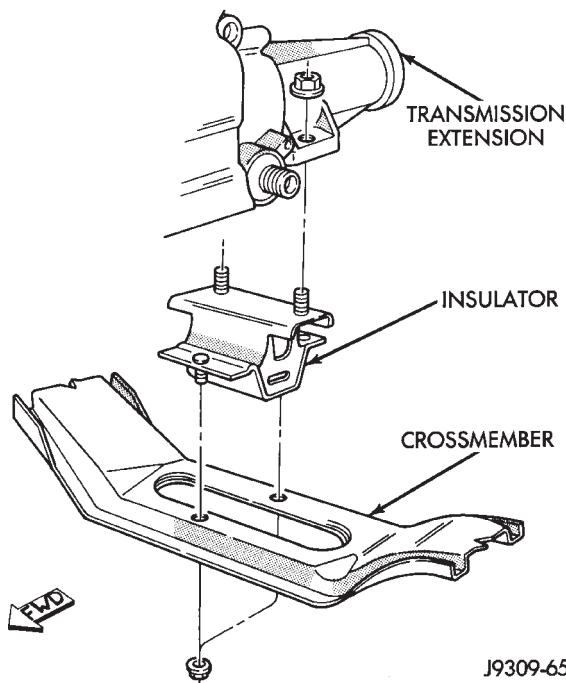
- Remove engine support bracket—insulator thru-bolt (Fig. 19).
- Raise the transmission and engine slightly.
- Remove stud nuts attaching insulator to cross-member (Fig. 19). Remove insulator.

## NOTE: MANUAL TRANSMISSION

- Remove the stud nuts attaching the insulator to the transmission extension (Fig. 20).
- Raise the transmission and engine slightly.
- Remove stud nuts attaching insulator to cross-member (Fig. 20). Remove insulator.



**Fig. 19 Rear Insulator Automatic Transmission—2WD**


## INSTALLATION—2WD

- (1) If the engine support bracket (Automatic Transmissions) was removed, position the bracket to the transmission extension (Fig. 19). Tighten the bolts to 68 N·m (50 ft. lbs.) torque.

## NOTE: AUTOMATIC TRANSMISSION

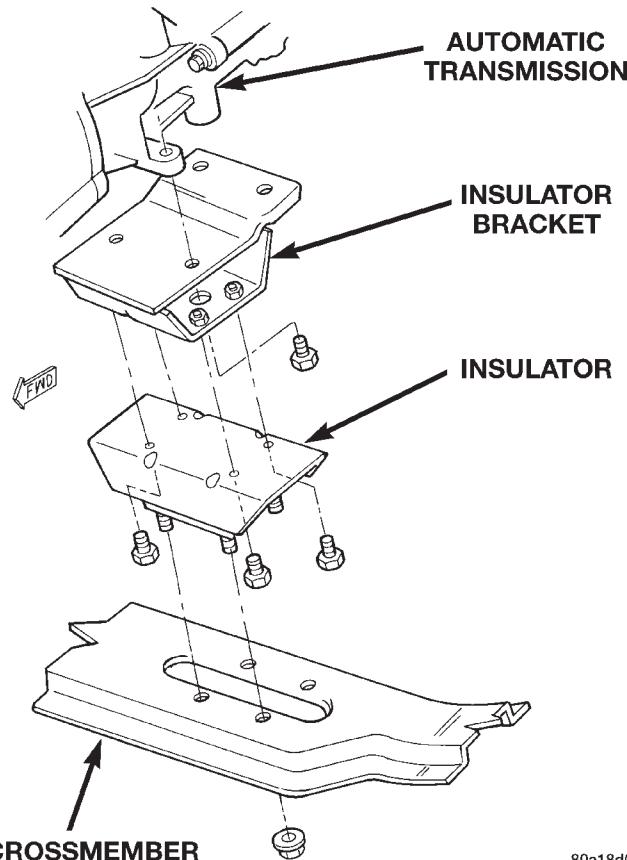
- Install the insulator onto crossmember. Tighten the stud nuts to 41 N·m (30 ft. lbs) torque.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 20 Rear Insulator Manual Transmission—2WD**

- Lower the transmission and engine while aligning the engine support bracket to the insulator.
- Install thru-bolt in bracket and insulator. Tighten thru-bolt nut to 68 N·m (50 ft. lbs.) torque.

**NOTE: MANUAL TRANSMISSION**


- Install the insulator onto crossmember. Tighten the stud nuts to 41 N·m (30 ft. lbs) torque.
- Lower the transmission and engine while aligning the insulator studs into the transmission extension.
- Install the stud nuts. Tighten the stud nuts to 41 N·m (30 ft. lbs) torque.
- (2) Remove transmission jack.
- (3) Lower the vehicle.
- (4) Connect the negative cable to the battery.

**REMOVAL—4WD**

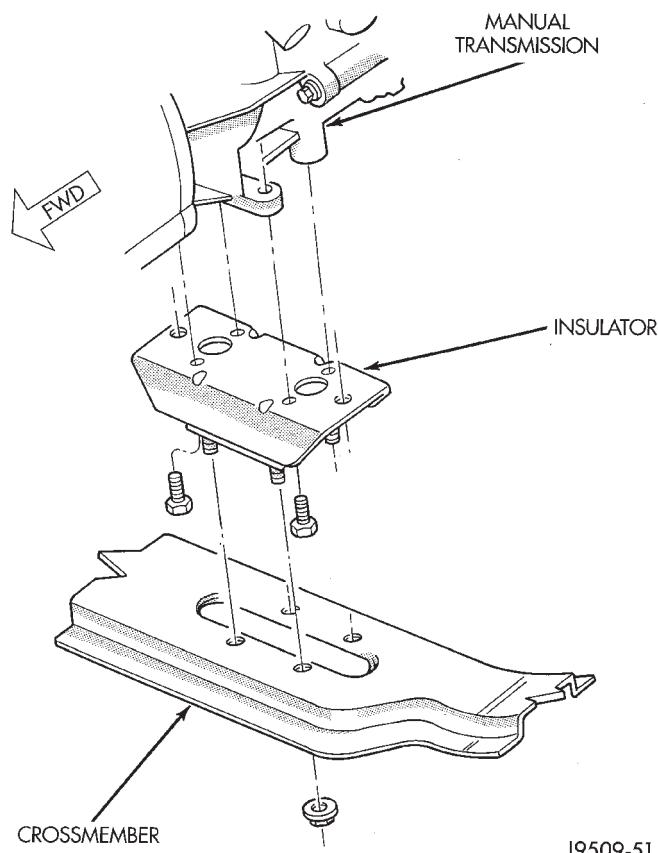
- (1) Disconnect the negative cable from the battery.
- (2) Raise the vehicle on a hoist.
- (3) Support the transmission with a transmission jack.

**NOTE: AUTOMATIC TRANSMISSION**

- Remove stud nuts holding the insulator to the crossmember (Fig. 21).
- Raise rear of transmission SLIGHTLY.
- Remove bolts holding the insulator to the insulator bracket (Fig. 21). Remove the insulator.

**Fig. 21 Rear Insulator Automatic Transmission—4WD****NOTE: MANUAL TRANSMISSION**

- Remove stud nuts holding the insulator to the crossmember (Fig. 22).
- Raise rear of transmission SLIGHTLY.
- Remove bolts holding the insulator to the transmission (Fig. 22). Remove the insulator.


**INSTALLATION—4WD****NOTE: AUTOMATIC TRANSMISSION**

- If the insulator bracket was removed, install the bracket to the transmission (Fig. 21). Tighten the bolts to 68 N·m (50 ft. lbs.) torque.
- Install the bolts holding insulator to insulator bracket. Tighten the bolts to 68 N·m (50 ft. lbs.) torque.
- Lower rear of transmission while aligning the insulator studs into the mounting support bracket. Install stud nuts and tighten to 68 N·m (50 ft. lbs.) torque.

**NOTE: MANUAL TRANSMISSION**

- Install the bolts holding insulator to insulator bracket. Tighten the bolts to 68 N·m (50 ft. lbs.) torque.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 22 Rear Insulator Manual Transmission—4WD**

- Lower rear of transmission while aligning the insulator studs into the mounting support bracket. Install stud nuts and tighten to 68 N·m (50 ft. lbs.) torque.

- (1) Remove the transmission jack.
- (2) Lower the vehicle.
- (3) Connect the negative cable to the battery.

**ENGINE ASSEMBLY****REMOVAL**

- (1) Scribe hood hinge outlines on hood. Remove the hood.
- (2) Remove the battery.
- (3) Drain cooling system (refer to Group 7, Cooling System for the proper procedure).
- (4) Remove the air cleaner.
- (5) Disconnect the radiator and heater hoses.
- Remove radiator (refer to Group 7, Cooling System).
- (6) Set fan shroud aside.
- (7) Remove the vacuum lines.
- (8) Remove the distributor cap and wiring.
- (9) Disconnect the accelerator linkage.
- (10) Remove throttle body.
- (11) Perform the Fuel System Pressure Release procedure (refer to Group 14, Fuel System). Disconnect the fuel lines.

- (12) Disconnect the starter wires.
- (13) Disconnect the oil pressure wire.
- (14) Discharge the air conditioning system, if equipped (refer to Group 24, Heating and Air Conditioning for service procedures).
- (15) Disconnect the air conditioning hoses.
- (16) Disconnect the power steering hoses, if equipped.
- (17) Remove starter motor (refer to Group 8B, Battery/Starter/Generator Service).
- (18) Remove the generator (refer to Group 8B, Battery/Starter/Generator Service).
- (19) Raise and support the vehicle on a hoist.
- (20) Disconnect exhaust pipe at manifold.
- (21) Refer to Group 21, Transmissions for transmission removal.

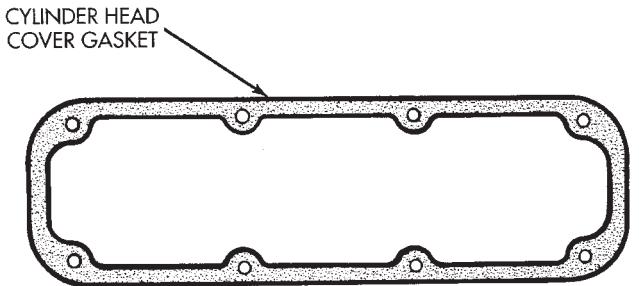
**CAUTION: DO NOT lift the engine by the intake manifold.**

- (22) Install an engine lifting fixture.
- (23) **2WD VEHICLES**—Remove engine front mount bolts.
- (24) **4WD VEHICLES**—The engine and front driving axle (engine/axle/transmission) are connected through insulators and support brackets. Separate the engine as follows:
  - **LEFT SIDE**—Remove 2 bolts attaching (engine/pinion nose/transmission) bracket to transmission bell housing. Remove 2 bracket to pinion nose adaptor bolts. Separate engine from insulator by removing upper nut washer assembly and bolt from engine support bracket.
  - **RIGHT SIDE**—Remove 2 bracket to axle (disconnect housing) bolts and 1 bracket to bell housing bolt. Separate engine from insulator by removing upper nut washer assembly and bolt from engine support bracket.
- (25) Lower the vehicle.

(26) On automatic transmission vehicles, disconnect the engine from the torque converter drive plate. On manual transmission vehicles, move engine forward until drive pinion shaft clears the clutch disc. Remove engine from engine compartment.

- (27) Install engine assembly on engine repair stand.

**INSTALLATION**


- (1) Remove engine from the repair stand and position in the engine compartment.
- (2) Install an engine support fixture.
- (3) Raise and support the vehicle on a hoist.
- (4) Refer to Group 21, Transmissions for transmission installation.
- (5) Install the front engine mounts.
- (6) Install exhaust pipe to manifold.
- (7) Lower the vehicle.

## REMOVAL AND INSTALLATION (Continued)

- (8) Remove engine lifting fixture.
- (9) Install the generator (refer to Group 8B, Battery/Starter/Generator Service).
- (10) Install starter motor (refer to Group 8B, Battery/Starter/Generator Service).
- (11) Connect power steering hoses, if equipped.
- (12) Connect air conditioning hoses.
- (13) Evacuate and charge the air conditioning system, if equipped (refer to Group 24, Heater and Air Conditioning for service procedures).
- (14) Using a new gasket, install throttle body. Tighten the throttle body bolts to 23 N·m (200 in. lbs.) torque.
- (15) Connect the accelerator linkage.
- (16) Connect the starter wires.
- (17) Connect the oil pressure wire.
- (18) Install the distributor cap and wiring.
- (19) Connect the vacuum lines.
- (20) Connect the fuel line.
- (21) Install the radiator (refer to Group 7, Cooling System). Connect the radiator hoses and heater hoses.
- (22) Install fan shroud in position.
- (23) Fill cooling system (refer to Group 7, Cooling System for the proper procedure).
- (24) Install the air cleaner.
- (25) Install the battery.
- (26) Warm engine and adjust.
- (27) Install hood and line up with the scribe marks.
- (28) Road test vehicle.

## CYLINDER HEAD COVER

A steel-backed silicone gasket is used with the cylinder head cover (Fig. 23). This gasket can be used again.



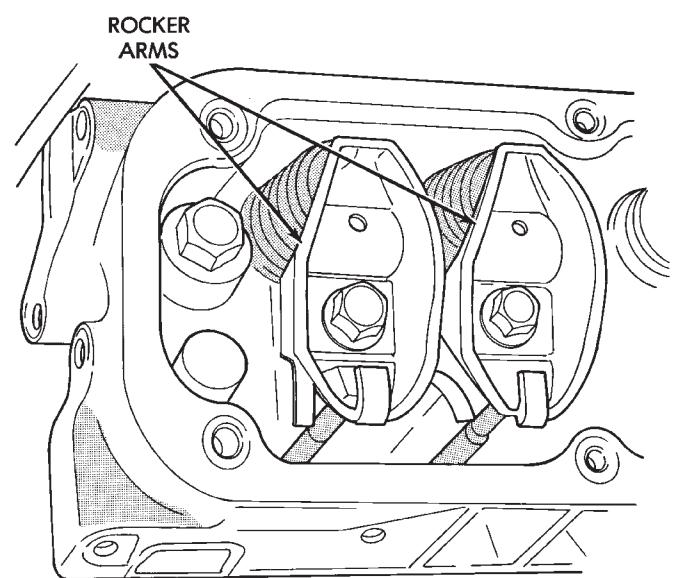
J9209-104

**Fig. 23 Cylinder Head Cover Gasket**

## REMOVAL

- (1) Disconnect the negative cable from the battery.
- (2) Disconnect closed ventilation system and evaporation control system from cylinder head cover.
- (3) Remove cylinder head cover and gasket. The gasket may be used again.

## INSTALLATION


- (1) Install the cylinder head cover gasket onto the head rail.
- (2) Position the cylinder head cover onto the gasket. Tighten the bolts to 11 N·m (95 in. lbs.) torque.
- (3) Install closed crankcase ventilation system and evaporation control system.
- (4) Connect the negative cable to the battery.

## CYLINDER HEAD COMPONENTS—IN VEHICLE SERVICE

## ROCKER ARMS AND PUSH RODS

## REMOVAL

- (1) Disconnect spark plug wires by pulling on the boot straight out in line with plug.
- (2) Remove cylinder head cover and gasket.
- (3) Remove the rocker arm bolts and pivots (Fig. 24). Place them on a bench in the same order as removed.
- (4) Remove the push rods and place them on a bench in the same order as removed.



J9209-66

**Fig. 24 Rocker Arms**

## INSTALLATION

- (1) Rotate the crankshaft until the V6 mark lines up with the TDC mark on the timing chain case cover. This mark is located 147° ATDC from the No.1 firing position.

**CAUTION: DO NOT rotate or crank the engine during or immediately after rocker arm installation. Allow the hydraulic roller tappets adequate time to bleed down (about 5 minutes).**

## REMOVAL AND INSTALLATION (Continued)

(2) Install the push rods in the same order as removed.

(3) Install rocker arm and pivot assemblies in the same order as removed. Tighten the rocker arm bolts to 28 N·m (21 ft. lbs.) torque.

(4) Install cylinder head cover.

(5) Connect spark plug wires.

## VALVE STEM SHIELDS AND SPRINGS

## REMOVAL

(1) Set engine basic timing to Top Dead Center (TDC).

(2) Remove the air cleaner.

(3) Remove cylinder head covers and spark plugs.

(4) Remove coil wire from distributor and secure to good ground to prevent engine from starting.

(5) Using suitable socket and flex handle at crank-shaft retaining bolt, turn engine so the No.1 piston is at TDC on the compression stroke.

(6) Remove rocker arms.

(7) With air hose attached to an adapter installed in No.1 spark plug hole, apply 620-689 kPa (90-100 psi) air pressure.

(8) Using Valve Spring Compressor Tool MD-998772A, compress valve spring and remove retainer valve locks and valve spring.

## INSTALLATION

(1) Install seals on the exhaust valve stem and position down against valve guides.

(2) The intake valve stem seals should be pushed firmly and squarely over the valve guide using the valve stem as a guide. DO NOT force seal against top of guide. When installing the valve retainer locks, compress the spring only enough to install the locks.

(3) Follow the same procedure on the remaining 5 cylinders using the firing sequence 1-6-5-4-3-2. Make sure piston in cylinder is at TDC on the valve spring that is being removed.

(4) Remove adapter from the No.1 spark plug hole.

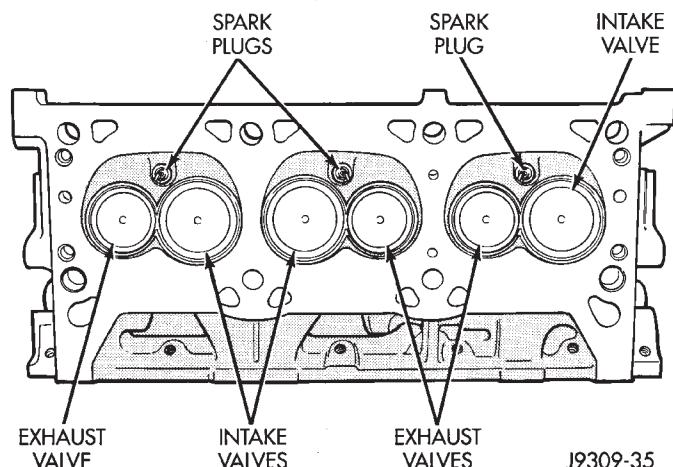
(5) Install rocker arms.

(6) Install covers and coil wire to distributor.

(7) Install air cleaner.

(8) Road test vehicle.

## CYLINDER HEADS


The alloy cast iron cylinder heads (Fig. 25) are held in place by eight bolts. The spark plugs are located at the peak of the wedge between the valves.

## REMOVAL

(1) Disconnect the negative cable from the battery.

(2) Drain cooling system. Refer to Group 7, Cooling System for the proper procedures.

(3) Remove the intake manifold-to-generator bracket support rod. Remove the generator.



**Fig. 25 Cylinder Head Assembly**

(4) Remove closed crankcase ventilation system.

(5) Disconnect the evaporation control system.

(6) Remove the air cleaner.

(7) Perform fuel system pressure release procedure. Before attempting any repairs refer to Group 14, Fuel Systems.

(8) Disconnect the fuel lines.

(9) Disconnect accelerator linkage and if so equipped, the speed control and transmission kick-down cables.

(10) Remove the return spring.

(11) Remove distributor cap and wires.

(12) Disconnect the coil wires.

(13) Disconnect heat indicator sending unit wire.

(14) Disconnect heater hoses and bypass hose.

(15) Remove cylinder head covers and gaskets.

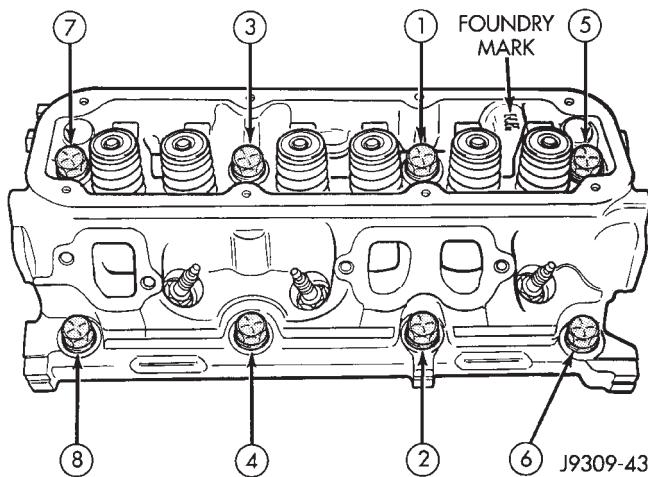
(16) Remove intake manifold and throttle body as an assembly. Discard the flange side gaskets and the front and rear cross-over gaskets.

(17) Remove exhaust manifolds.

(18) Remove rocker arm assemblies and push rods. Identify to ensure installation in original locations.

(19) Remove the head bolts from each cylinder head and remove cylinder heads. Discard the cylinder head gasket.

(20) Remove spark plugs.


## INSTALLATION

(1) Position the new cylinder head gaskets onto the cylinder block.

(2) Position the cylinder heads onto head gaskets and cylinder block.

(3) Starting at top center, tighten all cylinder head bolts, in sequence, to 68 N·m (50 ft. lbs.) torque (Fig. 26). Repeat procedure, tighten all cylinder head bolts to 143 N·m (105 ft. lbs.) torque. Repeat procedure to confirm that all bolts are at 143 N·m (105 ft. lbs.) torque.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 26 Cylinder Head Bolt -Tightening Sequence**

**CAUTION:** When tightening the rocker arm bolts, be sure the piston in that cylinder is NOT at TDC. Contact between the valves and piston could occur.

(4) Install push rods and rocker arm assemblies in their original positions. Tighten the bolts to 28 N·m (21 ft. lbs.) torque.

(5) Install the intake manifold and throttle body assembly. Refer to Group 11, Exhaust System and Intake Manifold.

(6) Install exhaust manifolds. Tighten the bolts and nuts to 34 N·m (25 ft. lbs.) torque.

(7) Adjust spark plugs to specifications. Refer to Group 8D, Ignition System. Install the plugs and tighten to 41 N·m (30 ft. lbs.) torque.

(8) Install coil wires.

(9) Connect heat indicator sending unit wire.

(10) Connect the heater hoses and bypass hose.

(11) Install distributor cap and wires.

(12) Hook up the return spring.

(13) Connect the accelerator linkage and, if so equipped, the speed control and transmission kick-down cables.

(14) Install the fuel lines.

(15) Install the generator and drive belt. Tighten generator mounting bolt to 41 N·m (30 ft. lbs.) torque. Tighten the adjusting strap bolt to 23 N·m (200 in. lbs.) torque. Refer to Group 7, Cooling System for adjusting the belt tension.

(16) Install the intake manifold-to-generator bracket support rod. Tighten the bolts.

(17) Place the cylinder head cover gaskets in position and install cylinder head covers. Tighten the bolts to 11 N·m (95 in. lbs.) torque.

(18) Install closed crankcase ventilation system.

(19) Connect the evaporation control system.

(20) Install the air cleaner.

(21) Install the heat shields. Tighten the bolts to 41 N·m (30 ft. lbs.) torque.

(22) Fill cooling system. Refer to Group 7, Cooling System for proper procedure.

(23) Connect the negative cable to the battery.

**VALVES AND VALVE SPRINGS—CYLINDER HEAD REMOVED****REMOVAL**

(1) Compress valve springs using Valve Spring Compressor Tool MD-998772-A.

(2) Remove valve retaining locks, valve spring retainers, valve stem seals, and valve springs.

(3) Before removing valves, remove any burrs from valve stem lock grooves to prevent damage to the valve guides. Identify valves to ensure installation in original locations.

**INSTALLATION**

(1) Coat valve stems with lubrication oil and insert them in cylinder head.

(2) If valves or seats are reground, check valve stem height. If valve is too long, replace cylinder head.

(3) Install new seals on all valve guides. Install valve springs and valve retainers.

(4) Compress valve springs with Valve Spring Compressor Tool MD-998772A, install locks and release tool. If valves and/or seats are ground, measure the installed height of springs. Be sure the measurement is taken from bottom of spring seat in cylinder head to the bottom surface of spring retainer. If spacers are installed, measure from the top of spacer. If height is greater than 42.86 mm (1-11/16 inches), install a 1.587 mm (1/16 in.) spacer in head counterbore. This should bring spring height back to normal 41.27 to 42.86 mm (1-5/8 to 1-11/16 in.).

**HYDRAULIC TAPPETS****REMOVAL**

(1) Remove the air cleaner.

(2) Remove cylinder head cover.

(3) Remove rocker assembly and push rods. Identify push rods to ensure installation in original locations.

(4) Remove intake manifold.

(5) Remove yoke retainer and aligning yokes.

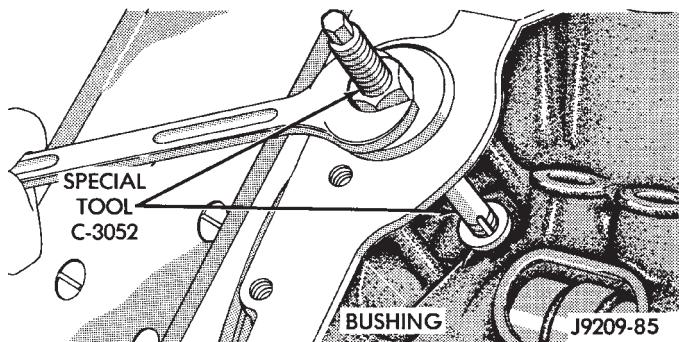
(6) Slide Hydraulic Tappet Remover/Installer Tool C-4129-A through opening in cylinder head and seat tool firmly in the head of tappet.

(7) Pull tappet out of bore with a twisting motion. If all tappets are to be removed, identify tappets to ensure installation in original location.

(8) If the tappet or bore in cylinder block is scored, scuffed, or shows signs of sticking, ream the bore to next oversize. Replace with oversize tappet.

## REMOVAL AND INSTALLATION (Continued)

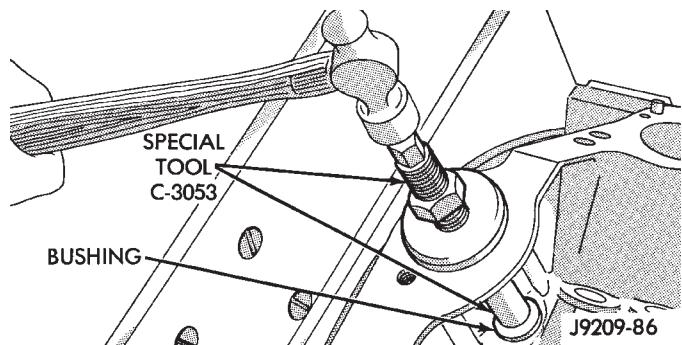
## INSTALLATION


- (1) Lubricate tappets.
- (2) Install tappets and push rods in their original positions. Ensure that the oil feed hole in the side of the tappet body faces up (away from the crankshaft).
- (3) Install aligning yokes with ARROW toward camshaft.
- (4) Install yoke retainer. Tighten the bolts to 23 N·m (200 in. lbs.) torque. Install intake manifold.
- (5) Install push rods in original positions.
- (6) Install rocker arms.
- (7) Install cylinder head cover.
- (8) Start and operate engine. Warm up to normal operating temperature.

**CAUTION:** To prevent damage to valve mechanism, engine must not be run above fast idle until all hydraulic tappets have filled with oil and have become quiet.

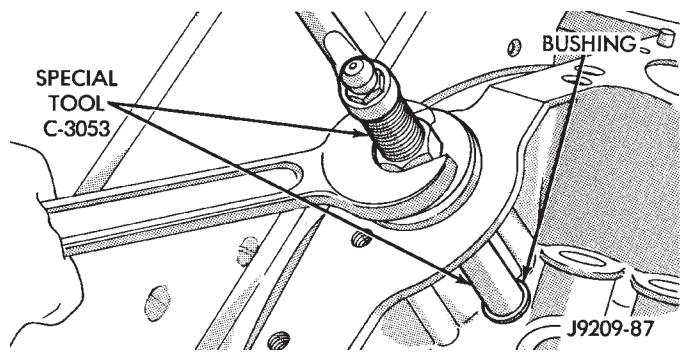
## DISTRIBUTOR DRIVE SHAFT BUSHING

## REMOVAL


- (1) Remove distributor. Refer to Group 8D, Ignition Systems for the proper procedure.
- (2) Remove the intake manifold. Refer to Group 11, Exhaust System and Intake Manifold.
- (3) Insert Distributor Drive Shaft Bushing Puller Tool C-3052 into old bushing and thread down until a tight fit is obtained (Fig. 27).
- (4) Hold puller screw and tighten puller nut until bushing is removed.



**Fig. 27 Distributor Driveshaft Bushing Removal**


## INSTALLATION

- (1) Slide new bushing over burnishing end of Distributor Drive Shaft Bushing Driver/Burnisher Tool C-3053. Insert the tool and bushing into the bore.
- (2) Drive bushing and tool into position, using a hammer (Fig. 28).
- (3) As the burnisher is pulled through the bushing, the bushing is expanded tight in the block and burnished to correct size (Fig. 29). **DO NOT** ream this bushing.



**Fig. 28 Distributor Driveshaft Bushing Installation**

**CAUTION:** This procedure **MUST** be followed when installing a new bushing or seizure to shaft may occur.

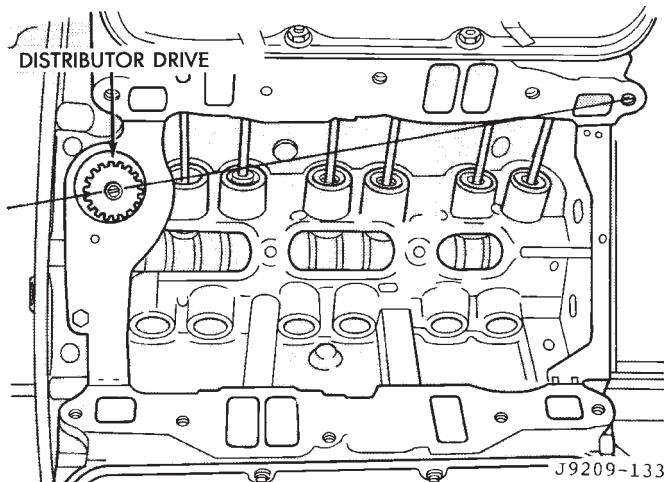


**Fig. 29 Burnishing Distributor Driveshaft Bushing**

- (4) Install the intake manifold. Refer to Group 11, Exhaust System and Intake Manifold.

## DISTRIBUTOR INSTALLATION

**NOTE:** Before installing the distributor, the oil pump drive shaft must be aligned to number one cylinder.

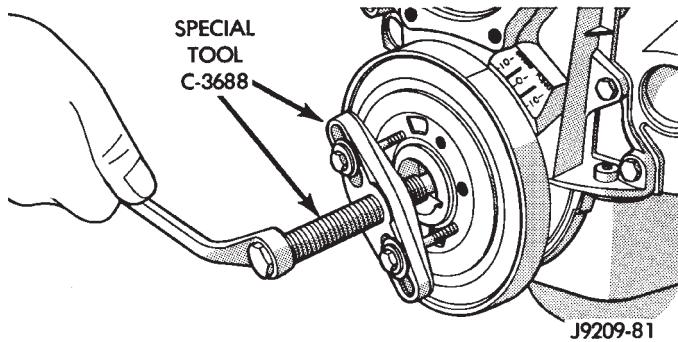

- (1) Rotate crankshaft until No. 1 cylinder is at top dead center on the firing stroke.
- (2) When in this position, the timing mark of vibration damper should be under "0" on the timing indicator.
- (3) Install the shaft so that after the gear spirals into place, it will index with the oil pump shaft. The slot on top of oil pump shaft should be aligned toward the left front intake manifold attaching bolt hole (Fig. 30).

- (4) Install distributor. Refer to Group 8D, Ignition Systems for the proper procedure.

After the distributor has been installed, its rotational position must be set using the **SET SYNC** mode of the DRB scan tool. Refer to Checking Distributor Position following the Distributor Installation section in Group 8D, Ignition System.

**Do not attempt to adjust ignition timing by rotating the distributor. It has no effect on ignition timing. Adjusting distributor position will affect fuel synchronization only.**

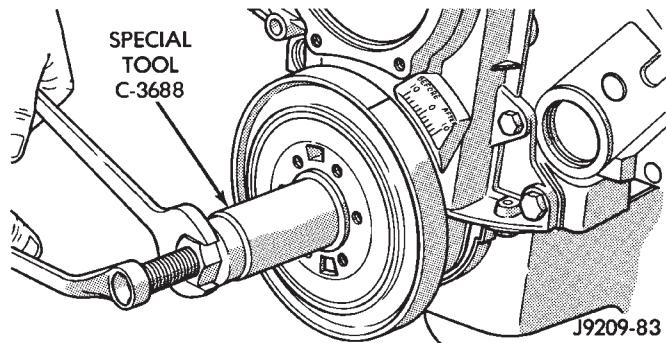
## REMOVAL AND INSTALLATION (Continued)




**Fig. 30 Position of Oil Pump Shaft Slot**

## VIBRATION DAMPER

## REMOVAL


- (1) Disconnect the negative cable from the battery.
- (2) Remove fan shroud retainer bolts and set shroud back over engine.
- (3) Remove the cooling system fan.
- (4) Remove the serpentine belt. Refer to Group 7, Cooling System.
- (5) Remove the vibration damper pulley.
- (6) Remove vibration damper bolt and washer from end of crankshaft.
- (7) Install bar and screw from Puller Tool Set C-3688. Install two bolts with washers through the puller tool and into the vibration damper (Fig. 31).
- (8) Pull vibration damper off of the crankshaft.



**Fig. 31 Vibration Damper Assembly**

## INSTALLATION

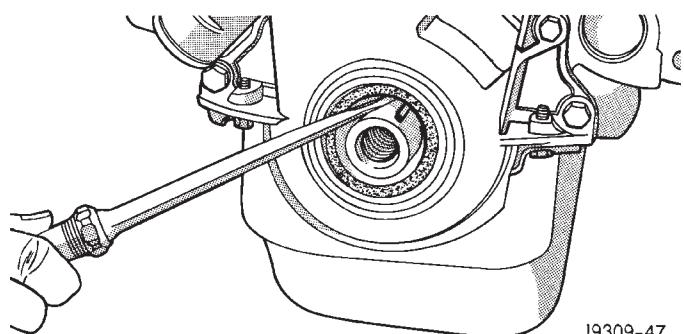
- (1) Position the vibration damper onto the crankshaft.
- (2) Place installing tool, part of Puller Tool Set C-3688, in position and press the vibration damper onto the crankshaft (Fig. 32).
- (3) Install the crankshaft bolt and washer. Tighten the bolt to 183 N·m (135 ft. lbs.) torque.
- (4) Install the crankshaft pulley. Tighten the pulley bolts to 23 N·m (200 in. lbs.) torque.



**Fig. 32 Installing Vibration Damper**

(5) Install the serpentine belt. Refer to Group 7, Cooling System.

(6) Install the cooling system fan. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.


(7) Position the fan shroud and install the bolts. Tighten the retainer bolts to 11 N·m (95 in. lbs.) torque.

(8) Connect the negative cable to the battery.

## TIMING CHAIN COVER

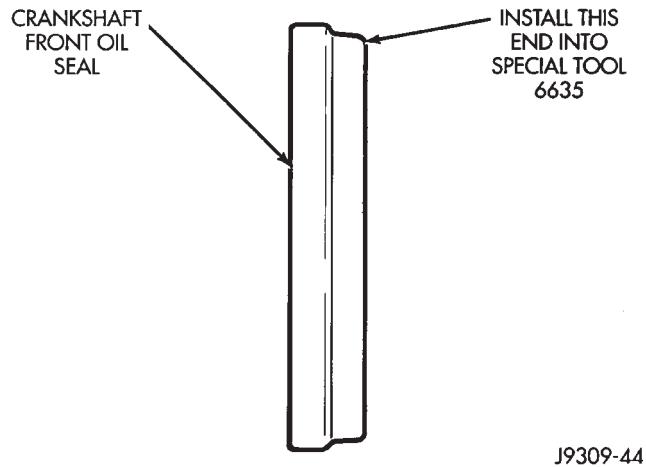
## REMOVAL

- (1) Disconnect the negative cable from the battery.
- (2) Drain cooling system. Refer to Group 7, Cooling System.
- (3) Remove the serpentine belt. Refer to Group 7, Cooling System.
- (4) Remove water pump. Refer to Group 7, Cooling System.
- (5) Remove power steering pump. Refer to Group 19, Steering.
- (6) Remove vibration damper.
- (7) Loosen oil pan bolts and remove the front bolt at each side.
- (8) Remove the cover bolts.
- (9) Remove chain case cover and gasket using extreme caution to avoid damaging oil pan gasket.
- (10) Place a suitable tool behind the lips of the oil seal to pry the oil seal outward. Be careful not to damage the crankshaft seal surface of cover (Fig. 33).



**Fig. 33 Removal of Front Crankshaft Oil Seal**

## REMOVAL AND INSTALLATION (Continued)


## INSTALLATION

(1) Be sure mating surfaces of chain case cover and cylinder block are clean and free from burrs.

(2) Using a new cover gasket, carefully install chain case cover to avoid damaging oil pan gasket. Use a small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent, at the joint between timing chain cover gasket and the oil pan gasket. Finger tighten the timing chain cover bolts at this time.

**CAUTION: If chain cover is replaced for any reason, be sure the oil hole (passenger side of cover) is plugged.**

(3) Place the smaller diameter of the oil seal over Front Oil Seal Installation Tool 6635 (Fig. 34). Seat the oil seal in the groove of the tool.



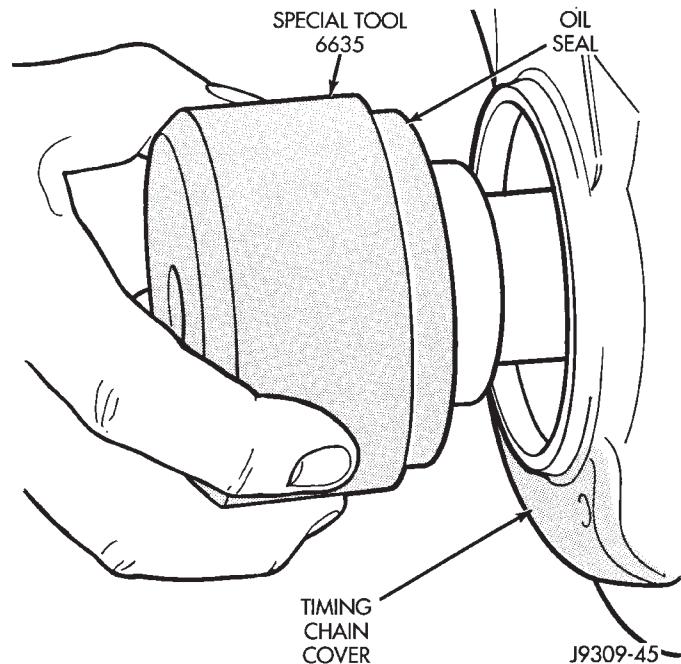
**Fig. 34 Placing Oil Seal on Installation Tool 6635**

(4) Position the seal and tool onto the crankshaft (Fig. 35).

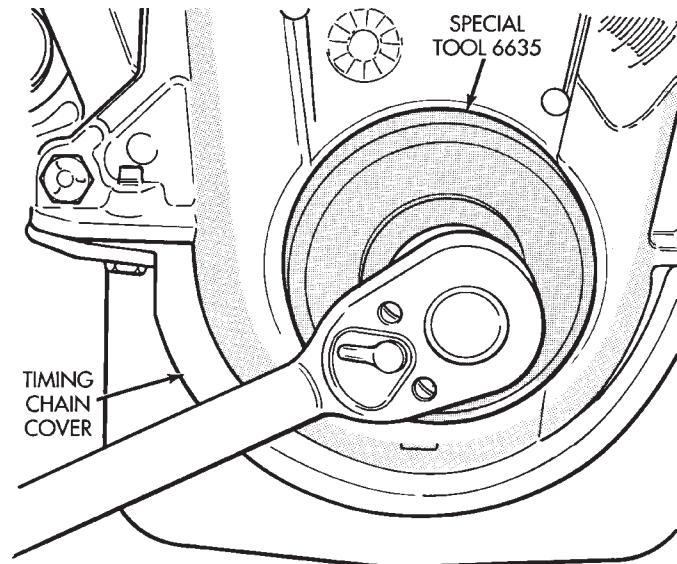
(5) Tighten the four lower chain case cover bolts to 13N·m (10 ft.lbs.) to prevent the cover from tipping during seal installation.

(6) Using the vibration damper bolt, tighten the bolt to draw the seal into position on the crankshaft (Fig. 36).

(7) Loosen the four bolts tightened in Step 4 to allow realignment of front cover assembly.


(8) Tighten chain case cover bolts to 41 N·m (30 ft. lbs.) torque. Tighten oil pan bolts to 24 N·m (215 in. lbs.) torque.

(9) Remove the vibration damper bolt and seal installation tool.


(10) Inspect the seal flange on the vibration damper.

(11) Install vibration damper.

(12) Install water pump and housing assembly using new gaskets. Refer to Group 7, Cooling System. Tighten bolts to 41 N·m (30 ft. lbs.) torque.



**Fig. 35 Position Tool and Seal onto Crankshaft**



**Fig. 36 Installing Oil Seal**

(13) Install power steering pump. Refer to Group 19, Steering.

(14) Install the serpentine belt. Refer to Group 7, Cooling System.

(15) Install the cooling system fan. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.

(16) Position the fan shroud and install the bolts. Tighten the bolts to 11 N·m (95 in. lbs.) torque.

(17) Fill cooling system. Refer to Group 7, Cooling System for the proper procedure.

(18) Connect the negative cable to the battery.

## REMOVAL AND INSTALLATION (Continued)

## TIMING CHAIN

## REMOVAL

- (1) Remove timing chain cover.
- (2) Remove camshaft sprocket attaching bolt and remove timing chain with crankshaft and camshaft sprockets.

## INSTALLATION

- (1) Place both camshaft sprocket and crankshaft sprocket on the bench with timing marks on an exact imaginary center line through both camshaft and crankshaft bores.

- (2) Place timing chain around both sprockets.
- (3) Turn crankshaft and camshaft to line up with keyway location in crankshaft sprocket and in camshaft sprocket.
- (4) Lift sprockets and chain (keep sprockets tight against the chain in position as described).
- (5) Slide both sprockets evenly over their respective shafts and use a straightedge to check alignment of timing marks (Fig. 37).

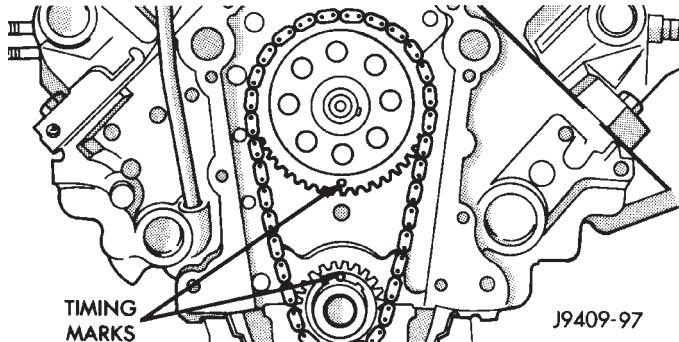



Fig. 37 Alignment of Timing Marks

- (6) Install the camshaft bolt. Tighten the bolt to 68 N·m (50 ft. lbs.) torque.

- (7) Check camshaft end play. The end play should be 0.051-0.152 mm (0.002-0.006 in.) with a new thrust plate and up to 0.254 mm (0.010 in.) with a used thrust plate. If not within these limits install a new thrust plate.

## CAMSHAFT

This procedure requires that the engine is removed from the vehicle.

The camshaft has an integral oil pump and distributor drive gear (Fig. 38).

## REMOVAL

- (1) Remove intake manifold.
- (2) Remove cylinder head covers.
- (3) Remove timing case cover and timing chain.
- (4) Remove rocker arms.
- (5) Remove push rods and tappets. Identify each part so it can be installed in the original locations.

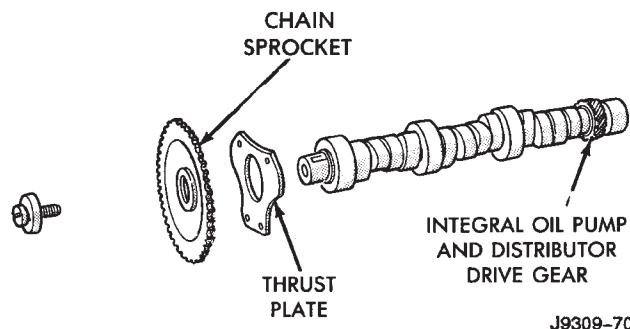



Fig. 38 Camshaft and Sprocket Assembly

- (6) Remove distributor and lift out the oil pump and distributor drive shaft.

- (7) Remove camshaft thrust plate and note location of oil tab (Fig. 39).

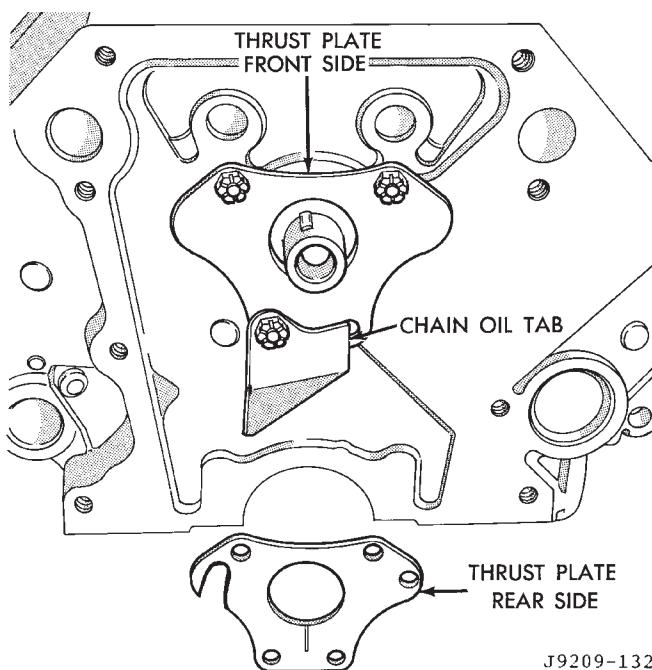
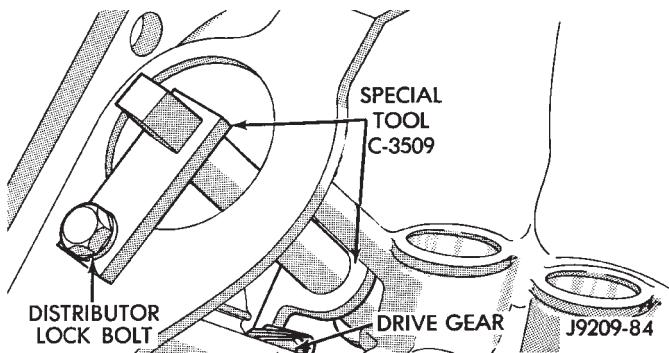



Fig. 39 Timing Chain Oil Tab Installation

- (8) Install a long bolt into front of camshaft to facilitate removal of the camshaft. Remove camshaft, being careful not to damage cam bearings with the cam lobes.


## INSTALLATION

- (1) Lubricate camshaft lobes and camshaft bearing journals and insert the camshaft to within 51 mm (2 inches) of its final position in cylinder block.

**NOTE:** Whenever an engine has been rebuilt, a new camshaft and/or new tappets installed, add one pint of Mopar Crankcase Conditioner, or equivalent. The oil mixture should be left in engine for a minimum of 805 km (500 miles). Drain at the next normal oil change.

## REMOVAL AND INSTALLATION (Continued)

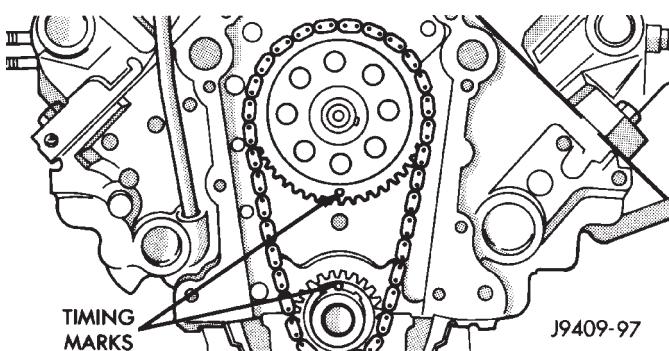
(2) Install Camshaft Gear Installer Tool C-3509 with tongue back of distributor drive gear (Fig. 40).



**Fig. 40 Camshaft Holding Tool C-3509 (Installed Position)**

(3) Hold tool in position with a distributor lock-plate bolt. This tool will restrict camshaft from being pushed in too far and prevent knocking out the Welch plug in rear of cylinder block. **Tool should remain installed until the camshaft and crankshaft sprockets and timing chain have been installed.**

(4) Install camshaft thrust plate and chain oil tab. **Be sure tang enters lower right hole in thrust plate.** Tighten bolts to 24 N·m (210 in. lbs.) torque. Top edge of tab should be flat against thrust plate in order to catch oil for chain lubrication.


(5) Place both camshaft sprocket and crankshaft sprocket on the bench with timing marks on an exact imaginary center line through both camshaft and crankshaft bores.

(6) Place timing chain around both sprockets.

(7) Turn crankshaft and camshaft to line up with keyway location in crankshaft sprocket and in camshaft sprocket.

(8) Lift sprockets and chain (keep sprockets tight against the chain in position as described).

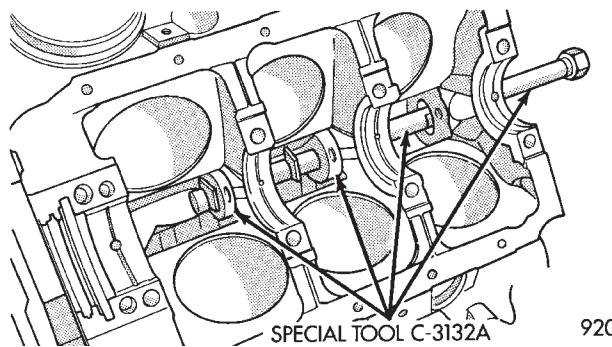
(9) Slide both sprockets evenly over their respective shafts and use a straightedge to check alignment of timing marks (Fig. 41).



**Fig. 41 Alignment of Timing Marks**

(10) Install the camshaft bolt/cup washer. Tighten bolt to 68 N·m (50 ft. lbs.) torque.

(11) Measure camshaft end play. Refer to Specifications for proper clearance. If not within limits, install a new thrust plate.


(12) Each tappet reused must be installed in the same position at which it was removed. **When camshaft is replaced, all of the tappets must be replaced.**

## CAMSHAFT BEARINGS

## REMOVAL

(1) With engine completely disassembled, drive out rear cam bearing core hole plug.

(2) Install proper size adapters and horseshoe washers (part of Camshaft Bearing Remover/Installer Tool C-3132-A) at back of each bearing shell. Drive out bearing shells (Fig. 42).



**Fig. 42 Camshaft Bearings Removal and Installation with Tool C-3132-A**

## INSTALLATION

(1) Install new camshaft bearings with Camshaft Bearing Remover/Installer Tool C-3132-A by sliding the new camshaft bearing shell over proper adapter.

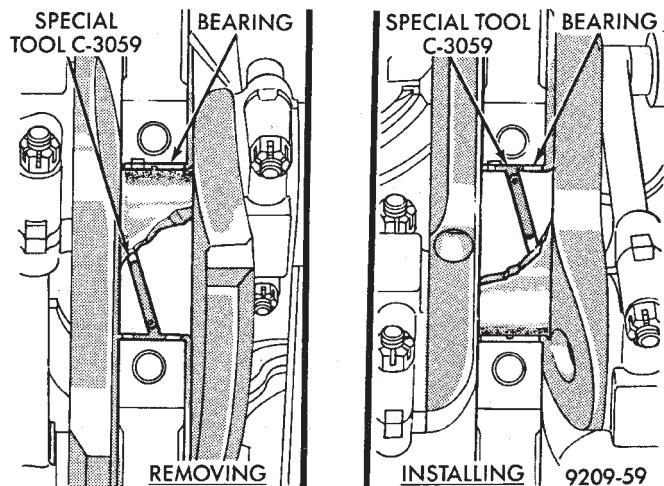
(2) Position rear bearing in the tool. Install horseshoe lock and, by reversing removal procedure, carefully drive bearing shell into place.

(3) Install remaining bearings in the same manner. Bearings must be carefully aligned to bring oil holes into full register with oil passages from the main bearing. If the camshaft bearing shell oil holes are not in exact alignment, remove and install them correctly. Install a new core hole plug at the rear of camshaft. **Be sure this plug does not leak.**

## CRANKSHAFT MAIN BEARINGS

## REMOVAL

(1) Remove the oil pan.


(2) Remove the oil pump from the rear main bearing cap.

(3) Identify bearing caps before removal. Remove bearing caps one at a time.

## REMOVAL AND INSTALLATION (Continued)

(4) Remove upper half of bearing by inserting Crankshaft Main Bearing Remover/Installer Tool C-3059 into the oil hole of crankshaft (Fig. 43).

(5) Slowly rotate crankshaft clockwise, forcing out upper half of bearing shell.



**Fig. 43 Upper Main Bearing Removal and Installation with Tool C-3059**

## INSTALLATION

Only one main bearing should be selectively fitted while all other main bearing caps are properly tightened. All bearing capbolts removed during service procedures are to be cleaned and oiled before installation. DO NOT use a new bearing half with an old bearing half.

When installing a new upper bearing shell, slightly chamfer the sharp edges from the plain side.

(1) Start bearing in place, and insert Crankshaft Main Bearing Remover/Installer Tool C-3059 into oil hole of crankshaft (Fig. 43).

(2) Slowly rotate crankshaft counterclockwise sliding the bearing into position. Remove Tool C-3059.

(3) Install the bearing caps. Clean and oil the bolts. Tighten the capbolts to 115 N·m (85 ft. lbs.) torque.

(4) Install the oil pump.

(5) Install the oil pan.

## OIL PAN

## REMOVAL—2WD

(1) Disconnect the negative cable from the battery.

(2) Remove engine oil dipstick.

(3) Disconnect distributor cap and position away from cowl.

(4) Raise vehicle.

(5) Drain engine oil.

(6) Remove exhaust pipe.

(7) Loosen side engine mount bolts.

(8) Raise engine by way of oil pan using a block of wood between the jack and oil pan.

(9) When engine is high enough, place bolts (similar in size to the engine mount bolts) in the engine mount attaching points on the frame brackets.

(10) Lower engine so bottom of engine mounts rest on the replacement bolts placed in the engine mount frame brackets.

(11) Remove oil pan and one-piece gasket.

## REMOVAL—4WD

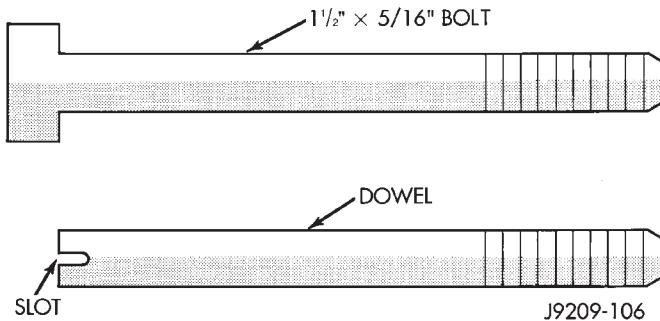
(1) Disconnect the negative cable from the battery.

(2) Remove engine oil dipstick.

(3) Raise vehicle.

(4) Drain engine oil.

(5) Remove front driving axle (refer to Group 3, Drive Axles and Group 2, Front Suspension for the proper procedures).


(6) Remove exhaust pipe.

(7) Remove transmission lower (dust) cover.

(8) Remove oil pan and one-piece gasket.

## INSTALLATION—2WD

(1) Fabricate 4 alignment dowels from 5/16 x 1 1/2 inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 44).

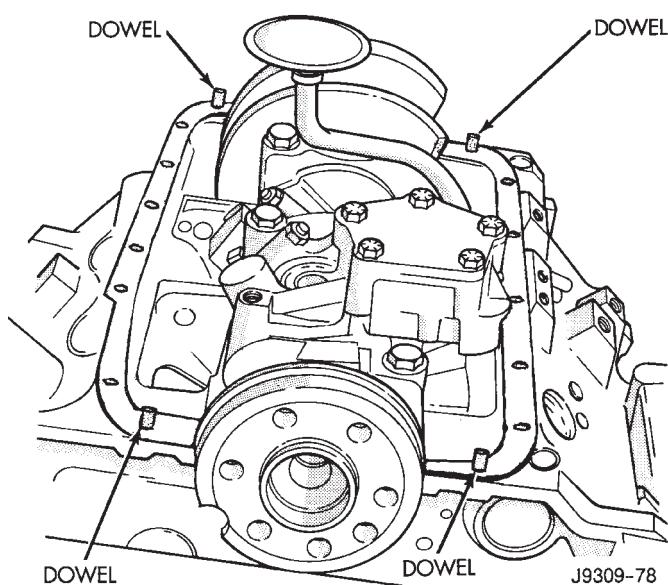


**Fig. 44 Fabrication of Alignment Dowels**

(2) Install the dowels in the cylinder block (Fig. 45).

(3) Apply small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent in the corner of the cap and the cylinder block.

(4) Slide the one-piece gasket over the dowels and onto the block.


(5) Position the oil pan over the dowels and onto the gasket.

(6) Install the oil pan bolts. Tighten the bolts to 24 N·m (215 in. lbs.) torque.

(7) Remove the dowels. Install the remaining oil pan bolts. Tighten these bolts to 24 N·m (215 in. lbs.) torque.

(8) Install the drain plug. Tighten drain plug to 34 N·m (25 ft. lbs.) torque.

## REMOVAL AND INSTALLATION (Continued)



**Fig. 45 Position of Dowels in Cylinder Block**

(9) Raise engine by way of oil pan with a wood block placed between jack and oil pan.

(10) Remove temporary bolts from frame brackets and lower engine. Tighten side engine mount bolts to specifications.

- (11) Install exhaust pipe.
- (12) Lower vehicle.
- (13) Connect the distributor cap.
- (14) Install dipstick.
- (15) Connect the negative cable to the battery.
- (16) Fill crankcase with oil to proper level.

#### INSTALLATION—4WD

(1) Fabricate 4 alignment dowels from 1 1/2 x 5/16 inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 44).

(2) Install the dowels in the cylinder block (Fig. 45).

(3) Apply small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent in the corner of the cap and the cylinder block.

(4) Slide the one-piece gasket over the dowels and onto the block.

(5) Position the oil pan over the dowels and onto the gasket.

(6) Install the oil pan bolts. Tighten the bolts to 24 N·m (215 in. lbs.) torque.

(7) Remove the dowels. Install the remaining oil pan bolts. Tighten these bolts to 24 N·m (215 in. lbs.) torque.

(8) Install the drain plug. Tighten drain plug to 34 N·m (25 ft. lbs.) torque.

(9) Install front driving axle (refer to Group 3, Drive Axles and Group 2, Front Suspension for the proper procedures).

- (10) Install exhaust pipe.
- (11) Lower vehicle
- (12) Connect the distributor cap.
- (13) Install dipstick.
- (14) Connect the negative cable to the battery.
- (15) Fill crankcase with oil to proper level.

#### OIL PUMP

##### REMOVAL

- (1) Remove the oil pan.
- (2) Remove the oil pump from rear main bearing cap.

##### INSTALLATION

(1) Install oil pump. During installation, slowly rotate pump body to ensure driveshaft-to-pump rotor shaft engagement.

(2) Hold the oil pump base flush against mating surface on No. 4 main bearing cap. Finger-tighten pump attaching bolts. Tighten attaching bolts to 41 N·m (30 ft. lbs.) torque.

- (3) Install the oil pan.

#### PISTON AND CONNECTING ROD ASSEMBLY

##### REMOVAL

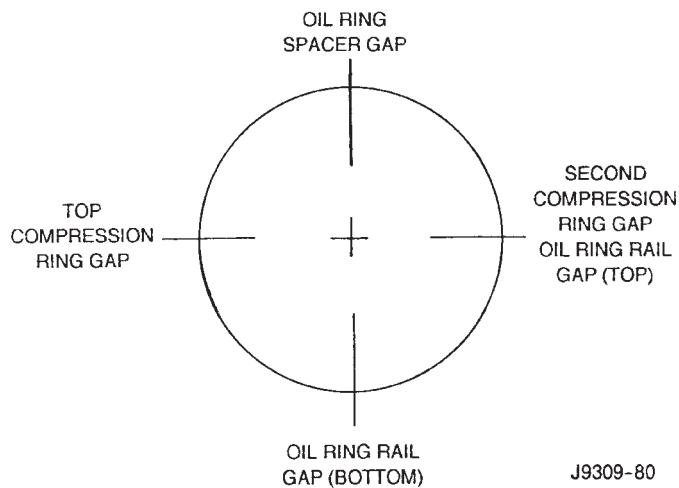
- (1) Remove the engine from the vehicle.
- (2) Remove the cylinder head.
- (3) Remove the oil pan.

(4) Remove top ridge of cylinder bores with a reliable ridge reamer before removing pistons from cylinder block. Be sure to keep tops of pistons covered during this operation.

(5) Be sure each connecting rod and connecting rod cap is identified with the cylinder number. Remove connecting rod cap. Install connecting rod bolt guide set on connecting rod bolts.

(6) Pistons and connecting rods must be removed from top of cylinder block. When removing the assemblies from the engine, rotate crankshaft so that the connecting rod is centered in cylinder bore and at BDC. **Be careful not to nick crankshaft journals.**

(7) After removal, install bearing cap on the mating rod.


##### INSTALLATION

(1) Be sure that compression ring gaps are staggered so that neither is in line with oil ring rail gap.

(2) Before installing the ring compressor, be sure the oil ring expander ends are butted and the rail gaps located properly (Fig. 46).

(3) Immerse the piston head and rings in clean engine oil. Slide Piston Ring Compressor Tool C-385 over the piston and tighten with the special wrench (part of Tool C-385). **Be sure position of rings does not change during this operation.**

## REMOVAL AND INSTALLATION (Continued)

**Fig. 46 Proper Ring Installation**

(4) Install connecting rod bolt protectors on rod bolts. The long protector should be installed on the numbered side of the connecting rod.

(5) Rotate crankshaft so that the connecting rod journal is on the center of the cylinder bore. Be sure connecting rod and cylinder bore number are the same. Insert rod and piston into cylinder bore and guide rod over the crankshaft journal.

(6) Tap the piston down in cylinder bore, using a hammer handle. At the same time, guide connecting rod into position on crankshaft journal.

(7) The notch, or groove, on top of piston must be pointing toward front of engine. The larger chamfer of the connecting rod bore must be installed toward crankshaft journal fillet.

(8) Install rod caps. Be sure connecting rod, connecting rod cap, and cylinder bore number are the same. Install nuts on cleaned and oiled rod bolts and tighten nuts to 61 N·m (45 ft. lbs.) torque.

(9) Install the oil pan.

(10) Install the cylinder head.

(11) Install the engine into the vehicle.

**CRANKSHAFT****REMOVAL**

(1) Remove the oil pan.

(2) Remove the oil pump from the rear main bearing cap.

(3) Remove the vibration damper.

(4) Remove the timing chain cover.

(5) Identify bearing caps before removal. Remove bearing caps and bearings one at a time.

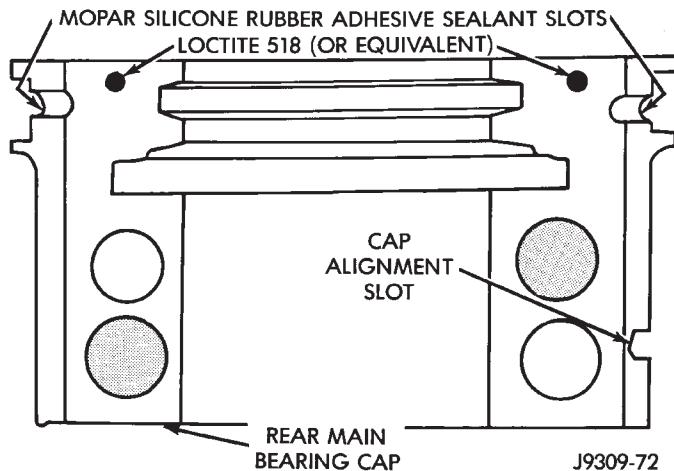
(6) Lift the crankshaft out of the block.

(7) Remove and discard the crankshaft rear oil seals.

(8) Remove and discard the front crankshaft oil seal.

**INSTALLATION**

(1) Lightly oil the new upper seal lips with engine oil.


(2) Install the new upper rear bearing oil seal with the white paint facing towards the rear of the engine.

(3) Position the crankshaft into the cylinder block.

(4) Lightly oil the new lower seal lips with engine oil.

(5) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing towards the rear of the engine.

(6) Apply 5 mm (0.20 in) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 47). DO NOT over apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.

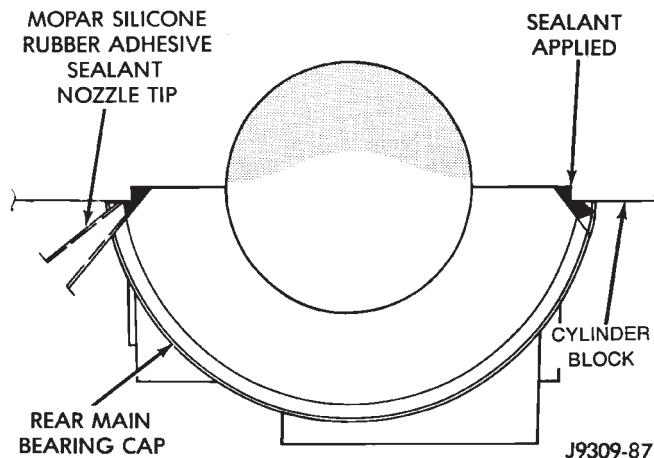
**Fig. 47 Sealant Application to Bearing Cap**

(7) To align the bearing cap, use cap slot, alignment dowel and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than 2 times for proper engagement.

(8) Clean and oil all cap bolts. Install all main bearing caps. Install all cap bolts and alternately tighten to 115 N·m (85 ft. lbs.) torque.

(9) Install oil pump.

(10) Install the timing chain cover.

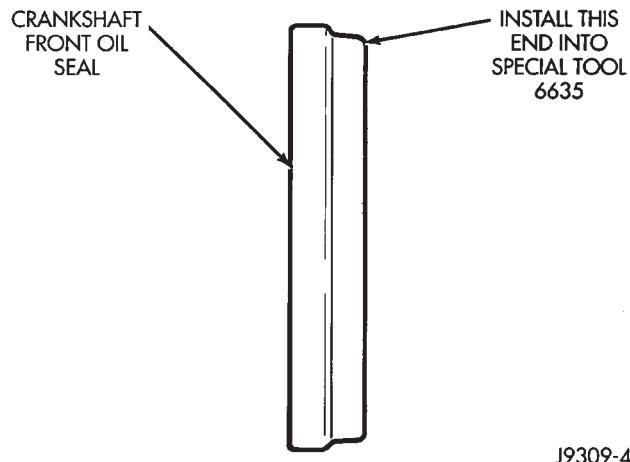

(11) Install the vibration damper.

(12) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap to block joint to provide cap to block and oil pan sealing (Fig. 48). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(13) Install new front crankshaft oil seal.

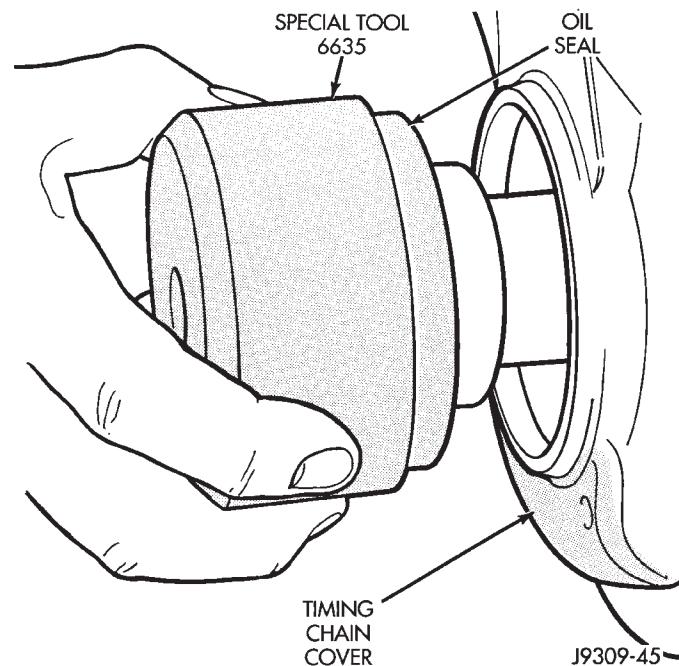
(14) Immediately install the oil pan.

## REMOVAL AND INSTALLATION (Continued)

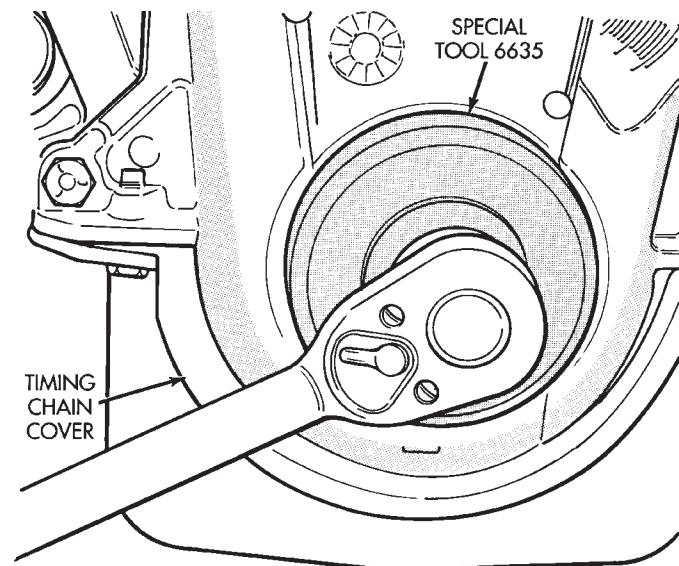

**Fig. 48 Apply Sealant to Bearing Cap to Block Joint**

## FRONT CRANKSHAFT OIL SEAL

## REMOVAL


The oil seal can be replaced without removing the timing chain cover, provided that the cover is not misaligned.

- (1) Disconnect the negative cable from the battery.
- (2) Remove vibration damper.
- (3) If front seal is suspected of leaking, check front oil seal alignment to crankshaft. The seal installation/alignment Tool 6635, should fit with minimum interference. If tool does not fit, the cover must be removed and installed properly.
- (4) Place a suitable tool behind the lips of the oil seal to pry the oil seal outward. Be careful not to damage the crankshaft seal bore of cover.


**Fig. 49 Placing Oil Seal on Installation Tool 6635**

## INSTALLATION

- (1) Place the smaller diameter of the oil seal over Front Oil Seal Installation Tool 6635 (Fig. 49). Seat the oil seal in the groove of the tool.
- (2) Position the seal and tool onto the crankshaft (Fig. 50).

**Fig. 50 Position Tool and Seal onto Crankshaft**

- (3) Using the vibration damper bolt, tighten the bolt to draw the seal into position on the crankshaft (Fig. 51).
- (4) Remove the vibration damper bolt and seal installation tool.
- (5) Inspect the seal flange on the vibration damper.
- (6) Install the vibration damper.
- (7) Connect the negative cable to the battery.

**Fig. 51 Installing Oil Seal**

## REMOVAL AND INSTALLATION (Continued)

## CRANKSHAFT REAR OIL SEALS

The service seal is a two piece, Viton seal. The upper seal half can be installed with crankshaft removed from engine or with crankshaft installed. When a new upper seal is installed, install a new lower seal. The lower seal half can be installed only with the rear main bearing cap removed.

## UPPER SEAL—CRANKSHAFT REMOVED

## REMOVAL

- Remove the crankshaft. Discard the old upper seal.

## INSTALLATION

(1) Clean the cylinder block rear cap mating surface. Be sure the seal groove is free of debris. Check for burrs at the oil hole on the cylinder block mating surface to rear cap.

(2) Lightly oil the new upper seal lips with engine oil.

(3) Install the new upper rear bearing oil seal with the white paint facing toward the rear of the engine.

(4) Position the crankshaft into the cylinder block.

(5) Lightly oil the new lower seal lips with engine oil.

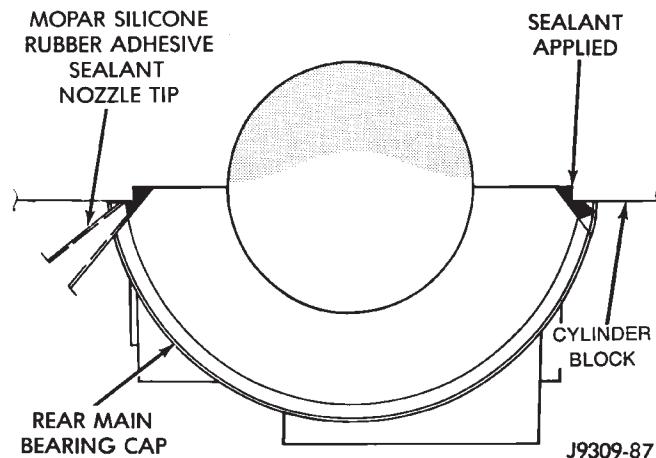
(6) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing towards the rear of the engine.

(7) Apply 5 mm (0.20 in.) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 52). DO NOT over-apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.




Fig. 52 Sealant Application to Bearing Cap

- To align the bearing cap, use cap slot, alignment dowel, and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than two times for proper engagement.


(9) Clean and oil all cap bolts. Install all main bearing caps. Install all cap bolts and alternately tighten to 115 N·m (85 ft. lbs.) torque.

(10) Install oil pump.

(11) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap-to-block joint to provide cap to block and oil pan sealing (Fig. 53). Apply enough sealant so that a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(12) Install new front crankshaft oil seal.

(13) Immediately install the oil pan.



J9309-87

Fig. 53 Apply Sealant to Bearing Cap-to-Block Joint

## UPPER SEAL—CRANKSHAFT INSTALLED

## REMOVAL

- Remove the oil pan.
- Remove the oil pump from the rear main bearing cap.
- Remove the rear main bearing cap. Remove and discard the old lower oil seal.
- Carefully remove and discard the old upper oil seal.

## INSTALLATION

(1) Clean the cylinder block mating surfaces before oil seal installation. Check for burrs at the oil hole on the cylinder block mating surface to rear cap.

(2) Lightly oil the new upper seal lips with engine oil. To allow ease of installation of the seal, loosen at least the two main bearing caps forward of the rear bearing cap.

(3) Rotate the new upper seal into the cylinder block, being careful not to shave or cut the outer surface of the seal. To ensure proper installation, use the installation tool provided with the kit. Install the new seal with the white paint facing toward the rear of the engine.

## REMOVAL AND INSTALLATION (Continued)

(4) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing toward the rear of the engine.

(5) Apply 5 mm (0.20 in.) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 52). DO NOT over-apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application. Be sure the white paint faces toward the rear of the engine.

(6) To align the bearing cap, use cap slot, alignment dowel, and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than two times for proper engagement.

(7) Install the rear main bearing cap with cleaned and oiled cap bolts. Alternately tighten ALL cap bolts to 115 N·m (85 ft. lbs.) torque.

(8) Install oil pump.

(9) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap-to-block joint to provide cap-to-block and oil pan sealing (Fig. 53). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(10) Immediately install the oil pan.

## LOWER SEAL

## REMOVAL

(1) Remove the oil pan.

(2) Remove the oil pump from the rear main bearing cap.

(3) Remove the rear main bearing cap and discard the old lower seal.

## INSTALLATION

(1) Clean the rear main cap mating surfaces including the oil pan gasket groove.

(2) Carefully install a new upper seal. Refer to Upper Seal Replacement — Crankshaft Installed procedure above.

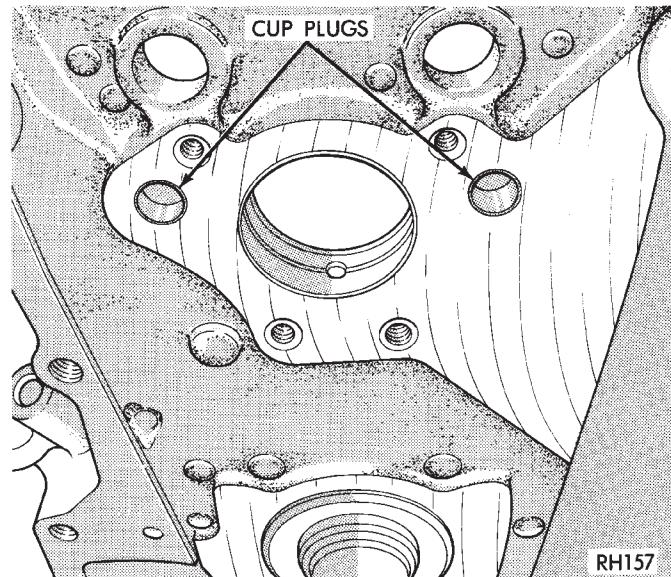
(3) Lightly oil the new lower seal lips with engine oil.

(4) Install a new lower seal in bearing cap with the white paint facing the rear of engine.

(5) Apply 5 mm (0.20 in.) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 52). DO NOT over-apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.

(6) To align the bearing cap, use cap slot, alignment dowel, and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than two times for proper engagement.

(7) Install the rear main bearing cap with cleaned and oiled cap bolts. Alternately tighten the cap bolts to 115 N·m (85 ft. lbs.) torque.


(8) Install oil pump.

(9) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap-to-block joint to provide cap to block and oil pan sealing. Apply enough sealant so that a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(10) Immediately install the oil pan.

## ENGINE CORE OIL AND CAMSHAFT PLUGS

Engine core plugs have been pressed into the oil galleries behind the camshaft thrust plate (Fig. 54). This will reduce internal leakage and help maintain higher oil pressure at idle.



**Fig. 54 Location of Cup Plugs in Oil Galleries**

## REMOVAL

(1) Using a blunt tool such as a drift or a screwdriver and a hammer, strike the bottom edge of the cup plug (Fig. 55).

(2) With the cup plug rotated, grasp firmly with pliers or other suitable tool and remove plug (Fig. 55).

## INSTALLATION

Thoroughly clean inside of cup plug hole in cylinder block or head. Be sure to remove old sealer.

Be certain the new plug is cleaned of all oil or grease.

(1) Coat edges of plug and core hole with Mopar Gasket Maker, or equivalent.

**CAUTION: DO NOT drive cup plug into the casting, as restricted coolant flow can result and cause serious engine problems.**

## REMOVAL AND INSTALLATION (Continued)

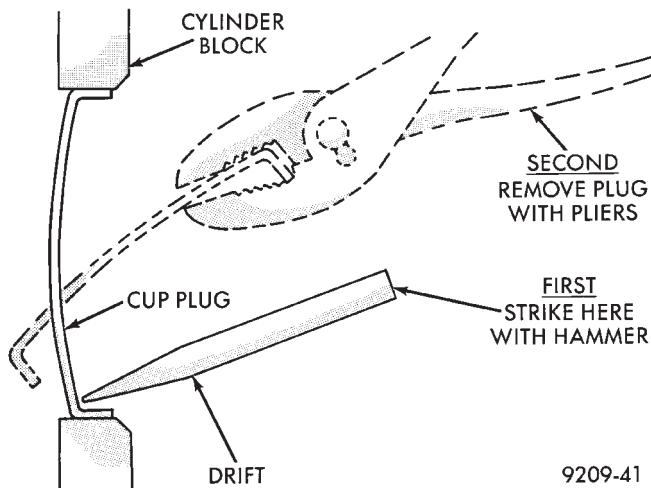



Fig. 55 Core Hole Plug Removal

(2) Using proper plug drive, drive cup plug into hole. The sharp edge of the plug should be at least 0.50 mm (0.020 in.) inside the lead-in chamfer.

(3) It is not necessary to wait for curing of the sealant. The cooling system can be filled and the vehicle placed in service immediately.

## DISASSEMBLY AND ASSEMBLY

## HYDRAULIC TAPPETS

**CAUTION:** The plunger and tappet bodies are not interchangeable. The plunger and valve must always be fitted to the original body. It is advisable to work on one tappet at a time to avoid mixing of parts. Mixed parts are not compatible. DO NOT disassemble a tappet on a dirty work bench.

## DISASSEMBLE

- (1) Pry out plunger retainer spring clip (Fig. 56).
- (2) Clean varnish deposits from inside of tappet body above plunger cap.
- (3) Invert tappet body and remove plunger cap, plunger, check valve, check valve spring, check valve retainer, and plunger spring (Fig. 56). Check valve could be flat or ball.

## ASSEMBLE

- (1) Clean all tappet parts in a solvent that will remove all varnish and carbon.
- (2) Replace tappets that are unfit for further service with new assemblies.
- (3) If plunger shows signs of scoring or wear, install a new tappet assembly. If valve is pitted, or valve seat on end of plunger is prevented from seating, install a new tappet assembly.
- (4) Assemble tappets (Fig. 56).

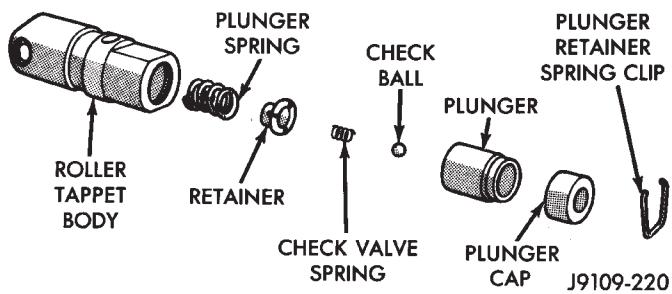



Fig. 56 Hydraulic Tappet Assembly

## VALVES, GUIDES AND SPRINGS

## VALVE CLEANING

Clean valves thoroughly. Discard burned, warped, or cracked valves.

Remove carbon and varnish deposits from inside of valve guides with a reliable guide cleaner.

## VALVE GUIDES

Measure valve stems for wear. If wear exceeds 0.051 mm (0.002 in.), replace the valve.

Measure valve stem guide clearance as follows:

- (1) Install Valve Guide Sleeve Tool C-3973 over valve stem and install valve (Fig. 57). The special sleeve places the valve at the correct height for checking with a dial indicator.

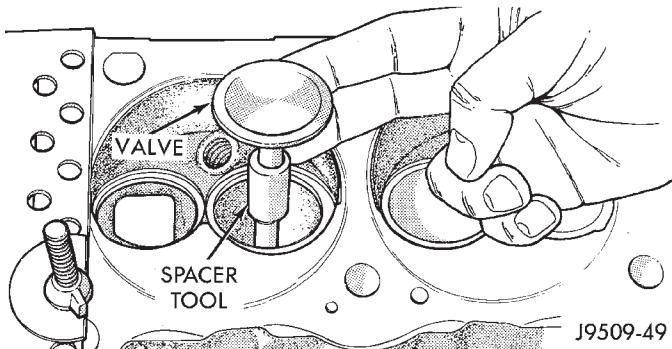



Fig. 57 Positioning Valve with Tool C-3973

- (2) Attach dial indicator Tool C-3339 to cylinder head and set it at right angles to valve stem being measured (Fig. 58).

(3) Move valve to and from the indicator. The total dial indicator reading should not exceed 0.432 mm (0.017 in.). Ream the guides for valves with oversize stems if dial indicator reading is excessive or if the stems are scuffed or scored.

## VALVE GUIDES

Service valves with oversize stems are available (Fig. 59).

- (1) Slowly turn reamer by hand and clean guide thoroughly before installing new valve. **REAM THE VALVE GUIDES FROM STANDARD TO 0.381 MM (0.015 IN.). USE A TWO STEP PROCEDURE SO THE VALVE**

## DISASSEMBLY AND ASSEMBLY (Continued)

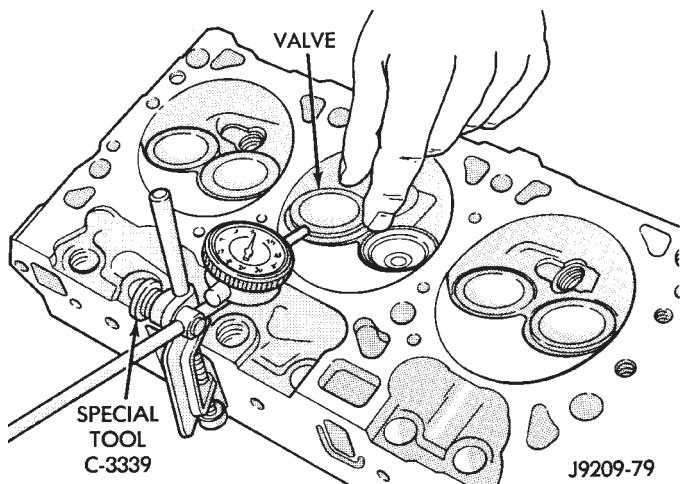



Fig. 58 Measuring Valve Guide Wear

| Reamer O/S              | Valve Guide Size                        |
|-------------------------|-----------------------------------------|
| 0.076 mm<br>(0.003 in.) | 8.026 – 8.052 mm<br>(0.316 – 0.317 in.) |
| 0.381 mm<br>(0.015 in.) | 8.331 – 8.357 mm<br>(0.328 – 0.329 in.) |

J9309-30

Fig. 59 Reamer Sizes

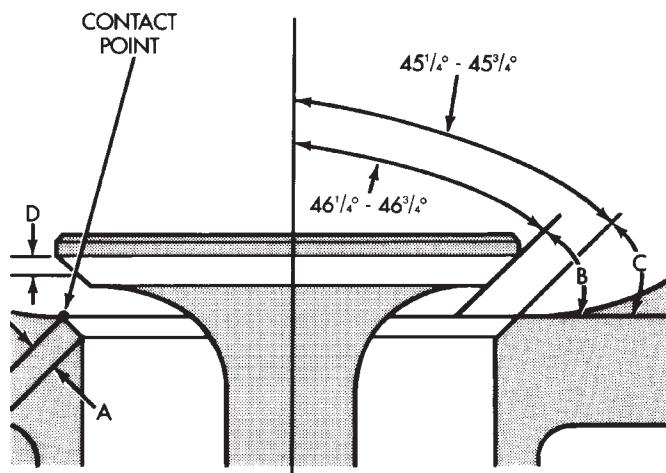
guides are reamed true in relation to the valve seat:

- Step 1—Ream to 0.0763 mm (0.003 inch).
- Step 2—Ream to 0.381 mm (0.015 inch).

## REFACING VALVES AND VALVE SEATS

The intake and exhaust valves have a  $43\frac{1}{4}^\circ$  to  $43\frac{3}{4}^\circ$  face angle and a  $44\frac{1}{4}^\circ$  to  $44\frac{3}{4}^\circ$  seat angle (Fig. 60).

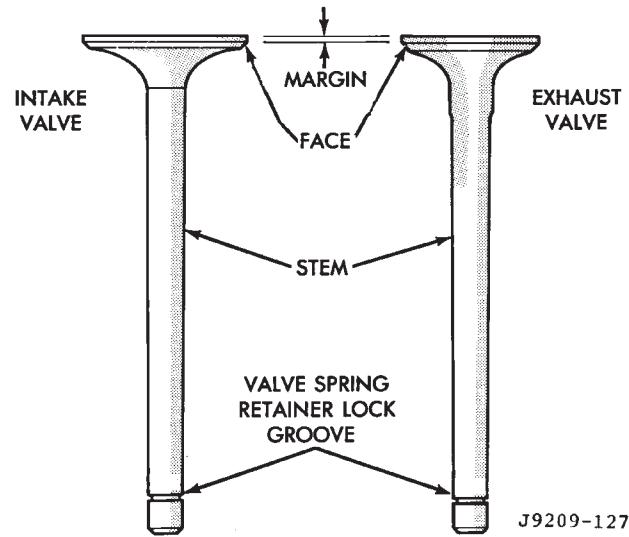
## VALVES


Inspect the remaining margin after the valves are refaced (Fig. 61). Valves with less than 1.190 mm (0.047 in.) margin should be discarded.

## VALVE SEATS

**CAUTION: DO NOT un-shroud valves during valve seat refacing (Fig. 62).**

(1) When refacing valve seats, it is important that the correct size valve guide pilot be used for reseating stones. A true and complete surface must be obtained.


(2) Measure the concentricity of valve seat using a dial indicator. Total runout should not exceed 0.051 mm (0.002 in.) total indicator reading.



A - SEAT WIDTH - INTAKE 1.016 – 1.524 mm (0.040 – 0.060 in.)  
EXHAUST 1.524 – 2.032 mm (0.060 – 0.080 in.)  
B - FACE ANGLE (INTAKE & EXHAUST)  $43\frac{1}{4}^\circ$  –  $43\frac{3}{4}^\circ$   
C - SEAT ANGLE (INTAKE & EXHAUST)  $44\frac{1}{4}^\circ$  –  $44\frac{3}{4}^\circ$   
D - CONTACT SURFACE

J9309-95

Fig. 60 Valve Face and Seat Angles



J9209-127

Fig. 61 Intake and Exhaust Valves

(3) Inspect the valve seat with Prussian blue, to determine where the valve contacts the seat. To do this, coat valve seat LIGHTLY with Prussian blue then set valve in place. Rotate the valve with light pressure. If the blue is transferred to the center of valve face, contact is satisfactory. If the blue is transferred to the top edge of valve face, lower valve seat with a  $15^\circ$  stone. If the blue is transferred to bottom edge of valve face raise valve seat with a  $60^\circ$  stone.

(4) When seat is properly positioned the width of intake seats should be 1.016-1.524 mm (0.040-0.060 in.). The width of the exhaust seats should be 1.524-2.032 mm (0.060-0.080 in.).

## DISASSEMBLY AND ASSEMBLY (Continued)

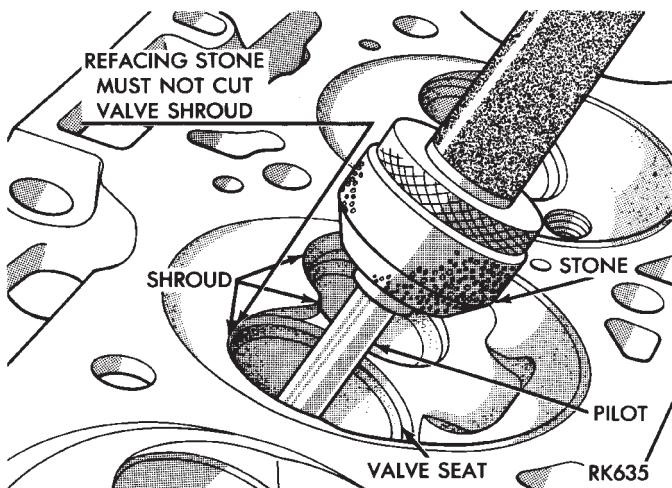



Fig. 62 Refacing Valve Seats

## VALVE SPRINGS

Whenever valves have been removed for inspection, reconditioning or replacement, valve springs should be tested. As an example the compression length of the spring to be tested is 1-5/16 in.. Turn table of Universal Valve Spring Tester Tool until surface is in line with the 1-5/16 in. mark on the threaded stud. Be sure the zero mark is to the front (Fig. 63). Place spring over stud on the table and lift compressing lever to set tone device. Pull on torque wrench until ping is heard. Take reading on torque wrench at this instant. Multiply this reading by 2. This will give the spring load at test length. Fractional measurements are indicated on the table for finer adjustments. Refer to specifications to obtain specified height and allowable tensions. Discard the springs that do not meet specifications.

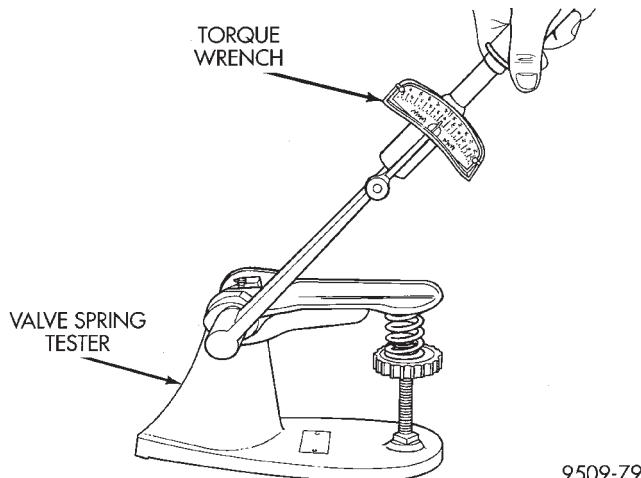



Fig. 63 Testing Valve Spring for Compressed Length

## OIL PUMP

## DISASSEMBLE

- (1) Remove the relief valve as follows:
  - (a) Remove cotter pin. Drill a 3.175 mm (1/8 in.) hole into the relief valve retainer cap and insert a self-threading sheet metal screw into cap.
  - (b) Clamp screw into a vise and while supporting oil pump, remove cap by tapping pump body using a soft hammer. Discard retainer cap and remove spring and relief valve (Fig. 64).

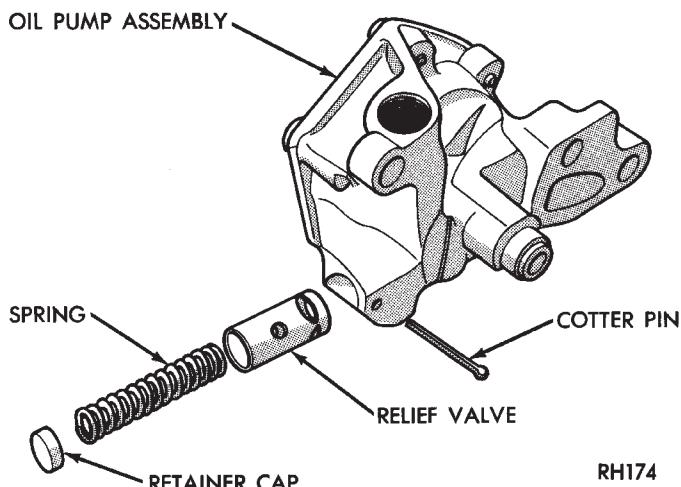



Fig. 64 Oil Pressure Relief Valve

- (2) Remove oil pump cover (Fig. 65).
- (3) Remove pump outer rotor and inner rotor with shaft (Fig. 65).
- (4) Wash all parts in a suitable solvent and inspect carefully for damage or wear.

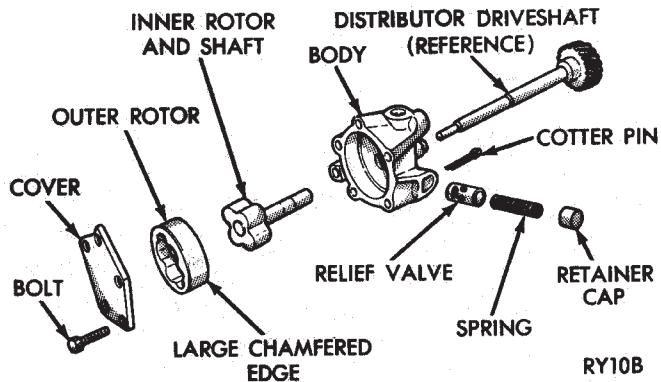



Fig. 65 Oil Pump

## ASSEMBLE

- (1) Install pump rotors and shaft, using new parts as required.
- (2) Position the oil pump cover onto the pump body. Tighten cover bolts to 11 N·m (95 in. lbs.) torque.
- (3) Install the relief valve and spring. Insert the cotter pin.

## DISASSEMBLY AND ASSEMBLY (Continued)

- (4) Tap on a new retainer cap.
- (5) Prime oil pump before installation by filling rotor cavity with engine oil.

## CYLINDER BLOCK

## DISASSEMBLE

Engine assembly removed from vehicle:

- (1) Remove the cylinder head.
- (2) Remove the oil pan.
- (3) Remove the piston and connecting rod assemblies.

## ASSEMBLE

- (1) Install the piston and connecting rod assembly.
- (2) Install the oil pan.
- (3) Install the cylinder head.
- (4) Install the engine into the vehicle.

## CLEANING AND INSPECTION

## CYLINDER HEAD COVER

## CLEANING

Clean cylinder head cover gasket surface.

Clean head rail, if necessary.

## INSPECTION

Inspect cover for distortion and straighten, if necessary.

Check the gasket for use in head cover installation. If damaged, use a new gasket.

## CYLINDER HEAD

## CLEANING

Clean all surfaces of cylinder block and cylinder heads.

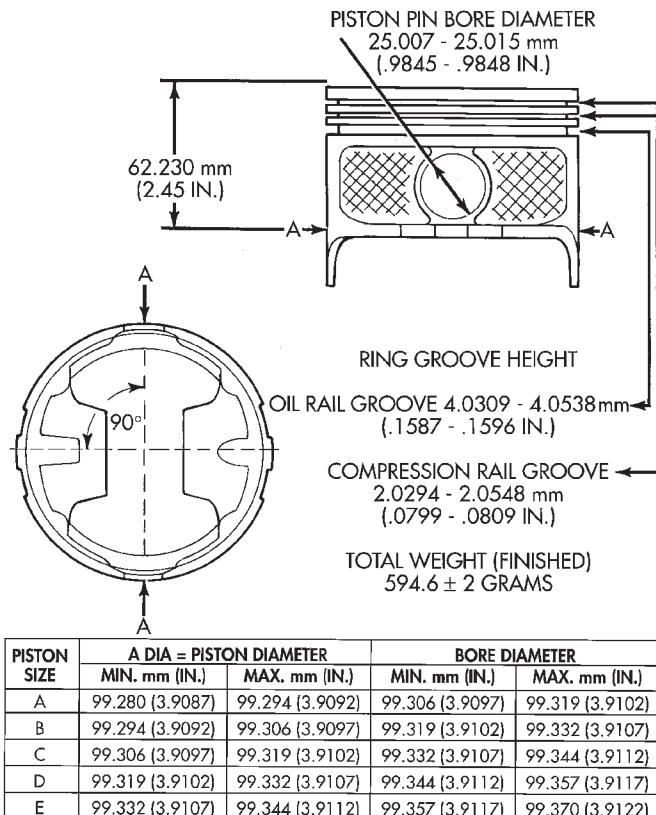
Clean cylinder block front and rear gasket surfaces using a suitable solvent.

## INSPECTION

Inspect all surfaces with a straightedge if there is any reason to suspect leakage. If out-of-flatness exceeds  $0.00075 \text{ mm/mm}$  ( $0.00075 \text{ in./in.}$ ) times the span length in any direction, either replace head or lightly machine the head surface.

**FOR EXAMPLE:**—A 305 mm (12 in.) span is 0.102 mm (0.004 in.) out-of-flat. The allowable out-of-flat is  $305 \times 0.00075$  (12 x 0.00075) equals 0.23 mm (0.009 in.). This amount of out-of-flat is acceptable.

The cylinder head surface finish should be 1.78-3.00 microns (70-125 microinches).


Inspect push rods. Replace worn or bent rods.

## PISTON AND CONNECTING ROD INSPECTION

Check the crankshaft connecting rod journal for excessive wear, taper and scoring.

Check the cylinder block bore for out-of-round, taper, scoring and scuffing.

Check the pistons for taper and elliptical shape before they are fitted into the cylinder bore (Fig. 66).



J9509-80

**Fig. 66 Piston Measurements**

## CRANKSHAFT INSPECTION OF JOURNALS

The crankshaft connecting rod and main journals should be checked for excessive wear, taper or scoring. The maximum taper or out-of-round on any crankshaft journal is 0.025 mm (0.001 in.).

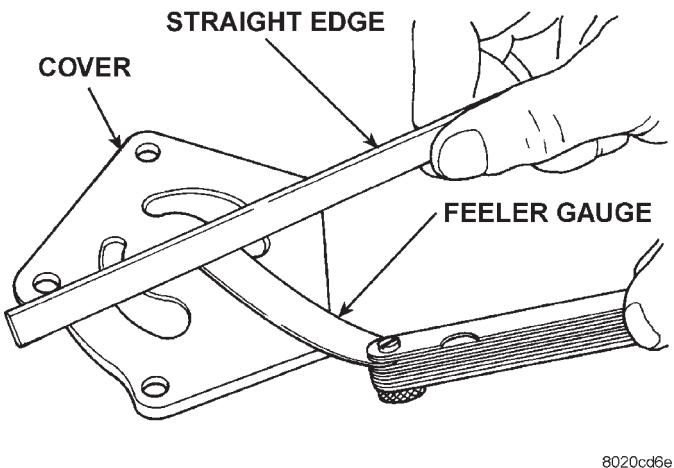
Journal grinding should not exceed 0.305 mm (0.012 in.) under the standard journal diameter. DO NOT grind thrust faces of No. 2 main bearing. DO NOT nick crank pin or bearing fillets. After grinding, remove rough edges from crankshaft oil holes and clean out all oil passages.

**CAUTION:** After any journal grind, it is important that the final paper or cloth polish be in the same direction that the engine rotates.

## CLEANING AND INSPECTION (Continued)

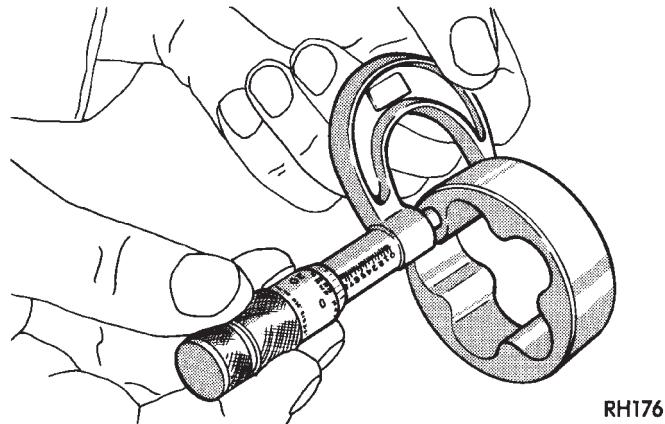
## OIL PUMP

## OIL PUMP PRESSURE


The MINIMUM oil pump pressure is 41.4 kPa (6 psi) at curb idle. The MAXIMUM oil pump pressure is 207-552 kPa (30-80 psi) at 3,000 RPM or more.

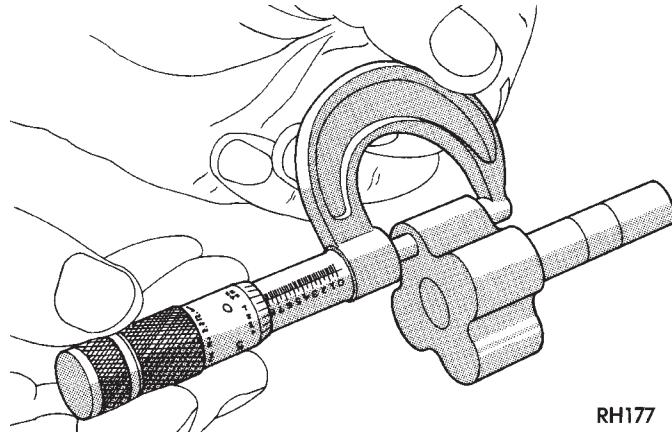
**CAUTION: If oil pressure is ZERO at curb idle, DO NOT run engine at 3,000 RPM.**

## INSPECTION


Mating surface of the oil pump cover should be smooth. Replace pump assembly if cover is scratched or grooved.

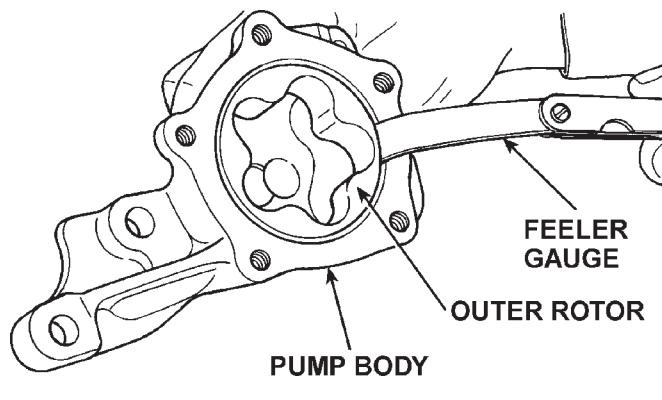
Lay a straightedge across the pump cover surface (Fig. 67). If a 0.038 mm (0.0015 in.) feeler gauge can be inserted between cover and straightedge, pump assembly should be replaced.




**Fig. 67 Checking Oil Pump Cover Flatness**

Measure thickness and diameter of outer rotor. If outer rotor thickness measures 20.9 mm (0.825 in.) or less, or if the diameter is 62.7 mm (2.469 in.) or less, replace outer rotor (Fig. 68).




**Fig. 68 Measuring Outer Rotor Thickness**

If inner rotor measures 20.9 mm (0.825 in.) or less, replace inner rotor and shaft assembly (Fig. 69).



**Fig. 69 Measuring Inner Rotor Thickness**

Slide outer rotor into pump body. Press rotor to the side with your fingers and measure clearance between rotor and pump body (Fig. 70). If clearance is 0.356 mm (0.014 in.) or more, replace oil pump assembly.



**Fig. 70 Measuring Outer Rotor Clearance in Housing**

Install inner rotor and shaft into pump body. If clearance between inner and outer rotors is 0.203 mm (0.008 in.) or more, replace shaft and both rotors (Fig. 71).

Place a straightedge across the face of the pump, between bolt holes. If a feeler gauge of 0.102 mm (0.004 in.) or more can be inserted between rotors and the straightedge, replace pump assembly (Fig. 72).

Inspect oil pressure relief valve plunger for scoring and free operation in its bore. Small marks may be removed with 400-grit wet or dry sandpaper.

The relief valve spring has a free length of approximately 49.5 mm (1.95 in.). The spring should test between 19.5 and 20.5 pounds when compressed to

## CLEANING AND INSPECTION (Continued)

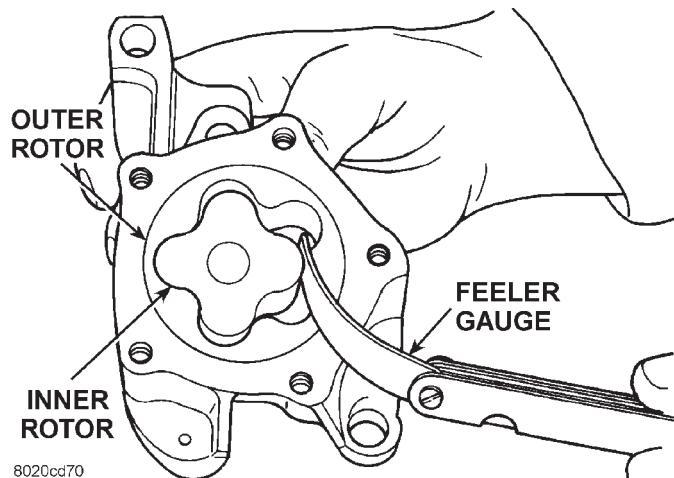



Fig. 71 Measuring Clearance Between Rotors

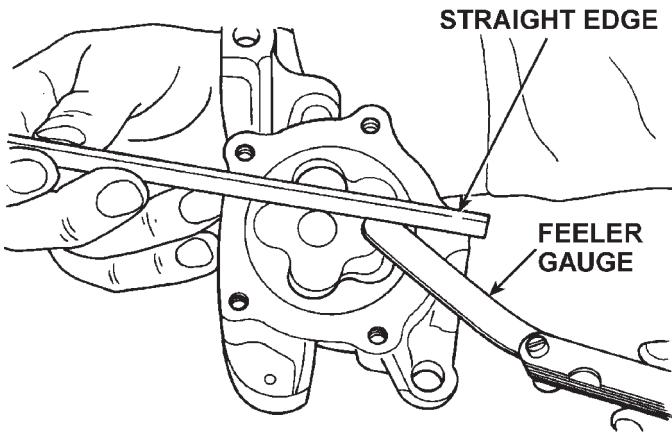



Fig. 72 Measuring Clearance Over Rotors

34 mm (1-11/32 in.). Replace spring that fails to meet these specifications (Fig. 73).

If oil pressure was low and pump is within specifications, inspect for worn engine bearings or other reasons for oil pressure loss.

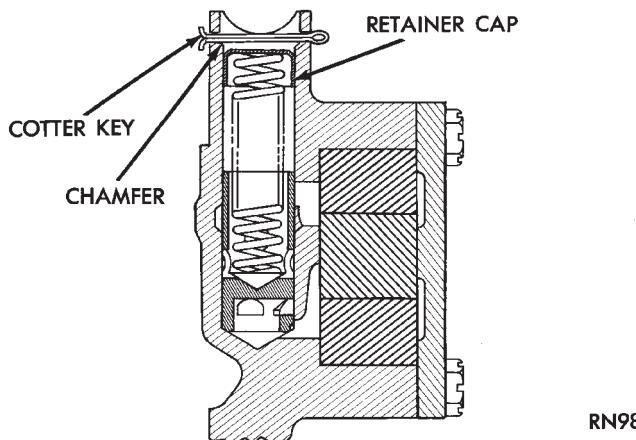



Fig. 73 Proper Installation of Retainer Cap

## OIL PAN

## CLEANING

Clean the block and pan gasket surfaces.

Trim or remove excess sealant film in the rear main cap oil pan gasket groove. **DO NOT remove the sealant inside the rear main cap slots.**

If present, trim excess sealant from inside the engine.

Clean oil pan in solvent and wipe dry with a clean cloth.

Clean oil screen and pipe thoroughly in clean solvent. Inspect condition of screen.

## INSPECTION

Inspect oil drain plug and plug hole for stripped or damaged threads. Repair as necessary.

Inspect oil pan mounting flange for bends or distortion. Straighten flange, if necessary.

## CYLINDER BLOCK

## CLEANING

Clean cylinder block thoroughly and check all core hole plugs for evidence of leaking.

## INSPECTION

Examine block for cracks or fractures.

The cylinder walls should be checked for out-of-round and taper with Cylinder Bore Indicator Tool C-119. The cylinder block should be bored and honed with new pistons and rings fitted if:

- The cylinder bores show more than 0.127 mm (0.005 in.) out-of-round.
- The cylinder bores show a taper of more than 0.254 mm (0.010 in.).
- The cylinder walls are badly scuffed or scored.

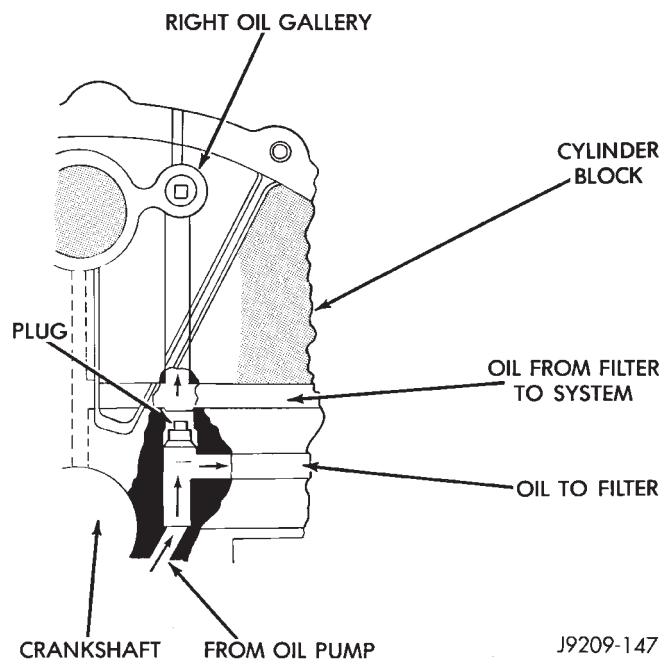
Boring and honing operation should be closely coordinated with the fitting of pistons and rings, so that specified clearances can be maintained.

## OIL LINE PLUG

The oil line plug is located in the vertical passage at the rear of the block between the oil-to-filter and oil-from-filter passages (Fig. 74). Improper installation or plug missing could cause erratic, low, or no oil pressure.

The oil plug must come out the bottom. Use flat dowel, down the oil pressure sending unit hole from the top, to remove oil plug.

(1) Remove oil pressure sending unit from back of block.


(2) Insert a 3.175 mm (1/8 in.) finish wire, or equivalent, into passage.

(3) Plug should be 190.0 to 195.2 mm (7-1/2 to 7-11/16 in.) from machined surface of block (Fig. 74).

## CLEANING AND INSPECTION (Continued)

If plug is too high, use a suitable flat dowel to position properly.

(4) If plug is too low, remove oil pan and No. 4 main bearing cap. Use suitable flat dowel to position properly. Coat outside diameter of plug with Mopar Stud and Bearing Mount Adhesive, or equivalent. Plug should be 54.0 to 57.7 mm (2-1/8 to 2-5/16 in.) from bottom of the block.



J9209-147

*Fig. 74 Oil Line Plug*

## SPECIFICATIONS

## 3.9L ENGINE

**Camshaft**

## Bearing Diameter

|                       |                                        |
|-----------------------|----------------------------------------|
| No. 1                 | 50.800-50.825 mm<br>(2.000-2.001 in)   |
| No. 2                 | 50.394-50.419 mm<br>(1.984-1.985 in)   |
| No. 3                 | 49.606-49.632 mm<br>(1.953-1.954 in)   |
| No. 4                 | 39.688-39.713 mm<br>(1.5625-1.5635 in) |
| Diametrical Clearance | 0.0254-0.0762 mm<br>(0.001-0.003 in)   |
| Max. Allowable        | 0.127 mm<br>(0.005 in)                 |
| End Play              | 0.051-0.254 mm<br>(0.002-0.010 in)     |

## Bearing Journal Diameter

|       |                                        |
|-------|----------------------------------------|
| No. 1 | 50.749-50.775 mm<br>(1.998-1.999 in)   |
| No. 2 | 50.343-50.368 mm<br>(1.982-1.983 in)   |
| No. 3 | 49.555-49.581 mm<br>(1.951-1.952 in)   |
| No. 4 | 39.637-39.662 mm<br>(1.5605-1.5615 in) |

**Connecting Rods**

|                             |                                        |
|-----------------------------|----------------------------------------|
| Bearing Clearance           | 0.013-0.056 mm<br>(0.0005-0.0022 in)   |
| Max. Allowable              | 0.08 mm (0.003 in)                     |
| Piston Pin Bore Diameter    | 24.940-24.978 mm<br>(0.9819-0.9834 in) |
| Side Clearance (Two Rods)   | 0.152-0.356 mm<br>(0.006-0.014 in)     |
| Total Weight (Less Bearing) | 726 grams<br>(25.61 oz)                |

**Crankshaft**

## Connect Rod Journal

|                     |                                      |
|---------------------|--------------------------------------|
| Diameter            | 53.950-53.975 mm<br>(2.124-2.125 in) |
| Out-of-Round (Max.) | 0.0254 mm<br>(0.001 in)              |
| Taper (Max.)        | 0.0254 mm<br>(0.001 in)              |

## Diametrical Clearance

|                                 |                                      |
|---------------------------------|--------------------------------------|
| No. 1                           | 0.013-0.038 mm<br>(0.0005-0.0015 in) |
| Nos. 2, 3, and 4                | 0.013-0.051 mm<br>(0.0005-0.0020 in) |
| Max. Allowable (Nos. 2, 3, & 4) | 0.064 mm<br>(0.0025 in)              |

|                |                                    |
|----------------|------------------------------------|
| End Play       | 0.051-0.178 mm<br>(0.002-0.007 in) |
| Max. Allowable | 0.254 mm<br>(0.010 in)             |

|                       |                                        |
|-----------------------|----------------------------------------|
| Main Bearing Journals |                                        |
| Diameter              | 63.487-63.513 mm<br>(2.4995-2.5005 in) |
| Out-of-Round (Max.)   | 0.0254 mm<br>(0.001 in)                |
| Taper (Max.)          | 0.0254 mm<br>(0.001 in)                |

**Cylinder Block**

|                     |                                      |
|---------------------|--------------------------------------|
| Cylinder Bore       |                                      |
| Diameter            | 99.314-99.365 mm<br>(3.910-3.912 in) |
| Out-of-Round (Max.) | 0.127 mm<br>(0.005 in)               |
| Taper (Max.)        | 0.254 mm<br>(0.010 in)               |
| Oversize (Max.)     | 1.016 mm<br>(0.040 in)               |

|                               |                                        |
|-------------------------------|----------------------------------------|
| Distributor Lower Drive Shaft |                                        |
| Bushing (Press Fit in Block)  | 0.0127-0.3556 mm<br>(0.0005-0.0140 in) |
| Shaft-to-Bushing Clearance    | 0.0178-0.0686 mm<br>(0.0007-0.0027 in) |
| Tappet Bore Diameter          | 22.99-23.01 mm<br>(0.9051-0.9059 in)   |

**Cylinder Head**

|                               |                          |
|-------------------------------|--------------------------|
| Compression Pressure          | 689 kPa<br>(100 psi)     |
| Gasket Thickness (Compressed) | 1.2065 mm<br>(0.0475 in) |

## Valve Seat

|                          |                                    |
|--------------------------|------------------------------------|
| Angle                    | 44.25° - 44.75°                    |
| Runout (Max.)            | 0.0762 mm<br>(0.003 in)            |
| Width (Finish) - Intake  | 1.016-1.542 mm<br>(0.040-0.060 in) |
| Width (Finish) - Exhaust | 1.524-2.032 mm<br>(0.060-0.080 in) |

**Hydraulic Tappets**

|                    |                                        |
|--------------------|----------------------------------------|
| Body Diameter      | 22.949-22.962 mm<br>(0.9035-0.9040 in) |
| Clearance in Block | 0.0279-0.0610 mm<br>(0.0011-0.0024 in) |
| Dry Lash           | 1.524-5.334 mm<br>(0.060-0.210 in)     |
| Push Rod Length    | 175.64-176.15 mm<br>(6.915-6.935 in)   |

## SPECIFICATIONS (Continued)

**Oil Pump**

|                                     |                          |
|-------------------------------------|--------------------------|
| Clearance Over Rotors (Max.)        | 0.1016 mm<br>(0.004 in)  |
| Cover Out-of-Flat (Max.)            | 0.0381 mm<br>(0.0015 in) |
| Inner Rotor Thickness (Min.)        | 20.955 mm<br>(0.825 in)  |
| Outer Rotor                         |                          |
| Clearance (Max.)                    | 0.3556 mm<br>(0.014 in)  |
| Diameter (Min.)                     | 62.7126 mm<br>(2.469 in) |
| Thickness (Min.)                    | 20.955 mm<br>(0.825 in)  |
| Tip Clearance Between Rotors (Max.) | 0.2032 mm<br>(0.008 in)  |

**Oil Pressure**

|                               |                            |
|-------------------------------|----------------------------|
| At Curb Idle Speed (Minimum)* | 41.4 kPa<br>(6 psi)        |
| At 3000 rpm                   | 207-552 kPa<br>(30-80 psi) |
| Oil Pressure Switch           |                            |
| Actuating Pressure (Min.)     | 34.5-48.3 kPa<br>(5-7 psi) |

\*CAUTION: If pressure is ZERO at curb idle,  
DO NOT run engine.

**Oil Filter**

|                      |                          |
|----------------------|--------------------------|
| Bypass Valve Setting | 62-103 kPa<br>(9-15 psi) |
|----------------------|--------------------------|

**Pistons**

|                              |                                        |
|------------------------------|----------------------------------------|
| Clearance at Top of Skirt    | 0.0127-0.0381 mm<br>(0.0005-0.0015 in) |
| Land Clearance (Diametrical) | 0.635-1.016 mm<br>(0.025-0.040 in)     |
| Piston Length                | 86.360 mm<br>(3.40 in)                 |
| Piston Ring Groove Depth     |                                        |
| Nos. 1 and 2                 | 4.572-4.826 mm<br>(0.180-0.190 in)     |
| No. 3                        | 3.810-4.064 mm<br>(0.150-0.160 in)     |
| Weight                       | 592.6-596.6 grams<br>(20.90-21.04 oz)  |

**Piston Pins**

|                       |                                            |
|-----------------------|--------------------------------------------|
| Clearance             |                                            |
| In Piston             | 0.00635-0.01905 mm<br>(0.00025-0.00075 in) |
| In Rod (Interference) | 0.0178-0.0356 mm<br>(0.0007-0.0014 in)     |
| Diameter              | 24.996-25.001 mm<br>(0.9841-0.9843 in)     |
| End Play              | NONE                                       |
| Length                | 75.946-76.454 mm<br>(2.990-3.010 in)       |

**Piston Rings**

|                           |                                      |
|---------------------------|--------------------------------------|
| Ring Gap                  |                                      |
| Compression Rings         | 0.254-0.508 mm<br>(0.010-0.020 in)   |
| Oil Control (Steel Rails) | 0.254-1.270 mm<br>(0.010-0.050 in)   |
| Ring Side Clearance       |                                      |
| Compression Rings         | 0.038-0.076 mm<br>(0.0015-0.0030 in) |
| Oil Ring (Steel Rails)    | 0.06-0.21 mm<br>(0.002-0.008 in)     |
| Ring Width                |                                      |
| Compression Rings         | 1.971-1.989 mm<br>(0.0776-0.0783 in) |
| Oil Ring (Steel Rails)    | 3.848-3.975 mm<br>(0.1515-0.1565 in) |

**Valves**

|                                 |                                      |
|---------------------------------|--------------------------------------|
| Face Angle                      | 43.25°-43.75°                        |
| Head Diameter                   |                                      |
| Intake                          | 48.666 mm<br>(1.916 in)              |
| Exhaust                         | 41.250 mm<br>(1.624 in)              |
| Length (Overall)                |                                      |
| Intake                          | 124.28-125.92 mm<br>(4.893-4.918 in) |
| Exhaust                         | 124.64-125.27 mm<br>(4.907-4.932 in) |
| Lift (Zero Lash)                | 10.973 mm<br>(0.432 in)              |
| Stem Diameter                   | 7.899-7.925 mm<br>(0.311-0.312 in)   |
| Stem-to-Guide Clearance         | 0.0254-0.0762 mm<br>(0.001-0.003 in) |
| Max. Allowable (Rocking Method) | 0.4318 mm<br>(0.017 in)              |
| Guide Bore Diameter (Std)       | 7.950-7.976 mm<br>(0.313-0.314 in)   |

## SPECIFICATIONS (Continued)

**Valve Springs**

|                                            |                                              |
|--------------------------------------------|----------------------------------------------|
| Free Length (Approx.)                      | 49.962 mm<br>(1.967 in)                      |
| Spring Tension (Valve Closed)              | @ 41.66 mm = 378 N<br>(@ 1.64 in = 85 lbs)   |
| Spring Tension (Valve Open)                | @ 30.89 mm = 890 N<br>(@ 1.212 in = 200 lbs) |
| Number of Coils                            | 6.8                                          |
| Installed Height (Spring Seat to Retainer) | 41.66 mm<br>(1.64 in)                        |
| Wire Diameter                              | 4.50 mm<br>(0.177 in)                        |

**Valve Timing**

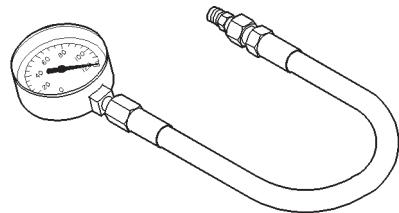
|               |      |
|---------------|------|
| Exhaust Valve |      |
| Closes (ATC)  | 25°  |
| Opens (BBC)   | 56°  |
| Duration      | 264° |
| Intake Valve  |      |
| Closes (ABC)  | 65°  |
| Opens (BTC)   | 8°   |
| Duration      | 250° |
| Valve Overlap | 31°  |

J9409-98

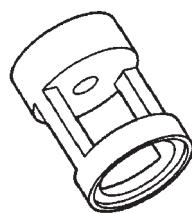
## OVERSIZE AND UNDERSIZE ENGINE COMPONENT MARKINGS

| CONDITION                                                | IDENTIFICATION                                                                                                                             | LOCATION OF IDENTIFICATION                                                                                    |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| CRANKSHAFT JOURNALS (UNDERSIZE)<br>0.0254 mm (0.001 in.) | R or M<br>M-2-3 etc. (indicating no. 2 and 3 main bearing journal)<br>and/or<br>R-1-4 etc. (indicating no. 1 and 4 connecting rod journal) | Steel stamped (near notch) on no. 6 crankshaft counterweight.                                                 |
| HYDRAULIC TAPPETS (OVERSIZE)<br>0.2032 mm (0.008 in.)    | ♦                                                                                                                                          | Diamond-shaped stamp<br>Top pad - front of engine and flat ground on outside surface of each O/S tappet bore. |
| VALVE STEMS (OVERSIZE)<br>0.127 mm (0.005 in.)           | X                                                                                                                                          | Milled pad adjacent to two tapped holes (3/8 in.) on each end of cylinder head.                               |

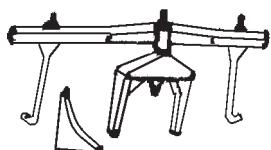
J9309-81


## SPECIFICATIONS (Continued)

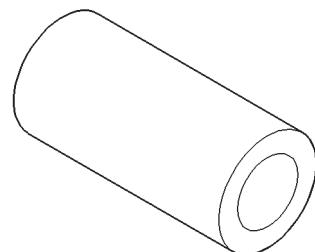
## TORQUE SPECIFICATIONS


| DESCRIPTION                              | TORQUE                   | DESCRIPTION                                                | TORQUE                 |
|------------------------------------------|--------------------------|------------------------------------------------------------|------------------------|
| <b>Adjusting Strap</b>                   |                          | <b>Oil Pump Cover</b>                                      |                        |
| Bolt                                     | 23 N·m (200 in. lbs.)    | Bolts                                                      | 11 N·m (95 in. lbs.)   |
| <b>Camshaft</b>                          |                          | <b>Rear Insulator-to-Bracket (2WD)</b>                     |                        |
| Bolt                                     | 68 N·m (50 ft. lbs.)     | Through-Bolt                                               | 68 N·m (50 ft. lbs.)   |
| <b>Camshaft Thrust Plate</b>             |                          | <b>Rear Insulator-to-Crossmember Support Bracket (2WD)</b> |                        |
| Bolts                                    | 24 N·m (210 in. lbs.)    | Nut                                                        | 41 N·m (30 ft. lbs.)   |
| <b>Chain Case Cover</b>                  |                          | <b>Rear Insulator-to-Crossmember (4WD)</b>                 |                        |
| Bolts                                    | 41 N·m (30 ft. lbs.)     | Nuts                                                       | 68 N·m (50 ft. lbs.)   |
| <b>Connecting Rod Cap</b>                |                          | <b>Rear Insulator-to-Transmission (4WD)</b>                |                        |
| Bolts                                    | 61 N·m (45 ft. lbs.)     | Bolts                                                      | 68 N·m (50 ft. lbs.)   |
| <b>Crankshaft Main Bearing Cap</b>       |                          | <b>Rear Insulator Bracket (4WD Automatic)</b>              |                        |
| Bolts                                    | 115 N·m (85 ft. lbs.)    | Bolts                                                      | 68 N·m (50 ft. lbs.)   |
| <b>Cylinder Head</b>                     |                          | <b>Rear Support Bracket-to-Crossmember Flange</b>          |                        |
| Bolts (1st Step)                         | 68 N·m (50 ft. lbs.)     | Nuts                                                       | 41 N·m (30 ft. lbs.)   |
| Bolts (2nd Step)                         | 143 N·m (105 ft. lbs.)   | <b>Rear Support Plate-to-Transfer Case</b>                 |                        |
| <b>Cylinder Head Cover</b>               |                          | Bolts                                                      | 41 N·m (30 ft. lbs.)   |
| Bolts                                    | 11 N·m (95 in. lbs.)     | <b>Rocker Arm</b>                                          |                        |
| <b>Exhaust Manifold-to-Cylinder Head</b> |                          | Bolts                                                      | 28 N·m (21 ft. lbs.)   |
| Bolts/Nuts                               | 34 N·m (25 ft. lbs.)     | <b>Spark Plugs</b>                                         |                        |
| <b>Flywheel</b>                          |                          | All                                                        | 41 N·m (30 ft. lbs.)   |
| Bolts                                    | 75 N·m (55 ft. lbs.)     | <b>Starter Motor</b>                                       |                        |
| <b>Front Bracket-to-Block</b>            |                          | Mounting Bolts                                             | 68 N·m (50 ft. lbs.)   |
| Bolts                                    | 88 N·m (65 ft. lbs.)     | <b>Thermostat Housing</b>                                  |                        |
| <b>Front Insulator</b>                   |                          | Bolts                                                      | 25 N·m (225 in. lbs.)  |
| Stud Nut                                 | 102 N·m (75 ft. lbs.)    | <b>Throttle Body</b>                                       |                        |
| <b>Front Support Bracket</b>             |                          | Bolts                                                      | 23 N·m (200 in. lbs.)  |
| Bolts                                    | 41 N·m (30 ft. lbs.)     | <b>Torque Converter Drive Plate</b>                        |                        |
| <b>Generator</b>                         |                          | Bolts                                                      | 31 N·m (270 in. lbs.)  |
| Mounting Bolt                            | 41 N·m (30 ft. lbs.)     | <b>Transfer Case-to-Insulator Mounting Plate</b>           |                        |
| <b>Intake Manifold</b>                   |                          | Nuts                                                       | 204 N·m (150 ft. lbs.) |
| Bolts                                    | Refer to R & I Procedure | <b>Transmission Support Bracket (2WD)</b>                  |                        |
| <b>Oil Pan</b>                           |                          | Bolts                                                      | 68 N·m (50 ft. lbs.)   |
| Bolts                                    | 24 N·m (215 in. lbs.)    | <b>Vibration Damper</b>                                    |                        |
| <b>Oil Pan</b>                           |                          | Retainer Bolt                                              | 183 N·m (135 ft. lbs.) |
| Drain Plug                               | 34 N·m (25 ft. lbs.)     | <b>Water Pump-to-Chain Case Cover</b>                      |                        |
| <b>Oil Pump</b>                          |                          | Bolt                                                       | 41 N·m (30 ft. lbs.)   |
| Attaching Bolts                          | 41 N·m (30 ft. lbs.)     |                                                            |                        |

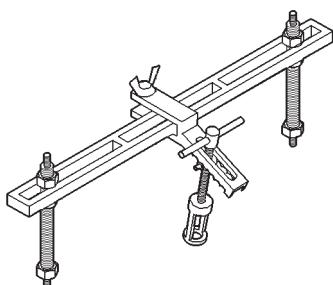
SPECIAL TOOLS


SPECIAL TOOLS

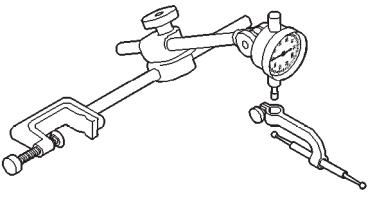



**Oil Pressure Gauge C-3292**

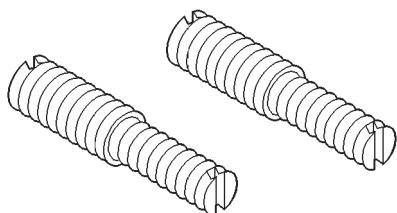



**Adapter 6716A**

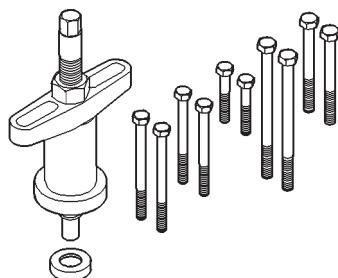



**Engine Support Fixture C-3487-A**



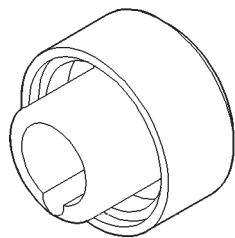
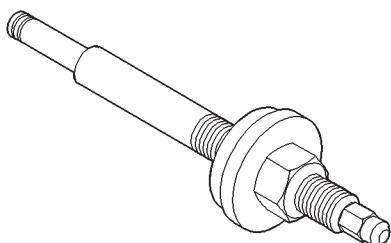
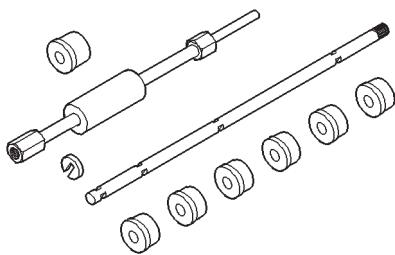
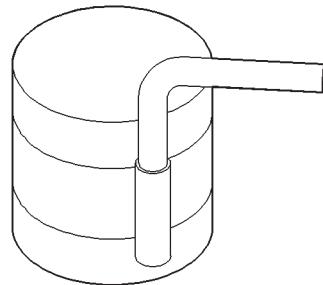
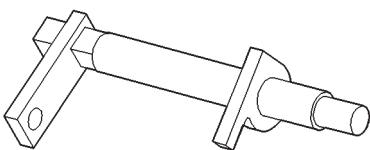
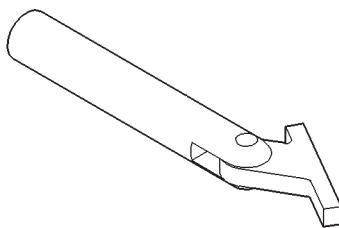
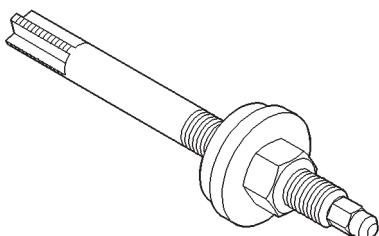
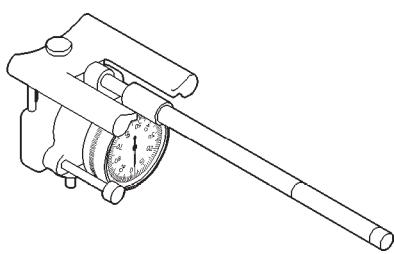

**Valve Guide Sleeve C-3973**




**Valve Spring Compressor MD-998772-A**



**Dial Indicator C-3339**


**Adapter 6633**



**Puller C-3688**

## SPECIAL TOOLS (Continued)

**Front Oil Seal Installer 6635****Distributor Bushing Driver/Burnisher C-3053****Cam Bearing Remover/Installer C-3132-A****Piston Ring Compressor C-385****Camshaft Holder C-3509****Crankshaft Main Bearing Remover C-3059****Distributor Bushing Puller C-3052****Cylinder Bore Gauge C-119**

c-3509-8011d343

8011c9fa

## 5.2L ENGINE

### INDEX

|                                              | page |                                                                | page |
|----------------------------------------------|------|----------------------------------------------------------------|------|
| <b>GENERAL INFORMATION</b>                   |      |                                                                |      |
| OIL PUMP PRESSURE . . . . .                  | 93   | FRONT CRANKSHAFT OIL SEAL . . . . .                            | 113  |
| PISTON AND CONNECTING ROD ASSEMBLY . . . . . | 93   | HYDRAULIC TAPPETS . . . . .                                    | 105  |
| VALVES AND VALVE SPRINGS . . . . .           | 93   | OIL PAN . . . . .                                              | 111  |
| <b>DESCRIPTION AND OPERATION</b>             |      | OIL PUMP . . . . .                                             | 113  |
| ENGINE COMPONENTS . . . . .                  | 96   | PISTON AND CONNECTING ROD ASSEMBLY . . . . .                   | 112  |
| GENERAL INFORMATION . . . . .                | 93   | ROCKER ARMS AND PUSH RODS . . . . .                            | 103  |
| LUBRICATION SYSTEM . . . . .                 | 94   | TIMING CHAIN COVER . . . . .                                   | 106  |
| <b>SERVICE PROCEDURES</b>                    |      | TIMING CHAIN . . . . .                                         | 107  |
| CRANKSHAFT MAIN BEARINGS . . . . .           | 98   | VALVE SPRING AND STEM SEAL<br>REPLACEMENT-IN VEHICLE . . . . . | 103  |
| CRANKSHAFT . . . . .                         | 99   | VALVES AND VALVE SPRINGS . . . . .                             | 105  |
| FITTING CONNECTING ROD BEARINGS . . . . .    | 98   | VIBRATION DAMPER . . . . .                                     | 105  |
| FITTING PISTON RINGS . . . . .               | 97   |                                                                |      |
| FITTING PISTONS . . . . .                    | 97   | <b>DISASSEMBLY AND ASSEMBLY</b>                                |      |
| MEASURING TIMING CHAIN STRETCH . . . . .     | 96   | CYLINDER BLOCK . . . . .                                       | 119  |
| VALVE TIMING . . . . .                       | 96   | HYDRAULIC TAPPETS . . . . .                                    | 116  |
| <b>REMOVAL AND INSTALLATION</b>              |      | OIL PUMP . . . . .                                             | 118  |
| CAMSHAFT BEARINGS . . . . .                  | 109  | VALVE SERVICE . . . . .                                        | 117  |
| CAMSHAFT . . . . .                           | 108  |                                                                |      |
| CRANKSHAFT MAIN BEARINGS . . . . .           | 109  | <b>CLEANING AND INSPECTION</b>                                 |      |
| CRANKSHAFT REAR OIL SEALS . . . . .          | 114  | CRANKSHAFT INSPECTION OF JOURNALS . . . . .                    | 120  |
| CRANKSHAFT . . . . .                         | 112  | CYLINDER BLOCK . . . . .                                       | 122  |
| CYLINDER HEAD COVER . . . . .                | 103  | CYLINDER HEAD COVER . . . . .                                  | 119  |
| CYLINDER HEAD . . . . .                      | 104  | CYLINDER HEADS . . . . .                                       | 119  |
| DISTRIBUTOR DRIVE SHAFT BUSHING . . . . .    | 110  | OIL PAN . . . . .                                              | 120  |
| ENGINE ASSEMBLY . . . . .                    | 102  | OIL PUMP . . . . .                                             | 120  |
| ENGINE CORE OIL AND CAMSHAFT PLUGS . . . . . | 116  | PISTON AND CONNECTING ROD ASSEMBLY . . . . .                   | 120  |
| ENGINE FRONT MOUNTS . . . . .                | 99   |                                                                |      |
| ENGINE REAR SUPPORT . . . . .                | 101  | <b>SPECIFICATIONS</b>                                          |      |
|                                              |      | 5.2L ENGINE SPECIFICATIONS . . . . .                           | 123  |
|                                              |      | <b>SPECIAL TOOLS</b>                                           |      |
|                                              |      | SPECIAL TOOLS . . . . .                                        | 127  |

### GENERAL INFORMATION

#### VALVES AND VALVE SPRINGS

The valves are arranged in-line and inclined 18°. The rocker pivot support and the valve guides are cast integral with the heads.

#### OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 41.4 kPa (6 psi) at curb idle. The MAXIMUM oil pump pressure is 207-552 kPa (30-80 psi) at 3,000 RPM or more.

**CAUTION: If oil pressure is ZERO at curb idle, DO NOT run engine at 3,000 RPM.**

#### PISTON AND CONNECTING ROD ASSEMBLY

The pistons are elliptically turned so that the diameter at the pin boss is less than its diameter

across the thrust face. This allows for expansion under normal operating conditions. Under operating temperatures, expansion forces the pin bosses away from each other, causing the piston to assume a more nearly round shape.

All pistons are machined to the same weight, regardless of size, to maintain piston balance.

The piston pin rotates in the piston only and is retained by the press interference fit of the piston pin in the connecting rod.

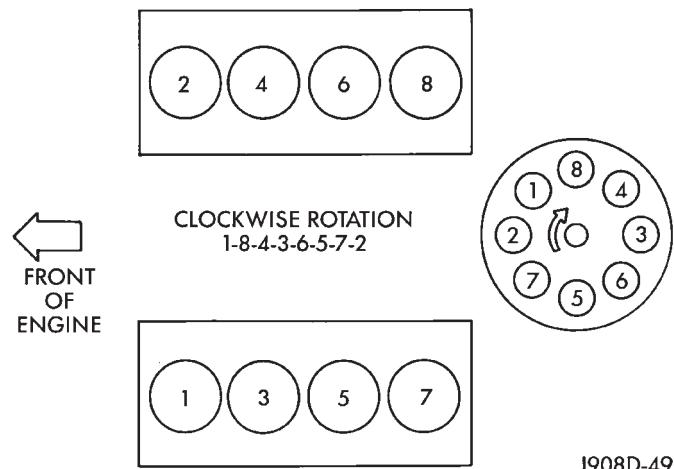
### DESCRIPTION AND OPERATION

#### GENERAL INFORMATION

The 5.2 Liter (318 CID) eight-cylinder engine is a V-Type lightweight, single cam, overhead valve engine with hydraulic roller tappets (Fig. 1).

This engine is designed for unleaded fuel.

## DESCRIPTION AND OPERATION (Continued)


|                     |                                    |
|---------------------|------------------------------------|
| Engine Type         | 90° V-8 OHV                        |
| Bore and Stroke     | 99.3 x 84.0 mm (3.91 x 3.31 in.)   |
| Displacement        | 5.2L (318 cu. in.)                 |
| Compression Ratio   | 9.1:1                              |
| Torque              | 407 N•m (300 ft. lbs.) @ 3,200 rpm |
| Firing Order        | 1-8-4-3-6-5-7-2                    |
| Lubrication         | Pressure Feed-Full Flow Filtration |
| Engine Oil Capacity | 4.7L (5.0 Qts) with Filter         |
| Cooling System      | Liquid Cooled-Forced Circulation   |
| Cooling Capacity    | 13.5L (14.3 Qts)                   |
| Cylinder Block      | Cast Iron                          |
| Crankshaft          | Nodular Iron                       |
| Cylinder Head       | Cast Iron                          |
| Combustion Chambers | Wedge-High Swirl Valve Shrouding   |
| Camshaft            | Nodular Cast Iron                  |
| Pistons             | Aluminum Alloy w/Strut             |
| Connecting Rods     | Forged Steel                       |

J9409-128

**Fig. 1 Engine Description**

Engine lubrication system consists of a rotor type oil pump and a full flow oil filter.

The cylinders are numbered from front to rear; 1, 3, 5, 7 on the left bank and 2, 4, 6, 8 on the right bank. The firing order is 1-8-4-3-6-5-7-2 (Fig. 2).

**Fig. 2 Firing Order**

The engine serial number is stamped into a machined pad located on the left, front corner of the cylinder block. When component part replacement is necessary, use the engine type and serial number for reference (Fig. 3).

**LUBRICATION SYSTEM**

A gear-type positive displacement pump is mounted at the underside of the rear main bearing

X M 5.2L T XXXX XXXXXXXX

X = Last Digit of Model Year

M = Plant - M Mound Road

S Saltillo

T Trenton

K Toluca

5.2L = Engine Displacement

T = Usage - T Truck

XXXX = Month/Day

XXXXXXX = Serial Code - Last 8 Digits of VIN No.

J9209-73

**Fig. 3 Engine Identification Number**

cap. The pump draws oil through the screen and inlet tube from the sump at the rear of the oil pan. The oil is driven between the drive and idler gears and pump body, then forced through the outlet to the block. An oil gallery in the block channels the oil to the inlet side of the full flow oil filter. After passing through the filter element, the oil passes from the center outlet of the filter through an oil gallery that channels the oil up to the main gallery which extends the entire length on the right side of the block. The oil then goes down to the No. 1 main bearing, back up to the left side of the block and into the oil gallery on the left side of the engine.

Galleries extend downward from the main oil gallery to the upper shell of each main bearing. The crankshaft is drilled internally to pass oil from the main bearing journals to the connecting rod journals. Each connecting rod bearing has half a hole in it, oil passes through the hole when the rods rotate and the hole lines up, oil is then thrown off as the rod rotates. This oil throw off lubricates the camshaft lobes, distributor drive gear, cylinder walls, and piston pins.

The hydraulic valve tappets receive oil directly from the main oil gallery. The camshaft bearings receive oil from the main bearing galleries. The front camshaft bearing journal passes oil through the camshaft sprocket to the timing chain. Oil drains back to the oil pan under the number one main bearing cap.

The oil supply for the rocker arms and bridged pivot assemblies is provided by the hydraulic valve tappets which pass oil through hollow push rods to a hole in the corresponding rocker arm. Oil from the rocker arm lubricates the valve train components. The oil then passes down through the push rod guide holes, and the oil drain back passages in the cylinder head past the valve tappet area, and returns to the oil pan.

## DESCRIPTION AND OPERATION (Continued)

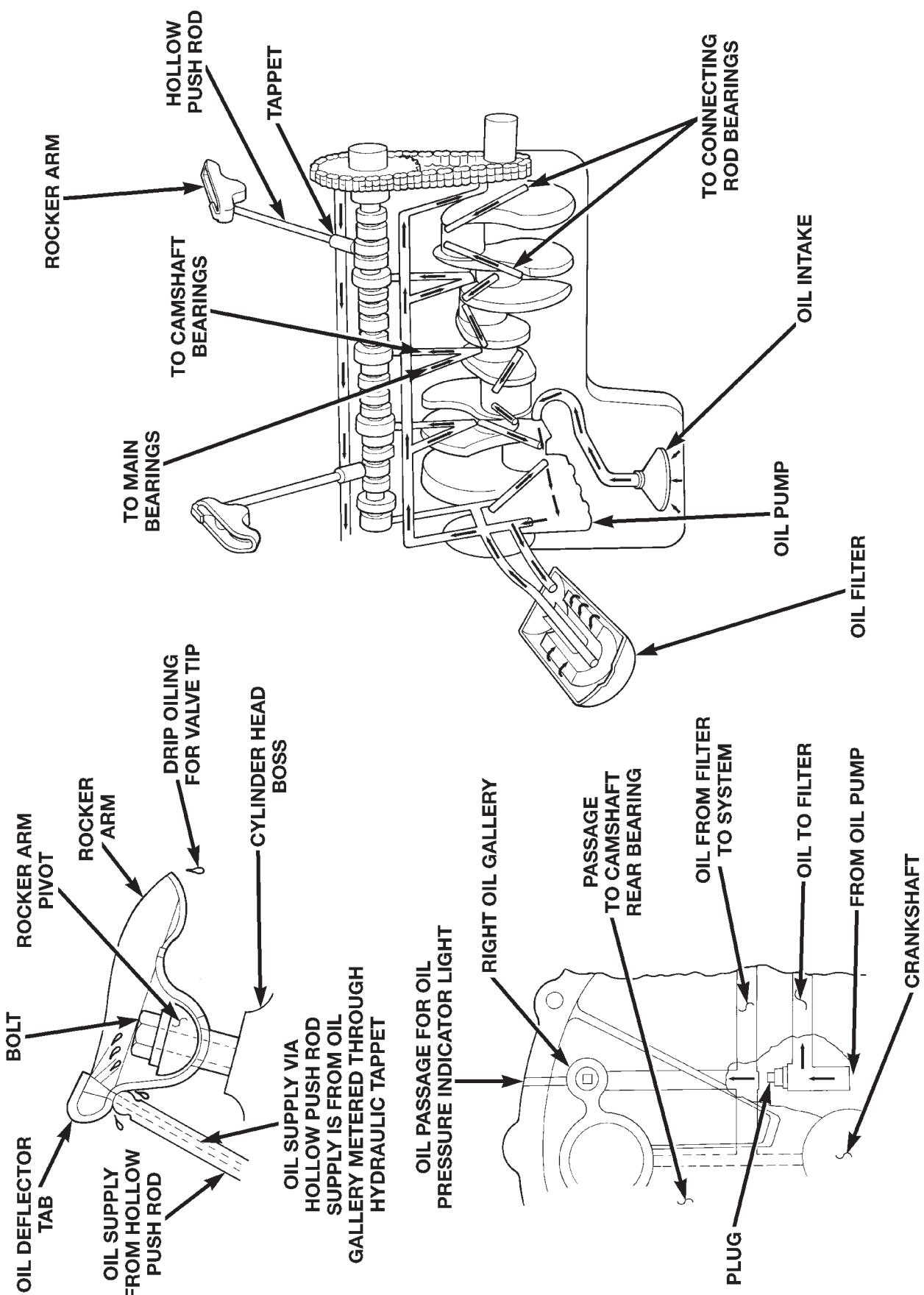
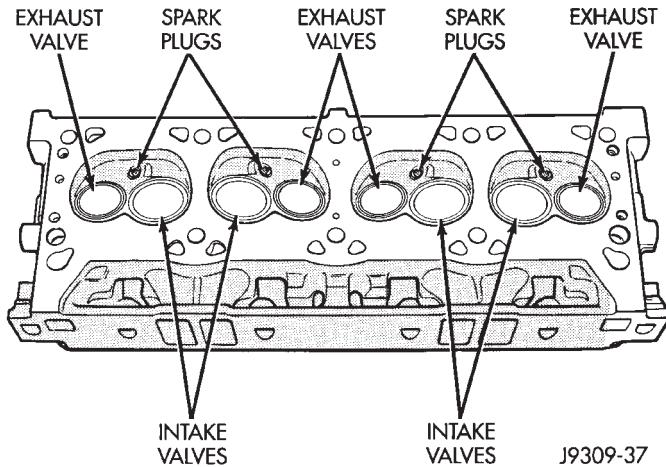



Fig. 4 Oil Lubrication System


## DESCRIPTION AND OPERATION (Continued)

## ENGINE COMPONENTS

## CYLINDER HEAD

The alloy cast iron cylinder heads (Fig. 5) are held in place by 10 bolts. The spark plugs are located in the peak of the wedge between the valves.

The 5.2L cylinder head is identified by the foundry mark NH.



**Fig. 5 Cylinder Head Assembly**

## PISTONS

All pistons are machined to the same weight, regardless of size, to maintain piston balance.

The pistons are elliptically turned so that the diameter at the pin boss is less than its diameter across the thrust face. This allows for expansion under normal operating conditions. Under operating temperatures, expansion forces the pin bosses away from each other, causing the piston to assume a more nearly round shape.

The piston pin rotates in the piston only and is retained by the press interference fit of the piston pin in the connecting rod.

## SERVICE PROCEDURES

## VALVE TIMING

(1) Turn crankshaft until the No.6 exhaust valve is closing and No.6 intake valve is opening.

(2) Insert a 6.350 mm (1/4 inch) spacer between rocker arm pad and stem tip of No.1 intake valve. Allow spring load to bleed tappet down giving in effect a solid tappet.

(3) Install a dial indicator so plunger contacts valve spring retainer as nearly perpendicular as possible. Zero the indicator.

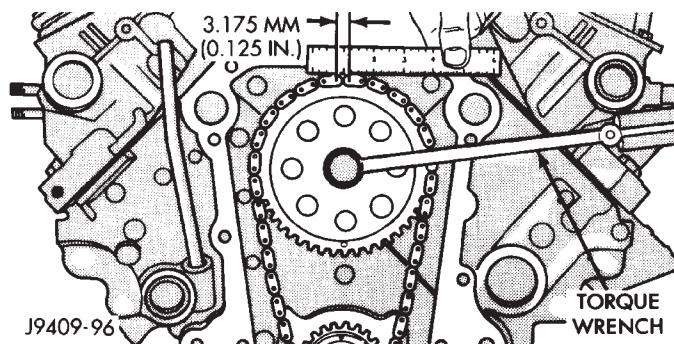
(4) Rotate the crankshaft clockwise (normal running direction) until the valve has lifted 0.254 mm (0.010 inch). The timing of the crankshaft should

now read from 10° before top dead center to 2° after top dead center. Remove spacer.

**CAUTION: DO NOT turn crankshaft any further clockwise as valve spring might bottom and result in serious damage.**

(5) If reading is not within specified limits:

- Check sprocket index marks.
- Inspect timing chain for wear.
- Check accuracy of DC mark on timing indicator.


## MEASURING TIMING CHAIN STRETCH

**NOTE: To access timing chain Refer to Timing Chain Cover in Removal and Installation Section.**

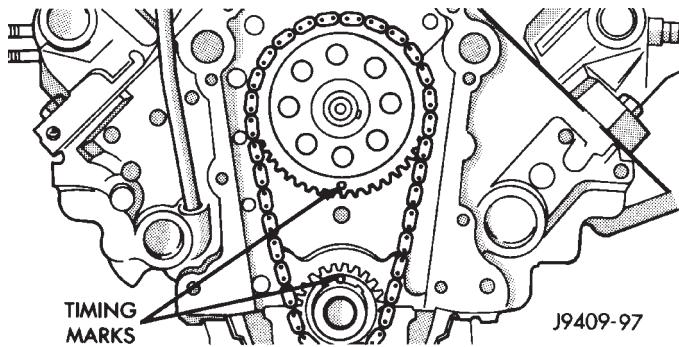
(1) Place a scale next to the timing chain so that any movement of the chain may be measured.

(2) Place a torque wrench and socket over cam-shaft sprocket attaching bolt. Apply torque in the direction of crankshaft rotation to take up slack; 41 N·m (30 ft. lbs.) torque with cylinder head installed or 20 N·m (15 ft. lbs.) torque with cylinder head removed. With a torque applied to the camshaft sprocket bolt, crankshaft should not be permitted to move. It may be necessary to block the crankshaft to prevent rotation.

(3) Hold a scale with dimensional reading even with the edge of a chain link. With cylinder heads installed, apply 14 N·m (30 ft. lbs.) torque in the reverse direction. With the cylinder heads removed, apply 20 N·m (15 ft. lbs.) torque in the reverse direction. Note the amount of chain movement (Fig. 6).



**Fig. 6 Measuring Timing Chain Wear and Stretch**


(4) Install a new timing chain, if its movement exceeds 3.175 mm (1/8 inch).

(5) If chain is not satisfactory, remove camshaft sprocket attaching bolt and remove timing chain with crankshaft and camshaft sprockets.

(6) Place both camshaft sprocket and crankshaft sprocket on the bench with timing marks on exact imaginary center line through both camshaft and crankshaft bores.

## SERVICE PROCEDURES (Continued)

- (7) Place timing chain around both sprockets.
- (8) Turn crankshaft and camshaft to line up with keyway location in crankshaft sprocket and in cam-shaft sprocket.
- (9) Lift sprockets and chain (keep sprockets tight against the chain in position as described).
- (10) Slide both sprockets evenly over their respective shafts and use a straightedge to check alignment of timing marks (Fig. 7).



**Fig. 7 Alignment of Timing Marks**

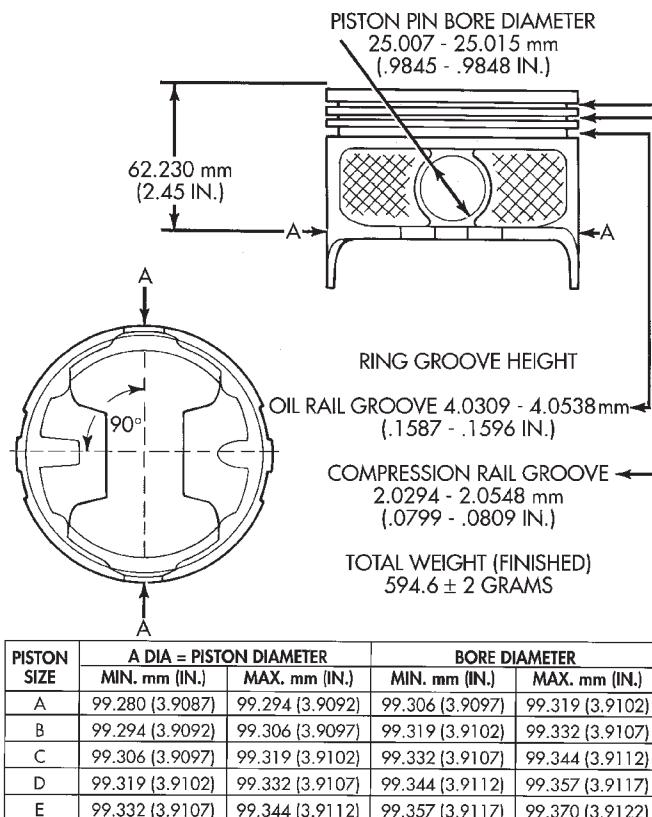
(11) Install the camshaft bolt. Tighten the bolt to 47 N·m (35 ft. lbs.) torque.

(12) Check camshaft end play. The end play should be 0.051-0.152 mm (0.002-0.006 inch) with a new thrust plate and up to 0.254 mm (0.010 inch) with a used thrust plate. If not within these limits install a new thrust plate.

## FITTING PISTONS

Piston and cylinder wall must be clean and dry. Specified clearance between the piston and the cylinder wall is 0.013-0.038 mm (0.0005-0.0015 inch) at 21°C (70°F).

Piston diameter should be measured at the top of skirt, 90° to piston pin axis location A in (Fig. 8). Cylinder bores should be measured halfway down the cylinder bore and transverse to the engine crankshaft center line.


Pistons and cylinder bores should be measured at normal room temperature, 21°C (70°F).

## FITTING PISTON RINGS

### (1) Measurement of end gaps:

(a) Measure piston ring gap 2 inches from bottom of cylinder bore. An inverted piston can be used to push the rings down to ensure positioning rings squarely in the cylinder bore before measuring.

(b) Insert feeler gauge in the gap. The top compression ring gap should be between 0.254-0.508 mm (0.010-0.020 inch). The second compression ring gap should be between 0.508-0.762 mm (0.020-0.030 inch). The oil ring gap should be 0.254-1.270 mm (0.010-0.050 inch).



J9509-80

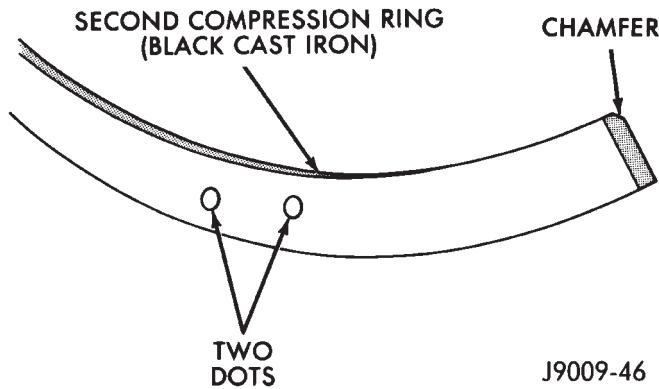
**Fig. 8 Piston Measurements**

(c) Rings with insufficient end gap may be properly filed to the correct dimension. Rings with excess gaps should not be used.

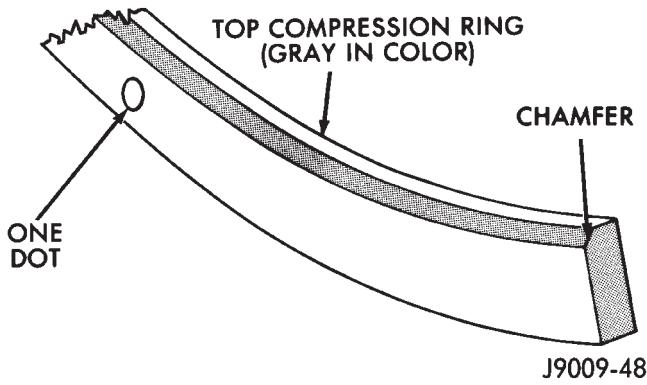
### (2) Install rings and confirm ring side clearance:

(a) Install oil rings being careful not to nick or scratch the piston. Install the oil control rings according to instructions in the package. It is not necessary to use a tool to install the upper and lower rails. Insert oil rail spacer first, then side rails.

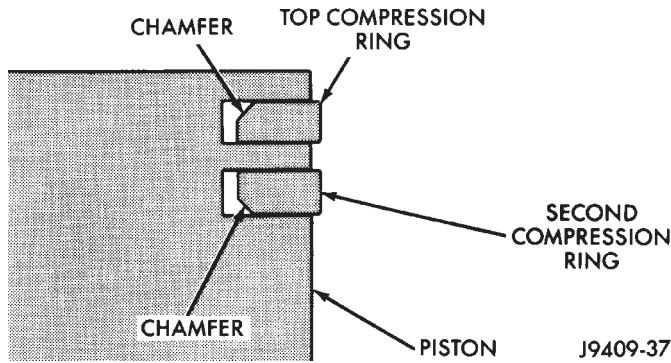
(b) Install the second compression rings using Installation Tool C-4184. The compression rings must be installed with the identification mark face up (toward top of piston) and chamfer facing down. An identification mark on the ring is a drill point, a stamped letter "O", an oval depression or the word TOP (Fig. 9) (Fig. 11).


(c) Using a ring installer, install the top compression ring with the chamfer facing up (Fig. 10) (Fig. 11). An identification mark on the ring is a drill point, a stamped letter "O", an oval depression or the word TOP facing up.

(d) Measure side clearance between piston ring and ring land. Clearance should be 0.074-0.097 mm (0.0029-0.0038 inch) for the compression rings. The steel rail oil ring should be free in groove, but


## SERVICE PROCEDURES (Continued)

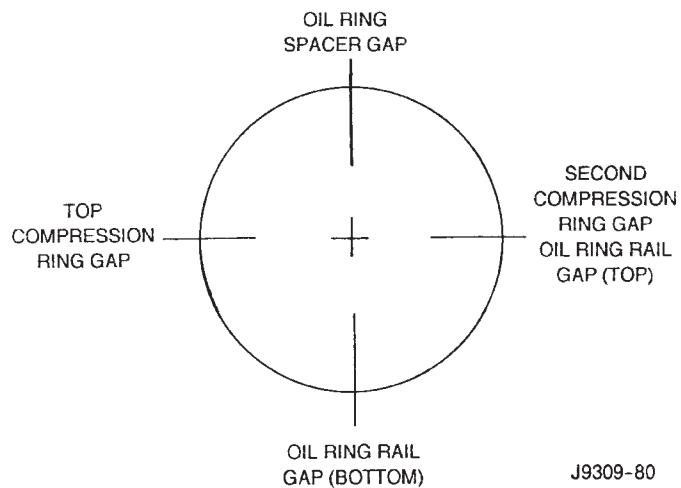
should not exceed 0.246 mm (0.0097 inch) side clearance.


(e) Pistons with insufficient or excessive side clearance should be replaced.



**Fig. 9 Second Compression Ring Identification (Typical)**




**Fig. 10 Top Compression Ring Identification (Typical)**



**Fig. 11 Compression Ring Chamfer Location (Typical)**

## FITTING CONNECTING ROD BEARINGS

Fit all rods on a bank until completed. DO NOT alternate from one bank to another, because connecting rods and pistons are not interchangeable from one bank to another.



**Fig. 12 Proper Ring Installation**

The bearing caps are not interchangeable and should be marked at removal to ensure correct assembly.

Each bearing cap has a small V-groove across the parting face. When installing the lower bearing shell, make certain that the V-groove in the shell is in line with the V-groove in the cap. This provides lubrication of the cylinder wall in the opposite bank.

The bearing shells must be installed so that the tangs are in the machined grooves in the rods and caps.

Limits of taper or out-of-round on any crankshaft journals should be held to 0.025 mm (0.001 inch). Bearings are available in 0.025 mm (0.001 inch), 0.051 mm (0.002 inch), 0.076 mm (0.003 inch), 0.254 mm (0.010 inch) and 0.305 mm (0.012 inch) undersize. **Install the bearings in pairs. DO NOT use a new bearing half with an old bearing half. DO NOT file the rods or bearing caps.**

## CRANKSHAFT MAIN BEARINGS

Bearing caps are not interchangeable and should be marked at removal to ensure correct assembly. Upper and lower bearing halves are NOT interchangeable. Lower main bearing halves of No.2 and 4 are interchangeable.

Upper and lower No.3 bearing halves are flanged to carry the crankshaft thrust loads. They are NOT interchangeable with any other bearing halves in the engine (Fig. 13). Bearing shells are available in standard and the following undersizes: 0.25 mm (0.001 inch), 0.051 mm (0.002 inch), 0.076 mm (0.003 inch), 0.254 mm (0.010 inch) and 0.305 mm (0.012 inch). Never install an undersize bearing that will reduce clearance below specifications.

## SERVICE PROCEDURES (Continued)

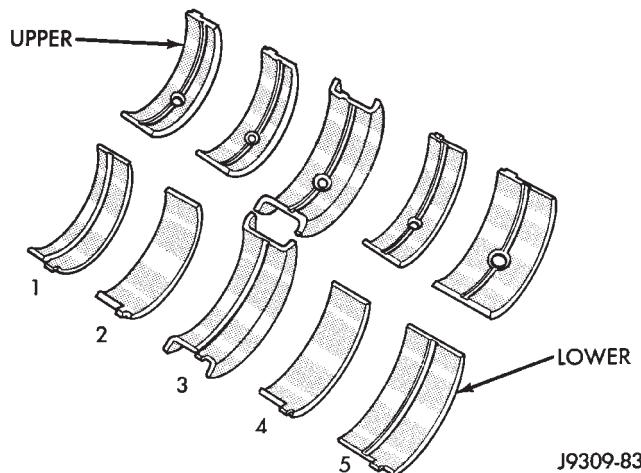



Fig. 13 Main Bearing Identification

## CRANKSHAFT

A crankshaft which has undersize journals will be stamped with 1/4 inch letters on the milled flat on the No.8 crankshaft counterweight (Fig. 14).

**FOR EXAMPLE:** R2 stamped on the No.8 crankshaft counterweight indicates that the No.2 rod journal is 0.025 mm (0.001 in) undersize. M4 indicates that the No.4 main journal is 0.025 mm (0.001 in) undersize. R3 M2 indicates that the No.3 rod journal and the No.2 main journal are 0.025 mm (0.001 in) undersize.

| Undersize Journal           | Identification Stamp |
|-----------------------------|----------------------|
| 0.025 mm (0.001 in.) (Rod)  | R1-R2-R3 or R4       |
| 0.025 mm (0.001 in.) (Main) | M1-M2-M3-M4 or M5    |

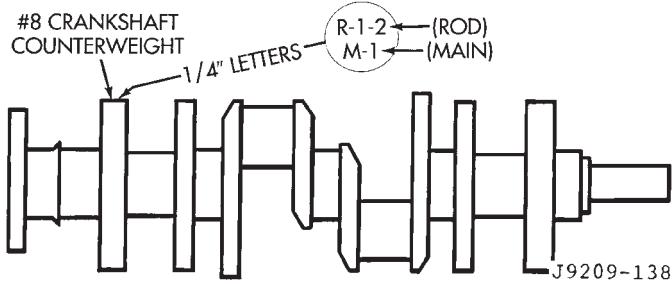



Fig. 14 Location of Crankshaft Identification

When a crankshaft is replaced, all main and connecting rod bearings should be replaced with new bearings. Therefore, selective fitting of the bearings is not required when a crankshaft and bearings are replaced.

## REMOVAL AND INSTALLATION

## ENGINE FRONT MOUNTS

## REMOVAL—2WD

- (1) Disconnect the negative cable from the battery.
- (2) Raise hood and position fan to assure clearance for radiator top tank and hose.

**CAUTION:** DO NOT lift the engine by the intake manifold.

- (3) Install engine lifting fixture.

- (4) Raise vehicle on hoist.

- (5) Remove bolts and washers holding front support insulator assembly and the strut to the engine block (Figs. 4 and 5). Move the strut out of the way.

- (6) Remove the insulator thru-bolt (Fig. 15) (Fig. 16).

- (7) Raise engine with lifting fixture SLIGHTLY. Remove the insulator assembly.

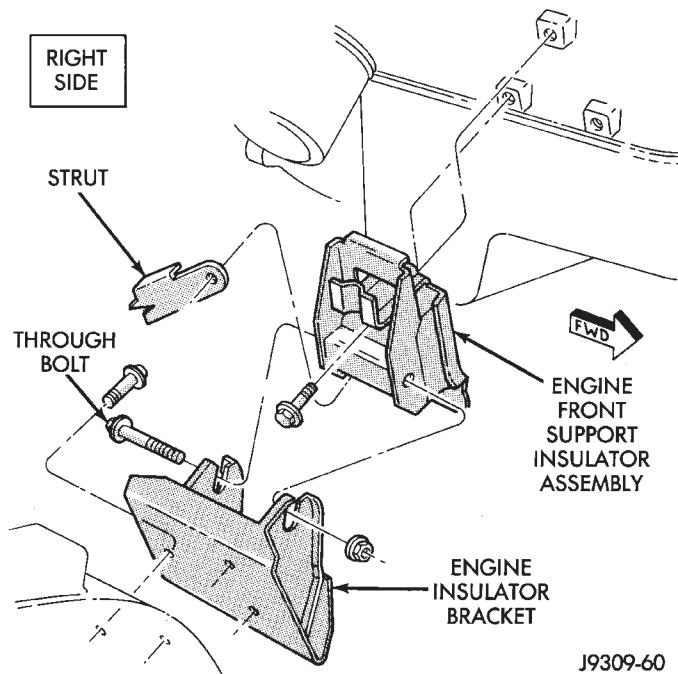
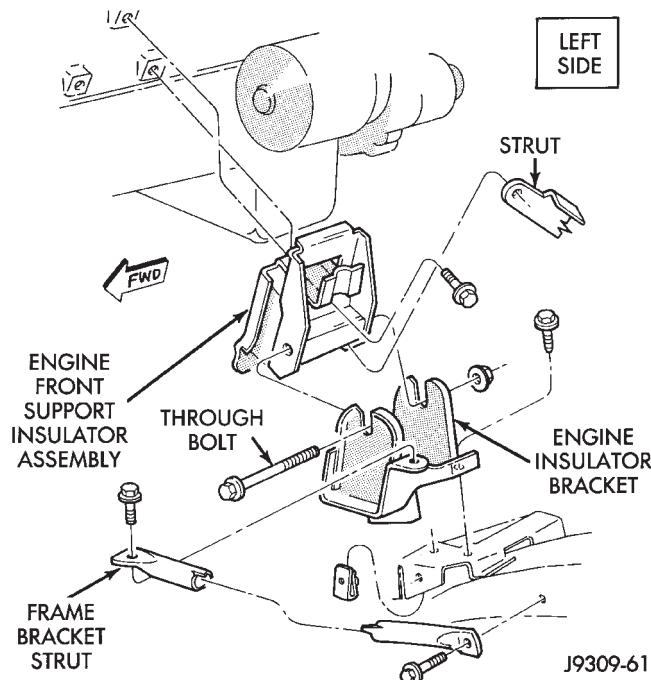



Fig. 15 Engine Right Front Insulator Mount—2WD Vehicles

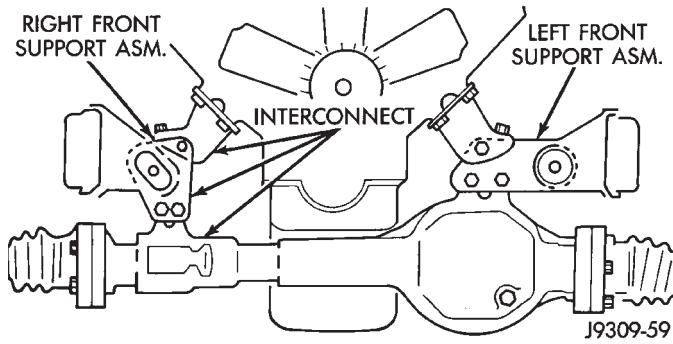

## INSTALLATION—2WD

- (1) If the engine insulator bracket was removed, install the bracket to the crossmember. Tighten the bolts to 68 N·m (50 ft. lbs.) torque.

- (2) With the engine raised SLIGHTLY, position insulator assembly onto the engine block (Fig. 15) (Fig. 16). Position the strut onto the insulator assembly and install bolts and washers. Tighten the bolts to 41 N·m (30 ft. lbs.) torque.

- (3) Lower engine with lifting fixture while guiding insulator assembly into the engine insulator bracket.

## REMOVAL AND INSTALLATION (Continued)




**Fig. 16 Engine Left Front Insulator Mount—2WD Vehicles**

- (4) Install insulator to bracket thru-bolt. Tighten the thru-bolt nut to 68 N·m (50 ft. lbs.) torque.
- (5) Remove lifting fixture.
- (6) Connect the negative cable to the battery.

## REMOVAL—4WD

On 4-WD vehicles the engine front support brackets attach directly to engine block and the axle housing. The brackets provide a solid interconnection for these units (Fig. 17). Engine and front axle must be supported during any service procedures involving the front support assemblies.



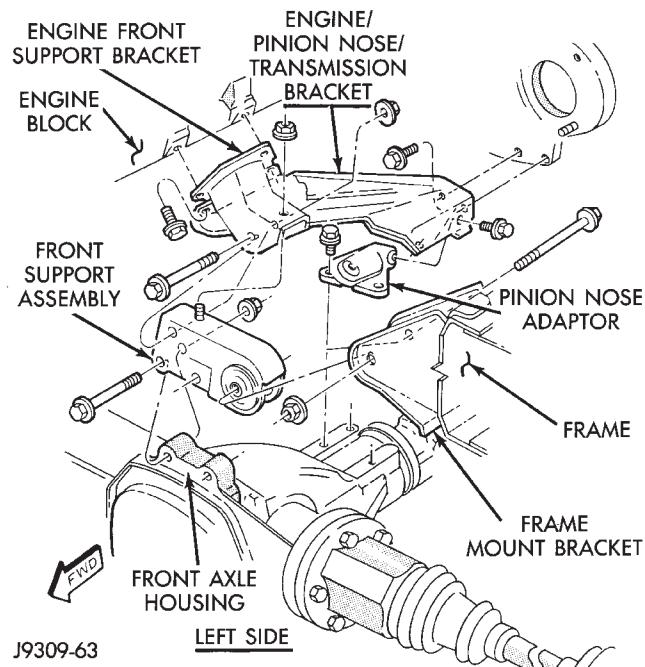
**Fig. 17 Engine and Axle Interconnect—4WD Vehicles**

- (1) Disconnect the negative cable from the battery.
- (2) Position fan to assure clearance for radiator top tank and hose.

**CAUTION: DO NOT lift the engine by the intake manifold.**

- (3) Install engine lifting fixture.

- (4) Raise vehicle on hoist.


- (5) Install front axle support fixture.

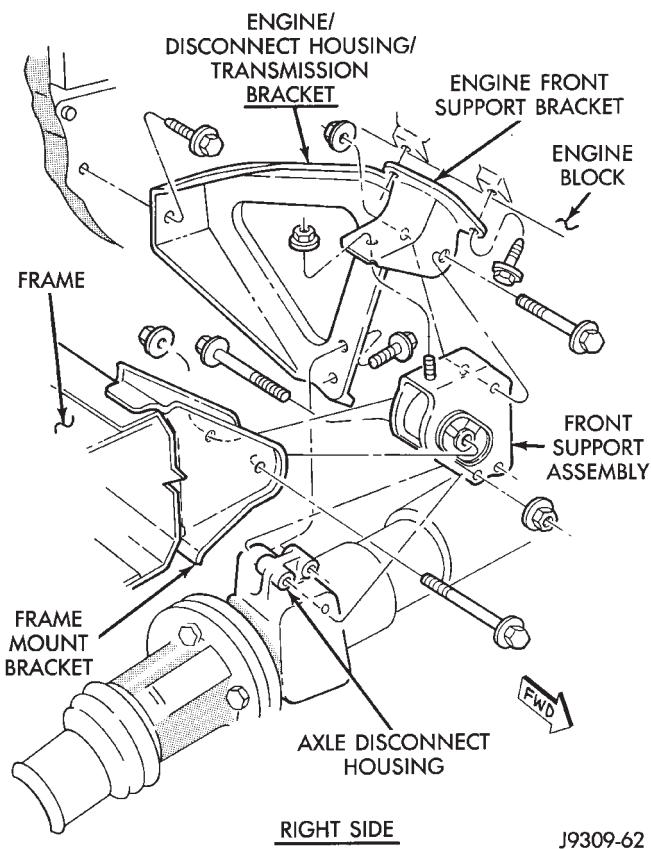
(6) On the LEFT SIDE, remove the bolt that attaches the engine, pinion nose, transmission bracket and the engine front support bracket to the engine block (Fig. 18). On the RIGHT SIDE, remove the bolt that attaches the engine, disconnect housing, transmission bracket and the engine front support bracket to the engine block (Fig. 19).

(7) Remove the thru-bolt and nut from the front support assembly and the engine front support bracket. Remove the stud nut and washer assembly attaching front support assembly to the engine front support bracket (Fig. 18) (Fig. 19).

(8) Remove thru-bolts attaching front support assembly to front axle housing (Fig. 18) or axle disconnect housing (Fig. 19).

(9) Remove front support assembly to frame mount bracket thru-bolt. Raise engine slightly to clear front support assembly stud (Fig. 18) (Fig. 19). Remove the front support assembly.




**Fig. 18 Engine and Axle Front Support—4WD Vehicles**

## INSTALLATION—4WD

(1) Position front support assembly in frame mount bracket and align with axle housing (left side) attaching points or axle disconnect housing (right side). Install the thru-bolts (Fig. 18) (Fig. 19). Tighten the nuts to 102 N·m (75 ft. lbs.) torque.

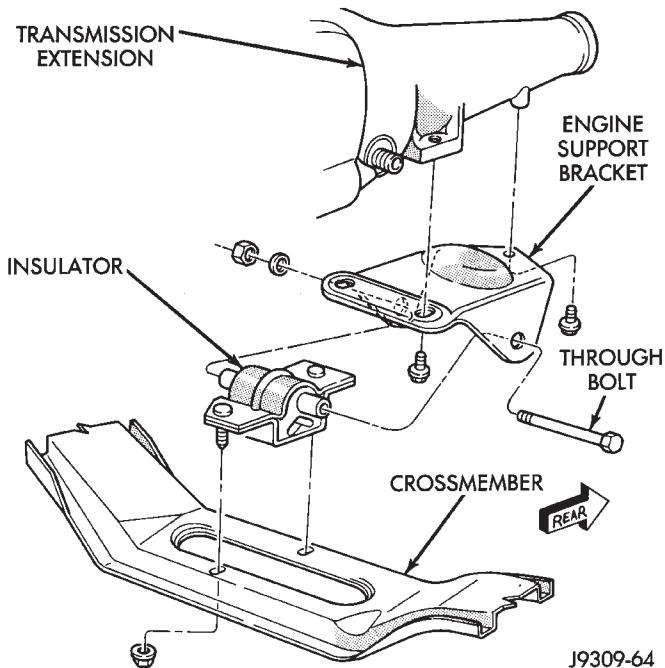
(2) Lower engine while guiding engine front support bracket onto front support assembly stud. Install stud nut and thru-bolt (Fig. 18) (Fig. 19). Tighten

## REMOVAL AND INSTALLATION (Continued)



**Fig. 19 Engine and Axle Front Support—4WD Vehicles**

stud nut to 41 N·m (30 ft. lbs.) torque. Tighten the thru-bolt nut to 102 N·m (75 ft. lbs.) torque.


(3) On the LEFT SIDE, position the bolt that attaches the engine, pinion nose, transmission bracket and the engine front support bracket to the engine block (Fig. 18). On the RIGHT SIDE, position the bolt that attaches the engine, disconnect housing, transmission bracket and the engine front support bracket to the engine block (Fig. 19). Tighten the bolts to 41 N·m (30 ft. lbs.) torque.

- (4) Remove the front axle support fixture.
- (5) Lower the vehicle.
- (6) Remove engine lifting fixture.
- (7) Connect the negative cable to the battery.

## ENGINE REAR SUPPORT

### REMOVAL—2WD

- (1) Disconnect the negative cable from the battery.
- (2) Raise the vehicle on a hoist.
- (3) Support the transmission with a jack.
- (4) Remove engine support bracket and insulator thru-bolt (Fig. 20).
- (5) Raise the transmission and engine slightly.
- (6) Remove stud nuts attaching insulator to crossmember (Fig. 20). Remove insulator.



**Fig. 20 Rear Insulator—2WD Vehicles**

### INSTALLATION—2WD

(1) If the engine support bracket was removed, position the bracket to the transmission extension (Fig. 20). Tighten the bolts to 68 N·m (50 ft. lbs.) torque.

(2) Install the insulator onto crossmember. Tighten the stud nuts to 41 N·m (30 ft. lbs.) torque.

(3) Lower the transmission and engine while aligning the engine support bracket to the insulator.

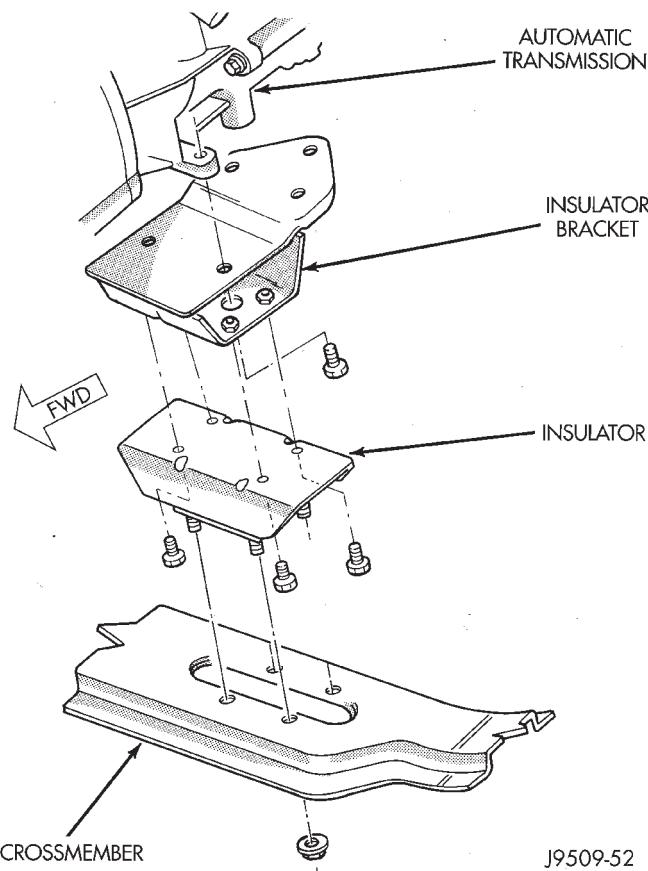
(4) Install thru-bolt in bracket and insulator. Tighten thru-bolt nut to 68 N·m (50 ft. lbs.) torque.

(5) Remove transmission jack.

(6) Lower the vehicle.

(7) Connect the negative cable to the battery.

### REMOVAL—4WD


- (1) Disconnect the negative cable from the battery.
- (2) Raise the vehicle on a hoist.
- (3) Support the transmission with a transmission jack.
- (4) Remove stud nuts holding the insulator to the crossmember (Fig. 21).
- (5) Raise rear of transmission SLIGHTLY.
- (6) Remove bolts holding the insulator to the insulator bracket (Fig. 21). Remove the insulator.

### INSTALLATION—4WD

(1) If the insulator bracket was removed, install the bracket to the transmission (Fig. 21). Tighten the bolts to 28 N·m (250 in. lbs.) torque.

(2) Install the bolts holding insulator to insulator bracket. Tighten the bolts to 28 N·m (250 in. lbs.) torque.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 21 Rear Insulator—4WD Vehicles**

- (3) Lower rear of transmission while aligning the insulator studs into the mounting support bracket. Install stud nuts and tighten to 28 N·m (250 in. lbs.) torque.
- (4) Remove the transmission jack.
- (5) Lower the vehicle.
- (6) Connect the negative cable to the battery.

**ENGINE ASSEMBLY****REMOVAL**

- (1) Scribe hood hinge outlines on hood. Remove the hood.
- (2) Remove the battery.
- (3) Drain cooling system (refer to Group 7, Cooling System for the proper procedure).
- (4) Remove the air cleaner.
- (5) Disconnect the radiator and heater hoses.
- Remove radiator (refer to Group 7, Cooling System).
- (6) Set fan shroud aside.
- (7) Remove the vacuum lines.
- (8) Remove the distributor cap and wiring.
- (9) Disconnect the accelerator linkage.
- (10) Remove throttle body.
- (11) Perform the Fuel System Pressure release procedure (refer to Group 14, fuel System).
- (12) Disconnect the fuel lines.

- (13) Disconnect the starter wires.

- (14) Disconnect the oil pressure wire.

(15) Discharge the air conditioning system, if equipped (refer to Group 24, Heating and Air Conditioning for service procedures).

- (16) Disconnect the air conditioning hoses.

(17) Disconnect the power steering hoses, if equipped.

(18) Remove starter motor (refer to Group 8B, Battery/Starter/Generator Service).

(19) Remove the generator (refer to Group 8B, Battery/Starter/Generator Service).

- (20) Raise and support the vehicle on a hoist.

- (21) Disconnect exhaust pipe at manifold.

(22) Refer to group 21, Transmissions for transmission removal.

**CAUTION: DO NOT lift the engine by the intake manifold.**

- (23) Install an engine lifting fixture.

(24) **2WD VEHICLES**—Remove engine front mount bolts.

(25) **4WD VEHICLES**—The engine and front driving axle (engine/axle/transmission) are connected through insulators and support brackets. Separate the engine as follows:

- **LEFT SIDE**—Remove 2 bolts attaching (engine/pinion nose/transmission) bracket to transmission bell housing. Remove 2 bracket to pinion nose adaptor bolts. Separate engine from insulator by removing upper nut washer assembly and bolt from engine support bracket.

- **RIGHT SIDE**—Remove 2 bracket to axle (disconnect housing) bolts and a bracket to bell housing bolt. Separate engine from insulator by removing upper nut washer assembly and bolt from engine support bracket.

- (26) Lower the vehicle.

(27) Install engine assembly on engine repair stand.

**INSTALLATION**

(1) Remove engine from the repair stand and position in the engine compartment.

- (2) Install an engine support fixture.

- (3) Raise and support the vehicle on a hoist.

- (4) Install the engine front mounts.

(5) Refer to Group 21 Transmissions for transmission installation

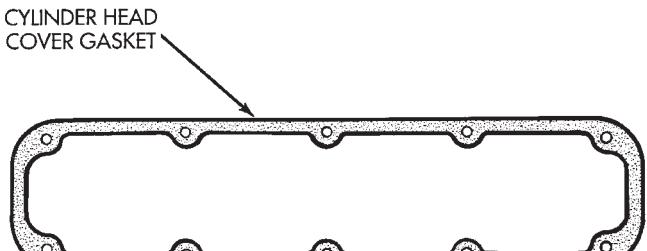
- (6) Install the inspection plate.

- (7) Remove transmission support.

- (8) Install exhaust pipe to manifold.

- (9) Lower the vehicle.

- (10) Remove engine lifting fixture.


(11) Install the generator (refer to Group 8B, Battery/Starter/Generator Service).

## REMOVAL AND INSTALLATION (Continued)

- (12) Install starter motor (refer to Group 8B, Battery/Starter/Generator Service).
- (13) Connect power steering hoses, if equipped.
- (14) Connect air conditioning hoses.
- (15) Evacuate and charge the air conditioning system, if equipped (refer to Group 24, Heater and Air Conditioning for service procedures).
- (16) Using a new gasket, install throttle body. Tighten the throttle body bolts to 23 N·m (200 in. lbs.) torque.
- (17) Connect the accelerator linkage.
- (18) Connect the starter wires.
- (19) Connect the oil pressure wire.
- (20) Install the distributor cap and wiring.
- (21) Connect the vacuum lines.
- (22) Connect the fuel lines.
- (23) Install the radiator (refer to Group 7, Cooling System). Connect the radiator hoses and heater hoses.
- (24) Install fan shroud in position.
- (25) Fill cooling system (refer to Group 7, Cooling System for the proper procedure).
- (26) Install the air cleaner.
- (27) Install the battery.
- (28) Warm engine and adjust.
- (29) Install hood and line up with the scribe marks.
- (30) Road test vehicle.

## CYLINDER HEAD COVER

A steel backed silicon gasket is used with the cylinder head cover (Fig. 22). This gasket can be used again.



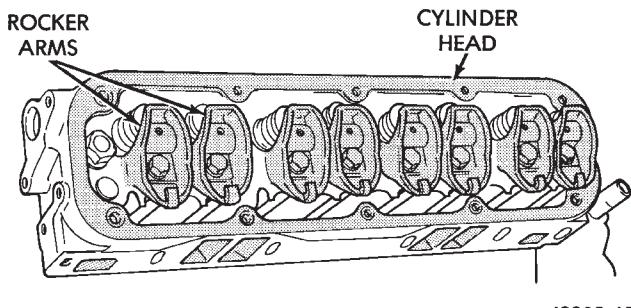
J9209-105

Fig. 22 Cylinder Head Cover Gasket

## REMOVAL

- (1) Disconnect the negative cable from the battery.
- (2) Disconnect closed ventilation system and evaporation control system from cylinder head cover.
- (3) Remove cylinder head cover and gasket. The gasket may be used again.

## INSTALLATION


- (1) The cylinder head cover gasket can be used again. Install the gasket onto the head rail.

- (2) Position the cylinder head cover onto the gasket. Tighten the bolts to 11 N·m (95 in. lbs.) torque.
- (3) Install closed crankcase ventilation system and evaporation control system.
- (4) Connect the negative cable to the battery.

## ROCKER ARMS AND PUSH RODS

## REMOVAL

- (1) Disconnect spark plug wires by pulling on the boot straight out in line with plug.
- (2) Remove cylinder head cover and gasket.
- (3) Remove the rocker arm bolts and pivots (Fig. 23). Place them on a bench in the same order as removed.
- (4) Remove the push rods and place them on a bench in the same order as removed.



J9209-65

Fig. 23 Rocker Arms

## INSTALLATION

- (1) Rotate the crankshaft until the "V8" mark lines up with the TDC mark on the timing chain case cover. This mark is located 147° ATDC from the No.1 firing position.

(2) Install the push rods in the same order as removed.

- (3) Install rocker arm and pivot assemblies in the same order as removed. Tighten the rocker arm bolts to 28 N·m (21 ft. lbs.) torque.

**CAUTION: DO NOT rotate or crank the engine during or immediately after rocker arm installation. Allow the hydraulic roller tappets adequate time to bleed down (about 5 minutes).**

- (4) Install cylinder head cover.
- (5) Connect spark plug wires.

## VALVE SPRING AND STEM SEAL REPLACEMENT-IN VEHICLE

- (1) Set engine basic timing to Top Dead Center (TDC).
- (2) Remove the air cleaner.
- (3) Remove cylinder head covers and spark plugs.
- (4) Remove coil wire from distributor and secure to good ground to prevent engine from starting.

## REMOVAL AND INSTALLATION (Continued)

(5) Using suitable socket and flex handle at crank-shaft retaining bolt, turn engine so the No.1 piston is at TDC on the compression stroke.

(6) Remove rocker arms.

(7) With air hose attached to an adapter installed in No.1 spark plug hole, apply 620-689 kPa (90-100 psi) air pressure.

(8) Using Valve Spring Compressor Tool MD-998772A with adaptor 6633, compress valve spring and remove retainer valve locks and valve spring.

(9) Install seals on the exhaust valve stem and position down against valve guides.

(10) The intake valve stem seals should be pushed firmly and squarely over the valve guide using the valve stem as a guide. DO NOT force seal against top of guide. When installing the valve retainer locks, compress the spring only enough to install the locks.

(11) Follow the same procedure on the remaining 7 cylinders using the firing sequence 1-8-4-3-6-5-7-2. Make sure piston in cylinder is at TDC on the valve spring that is being removed.

(12) Remove adapter from the No.1 spark plug hole.

(13) Install rocker arms.

(14) Install covers and coil wire to distributor.

(15) Install air cleaner.

(16) Road test vehicle.

## CYLINDER HEAD

## REMOVAL

(1) Disconnect the negative cable from the battery.

(2) Drain cooling system (refer to Group 7, Cooling System for the proper procedures).

(3) Remove the intake manifold-to-generator bracket support rod. Remove the generator.

(4) Remove closed crankcase ventilation system.

(5) Disconnect the evaporation control system.

(6) Remove the air cleaner.

(7) Perform fuel system pressure release procedure (before attempting any repairs Refer to Group 14, Fuel Systems).

(8) Disconnect the fuel lines.

(9) Disconnect accelerator linkage and if so equipped, the speed control and transmission kick-down cables.

(10) Remove the return spring.

(11) Remove distributor cap and wires.

(12) Disconnect the coil wires.

(13) Disconnect heat indicator sending unit wire.

(14) Disconnect heater hoses and bypass hose.

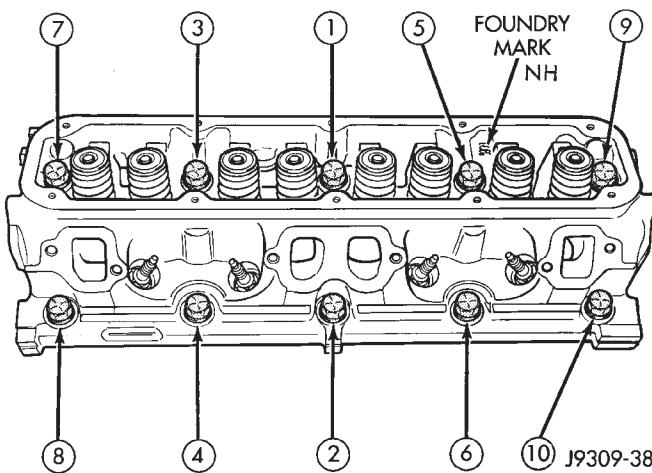
(15) Remove cylinder head covers and gaskets.

(16) Remove intake manifold and throttle body as an assembly. Discard the flange side gaskets and the front and rear cross-over gaskets.

(17) Remove exhaust manifolds.

(18) Remove rocker arm assemblies and push rods. Identify to ensure installation in original locations.

(19) Remove the head bolts from each cylinder head and remove cylinder heads. Discard the cylinder head gasket.


(20) Remove spark plugs.

## INSTALLATION

(1) Position the new cylinder head gaskets onto the cylinder block.

(2) Position the cylinder heads onto head gaskets and cylinder block.

(3) Starting at top center, tighten all cylinder head bolts, in sequence, to 68 N·m (50 ft. lbs.) torque (Fig. 24). Repeat procedure, tighten all cylinder head bolts to 143 N·m (105 ft. lbs.) torque. Repeat procedure to confirm that all bolts are at 143 N·m (105 ft. lbs.) torque.



**Fig. 24 Cylinder Head Bolt Tightening Sequence**

**CAUTION:** When tightening the rocker arm bolts, make sure the piston in that cylinder is NOT at TDC. Contact between the valves and piston could occur.

(4) Install push rods and rocker arm assemblies in their original position. Tighten the bolts to 28 N·m (21 ft. lbs.) torque.

(5) Install the intake manifold and throttle body assembly (refer to Group 11, Exhaust System and Intake Manifold).

(6) Install exhaust manifolds. Tighten the bolts and nuts to 34 N·m (25 ft. lbs.) torque.

(7) Adjust spark plugs to specifications (refer to Group 8D, Ignition System). Install the plugs and tighten to 41 N·m (30 ft. lbs.) torque.

(8) Install coil wires.

(9) Connect heat indicator sending unit wire.

(10) Connect the heater hoses and bypass hose.

(11) Install distributor cap and wires.

(12) Hook up the return spring.

## REMOVAL AND INSTALLATION (Continued)

(13) Connect the accelerator linkage and if so equipped, the speed control and transmission kick-down cables.

(14) Install the fuel lines.

(15) Install the generator and drive belt. Tighten generator mounting bolt to 41 N·m (30 ft. lbs.) torque. Tighten the adjusting strap bolt to 23 N·m (200 in. lbs.) torque. Refer to Group 7, Cooling System for adjusting the belt tension.

(16) Install the intake manifold-to-generator bracket support rod. Tighten the bolts.

(17) Place the cylinder head cover gaskets in position and install cylinder head covers. Tighten the bolts to 11 N·m (95 in. lbs.) torque.

(18) Install closed crankcase ventilation system.

(19) Connect the evaporation control system.

(20) Install the air cleaner.

(21) Install the heat shields. Tighten the bolts to 41 N·m (30 ft. lbs.) torque.

(22) Fill cooling system (refer to Group 7, Cooling System for proper procedure).

(23) Connect the negative cable to the battery.

## VALVES AND VALVE SPRINGS

## REMOVAL

(1) Remove the cylinder head.

(2) Compress valve springs using Valve Spring Compressor Tool MD- 998772A.

(3) Remove valve retaining locks, valve spring retainers, valve stem seals and valve springs.

(4) Before removing valves, remove any burrs from valve stem lock grooves to prevent damage to the valve guides. Identify valves to ensure installation in original location.

## INSTALLATION

(1) Clean valves thoroughly. Discard burned, warped and cracked valves.

(2) Remove carbon and varnish deposits from inside of valve guides with a reliable guide cleaner.

(3) Measure valve stems for wear. If wear exceeds 0.051 mm (0.002 inch), replace the valve.

(4) Coat valve stems with lubrication oil and insert them in cylinder head.

(5) If valves or seats are reground, check valve stem height. If valve is too long, replace cylinder head.

(6) Install new seals on all valve guides. Install valve springs and valve retainers.

(7) Compress valve springs with Valve Spring Compressor Tool MD-998772A, install locks and release tool. If valves and/or seats are ground, measure the installed height of springs. Make sure the measurement is taken from bottom of spring seat in cylinder head to the bottom surface of spring retainer. If spacers are installed, measure from the

top of spacer. If height is greater than 42.86 mm (1-11/16 inches), install a 1.587 mm (1/16 inch) spacer in head counterbore. This should bring spring height back to normal 41.27 to 42.86 mm (1-5/8 to 1-11/16 inch).

## HYDRAULIC TAPPETS

## REMOVAL

(1) Remove the air cleaner.

(2) Remove cylinder head cover, rocker assembly and push rods. Identify push rods to ensure installation in original location.

(3) Remove intake manifold, yoke retainer and aligning yokes.

(4) Slide Hydraulic Tappet Remover/Installer Tool C-4129-A through opening in cylinder head and seat tool firmly in the head of tappet.

(5) Pull tappet out of bore with a twisting motion. If all tappets are to be removed, identify tappets to ensure installation in original location.

## INSTALLATION

(1) If the tappet or bore in cylinder block is scored, scuffed, or shows signs of sticking, ream the bore to next oversize. Replace with oversize tappet.

(2) Lubricate tappets.

(3) Install tappets and push rods in their original positions. Ensure that the oil feed hole in the side of the tappet body faces up (away from the crankshaft).

(4) Install aligning yokes with ARROW toward camshaft.

(5) Install yoke retainer. Tighten the bolts to 23 N·m (200 in. lbs.) torque. Install intake manifold.

(6) Install push rods in original positions.

(7) Install rocker arm.

(8) Install cylinder head cover.

(9) Start and operate engine. Warm up to normal operating temperature.

**CAUTION: To prevent damage to valve mechanism, engine must not be run above fast idle until all hydraulic tappets have filled with oil and have become quiet.**

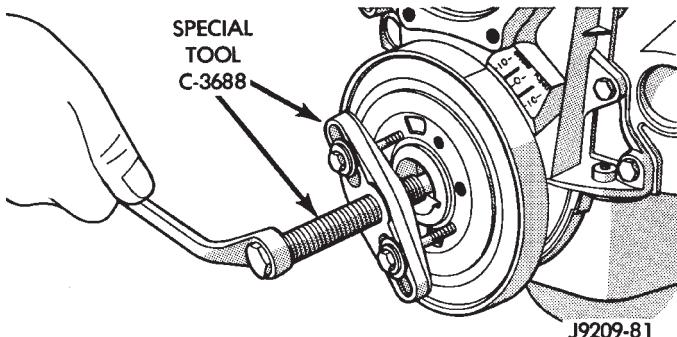
## VIBRATION DAMPER

## REMOVAL

(1) Disconnect the negative cable from the battery.

(2) Remove fan shroud retainer bolts and set shroud back over engine.

(3) Remove the cooling system fan.


(4) Remove the serpentine belt (refer to Group 7, Cooling System).

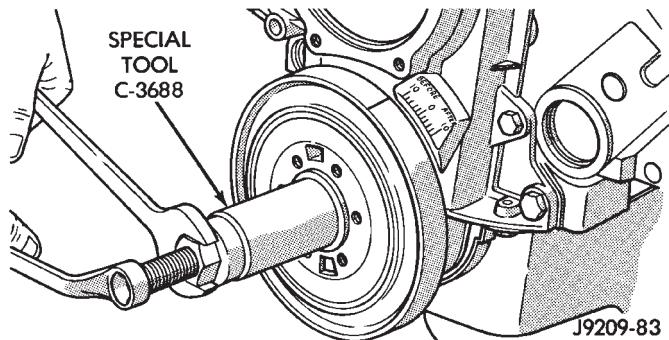
(5) Remove the vibration damper pulley.

## REMOVAL AND INSTALLATION (Continued)

(6) Remove vibration damper bolt and washer from end of crankshaft.

(7) Install bar and screw from Puller Tool Set C-3688. Install 2 bolts with washers through the puller tool and into the vibration damper (Fig. 25).




**Fig. 25 Vibration Damper Assembly**

(8) Pull vibration damper off of the crankshaft.

## INSTALLATION

(1) Position the vibration damper onto the crankshaft.

(2) Place installing tool, part of Puller Tool Set C-3688 in position and press the vibration damper onto the crankshaft (Fig. 26).



**Fig. 26 Installing Vibration Damper**

(3) Install the crankshaft bolt and washer. Tighten the bolt to 183 N·m (135 ft. lbs.) torque.

(4) Install the crankshaft pulley. Tighten the pulley bolts to 23 N·m (200 in. lbs.) torque.

(5) Install the serpentine belt (refer to Group 7, Cooling System).

(6) Install the cooling system fan. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.

(7) Position the fan shroud and install the bolts. Tighten the retainer bolts to 11 N·m (95 in. lbs.) torque.

(8) Connect the negative cable to the battery.

## TIMING CHAIN COVER

(1) Disconnect the negative cable from the battery.

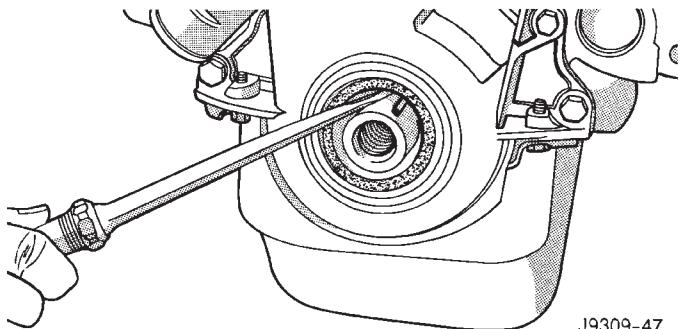
(2) Drain cooling system (refer to Group 7, Cooling System).

(3) Remove the serpentine belt (refer to Group 7, Cooling System).

(4) Remove water pump (refer to Group 7, Cooling System).

(5) Remove power steering pump (refer to Group 19, Steering).

(6) Remove vibration damper.


(7) Remove fuel lines (refer to Group 14, Fuel System).

(8) Loosen oil pan bolts and remove the front bolt at each side.

(9) Remove the cover bolts.

(10) Remove chain case cover and gasket using extreme caution to avoid damaging oil pan gasket.

(11) Place a suitable tool behind the lips of the oil seal to pry the oil seal outward. Be careful not to damage the crankshaft seal surface of cover (Fig. 27).



**Fig. 27 Removal of Front Crankshaft Oil Seal**

## INSTALLATION

(1) Be sure mating surfaces of chain case cover and cylinder block are clean and free from burrs.

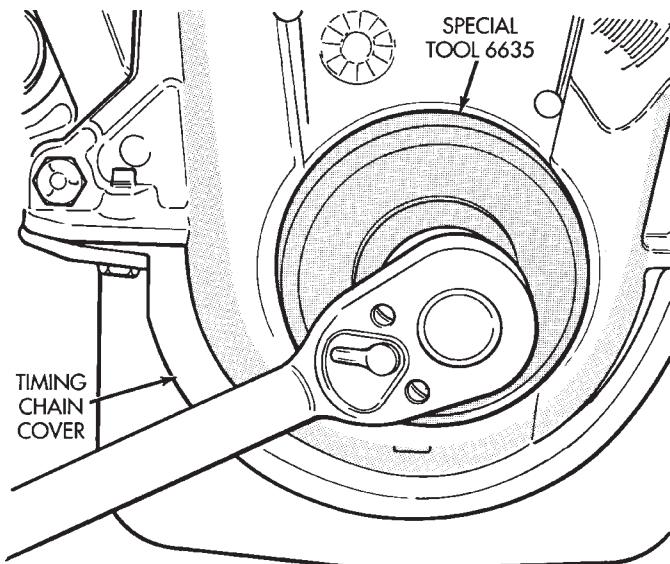
(2) The water pump mounting surface must be cleaned.

(3) Using a new cover gasket, carefully install chain case cover to avoid damaging oil pan gasket. Use a small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent, at the joint between timing chain cover gasket and the oil pan gasket. Finger tighten the timing chain cover bolts at this time.

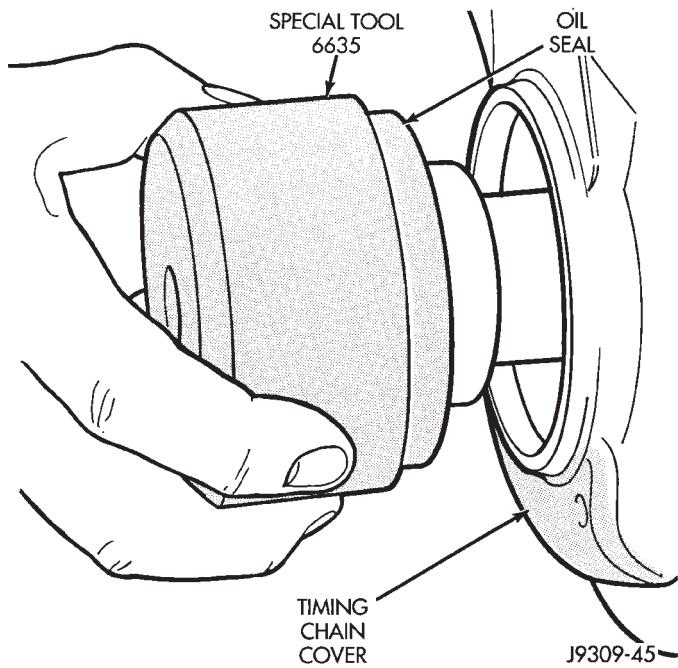
(4) Place the smaller diameter of the oil seal over Front Oil Seal Installation Tool 6635 (Fig. 28). Seat the oil seal in the groove of the tool.

(5) Position the seal and tool onto the crankshaft (Fig. 29).

(6) Tighten the 4 lower chain case cover bolts to 13N·m (10 ft.lbs.) to prevent the cover from tipping during seal installation.


(7) Using the vibration damper bolt, tighten the bolt to draw the seal into position on the crankshaft (Fig. 30).

(8) Loosen the 4 bolts tightened in step 4 to allow realignment of front cover assembly.


## REMOVAL AND INSTALLATION (Continued)



J9309-44



J9309-46

**Fig. 28 Placing Oil Seal on Installation Tool 6635****Fig. 29 Position Tool and Seal onto Crankshaft**

(9) Tighten chain case cover bolts to 41 N·m (30 ft. lbs.) torque. Tighten oil pan bolts to 24 N·m (215 in. lbs.) torque.

(10) Remove the vibration damper bolt and seal installation tool.

(11) Install vibration damper.

(12) Install water pump and housing assembly using new gaskets (refer to Group 7, Cooling System). Tighten bolts to 41 N·m (30 ft. lbs.) torque.

(13) Install power steering pump (refer to Group 19, Steering).

(14) Install the serpentine belt (refer to Group 7, Cooling System).

(15) Install the cooling system fan. Tighten the bolts to 23 N·m (17 ft. lbs.) torque.

**Fig. 30 Installing Oil Seal**

(16) Position the fan shroud and install the bolts. Tighten the bolts to 11 N·m (95 in. lbs.) torque.

(17) Fill cooling system (refer to Group 7, Cooling System for the proper procedure).

(18) Connect the negative cable to the battery.

**TIMING CHAIN****REMOVAL**

(1) Remove Timing Chain Cover Refer to procedure in this section.

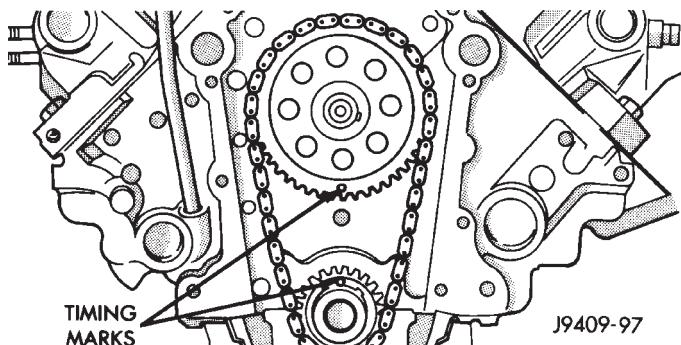
(2) Remove camshaft sprocket attaching bolt and remove timing chain with crankshaft and camshaft sprockets.

**INSTALLATION**

(1) Place both camshaft sprocket and crankshaft sprocket on the bench with timing marks on exact imaginary center line through both camshaft and crankshaft bores.

(2) Place timing chain around both sprockets.

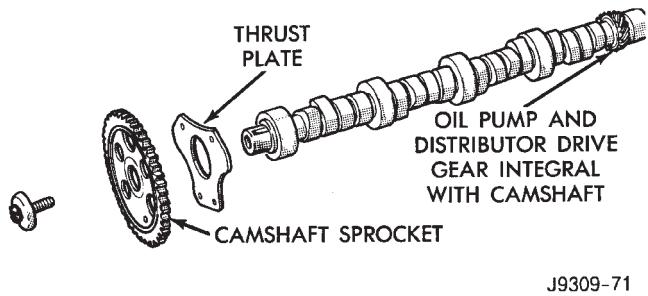
(3) Turn crankshaft and camshaft to line up with keyway location in crankshaft sprocket and in camshaft sprocket.


(4) Lift sprockets and chain (keep sprockets tight against the chain in position as described).

(5) Slide both sprockets evenly over their respective shafts and use a straightedge to check alignment of timing marks (Fig. 31).

(6) Install the camshaft bolt. Tighten the bolt to 68 N·m (50 ft. lbs.) torque.

(7) Check camshaft end play. The end play should be 0.051-0.152 mm (0.002-0.006 inch) with a new thrust plate and up to 0.254 mm (0.010 inch) with a


## REMOVAL AND INSTALLATION (Continued)

**Fig. 31 Alignment of Timing Marks**

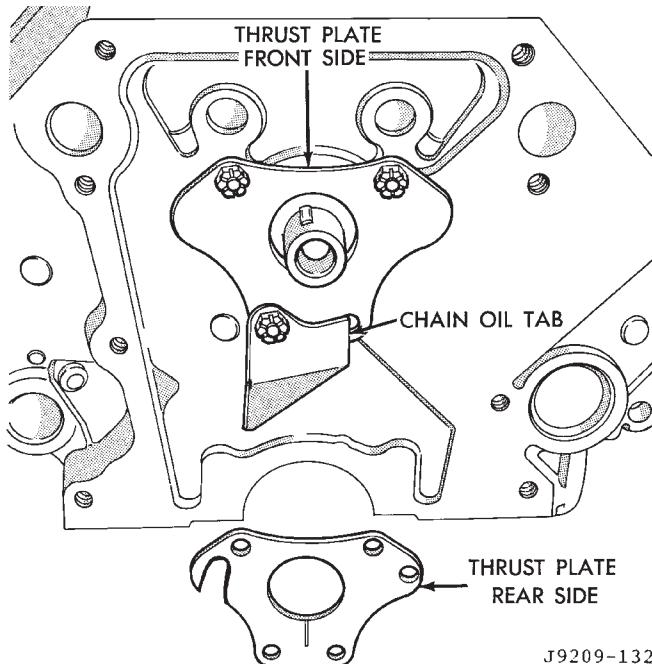
used thrust plate. If not within these limits install a new thrust plate.

## CAMSHAFT

**NOTE:** The camshaft has an integral oil pump and distributor drive gear (Fig. 32).

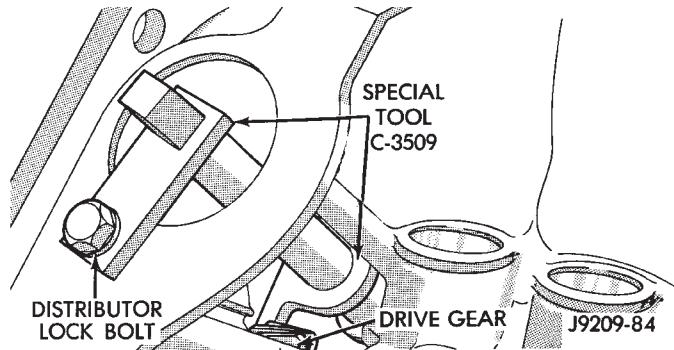
**Fig. 32 Camshaft and Sprocket Assembly**

## REMOVAL


- (1) Remove intake manifold.
- (2) Remove cylinder head covers.
- (3) Remove timing case cover and timing chain.
- (4) Remove rocker arms.
- (5) Remove push rods and tappets. Identify each part so it can be installed in its original location.
- (6) Remove distributor and lift out the oil pump and distributor drive shaft.
- (7) Remove camshaft thrust plate, note location of oil tab (Fig. 33).

(8) Install a long bolt into front of camshaft to facilitate removal of the camshaft. Remove camshaft, being careful not to damage cam bearings with the cam lobes.

## INSTALLATION


(1) Lubricate camshaft lobes and camshaft bearing journals and insert the camshaft to within 51 mm (2 inches) of its final position in cylinder block.

**NOTE:** Whenever an engine has been rebuilt, a new camshaft and/or new tappets installed, add 1 pint of Mopar Crankcase Conditioner, or equivalent. The oil mixture should be left in engine for a minimum of

**Fig. 33 Timing Chain Oil Tab Installation**

805 km (500 miles). Drain at the next normal oil change.

- (2) Install Camshaft Gear Installer Tool C-3509 with tongue back of distributor drive gear (Fig. 34).

**Fig. 34 Camshaft Holding Tool C-3509 (Installed Position)**

(3) Hold tool in position with a distributor lock-plate bolt. This tool will restrict camshaft from being pushed in too far and prevent knocking out the Welch plug in rear of cylinder block. **Tool should remain installed until the camshaft and crankshaft sprockets and timing chain have been installed.**

(4) Install camshaft thrust plate and chain oil tab. **Make sure tang enters lower right hole in thrust plate.** Tighten bolts to 24 N·m (210 in. lbs.) torque. Top edge of tab should be flat against thrust plate in order to catch oil for chain lubrication.

(5) Place both camshaft sprocket and crankshaft sprocket on the bench with timing marks on exact

## REMOVAL AND INSTALLATION (Continued)

imaginary center line through both camshaft and crankshaft bores.

- (6) Place timing chain around both sprockets.
- (7) Turn crankshaft and camshaft to line up with keyway location in crankshaft sprocket and in camshaft sprocket.
- (8) Lift sprockets and chain (keep sprockets tight against the chain in position as described).
- (9) Slide both sprockets evenly over their respective shafts and use a straightedge to check alignment of timing marks (Fig. 35).

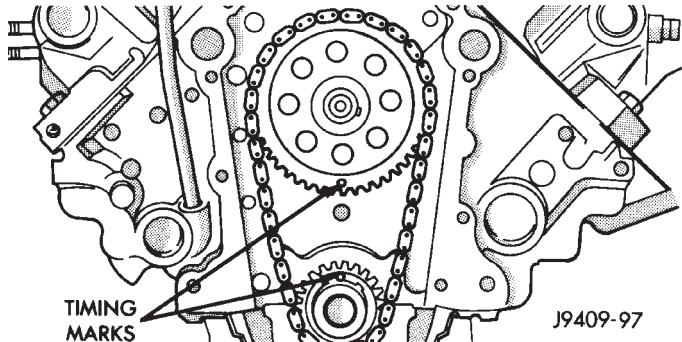



Fig. 35 Alignment of Timing Marks

(10) Install the camshaft bolt/cup washer. Tighten bolt to 68 N·m (50 ft. lbs.) torque.

(11) Measure camshaft end play. Refer to Specifications for proper clearance. If not within limits install a new thrust plate.

(12) Each tappet reused must be installed in the same position from which it was removed. **When camshaft is replaced, all of the tappets must be replaced.**

## CAMSHAFT BEARINGS

## REMOVAL

**NOTE: This procedure requires that the engine is removed from the vehicle.**

(1) With engine completely disassembled, drive out rear cam bearing core hole plug.

(2) Install proper size adapters and horseshoe washers (part of Camshaft Bearing Remover/Installer Tool C-3132-A) at back of each bearing shell. Drive out bearing shells (Fig. 36).

## INSTALLATION

(1) Install new camshaft bearings with Camshaft Bearing Remover/Installer Tool C-3132-A by sliding the new camshaft bearing shell over proper adapter.

(2) Position rear bearing in the tool. Install horseshoe lock and by reversing removal procedure, carefully drive bearing shell into place.

(3) Install remaining bearings in the same manner. Bearings must be carefully aligned to bring oil

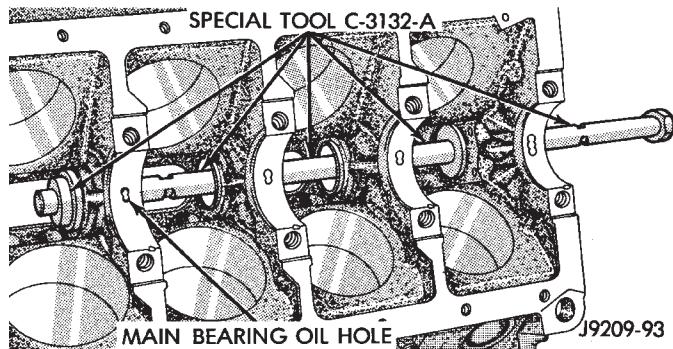



Fig. 36 Camshaft Bearings Removal/Installation with Tool C-3132-A

holes into full register with oil passages from the main bearing. If the camshaft bearing shell oil holes are not in exact alignment, remove and install them correctly. Install a new core hole plug at the rear of camshaft. **Be sure this plug does not leak.**

## CRANKSHAFT MAIN BEARINGS

## REMOVAL

(1) Remove the oil pan.

(2) Remove the oil pump from the rear main bearing cap.

(3) Identify bearing caps before removal. Remove bearing caps one at a time.

(4) Remove upper half of bearing by inserting Crankshaft Main Bearing Remover/Installer Tool C-3059 into the oil hole of crankshaft (Fig. 37).

(5) Slowly rotate crankshaft clockwise, forcing out upper half of bearing shell.

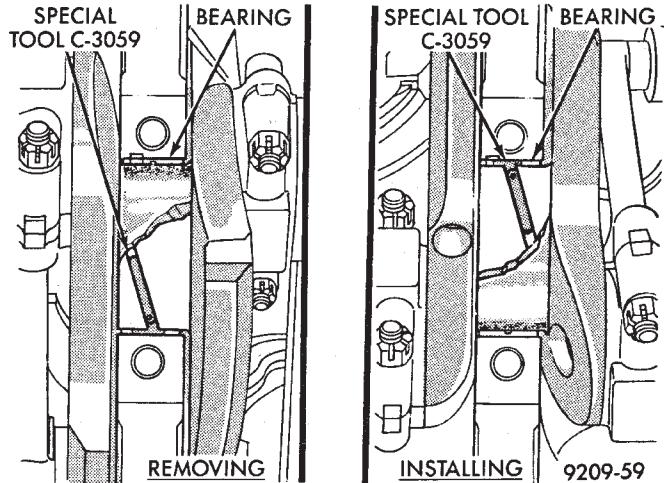



Fig. 37 Upper Main Bearing Removal and Installation with Tool C-3059

## INSTALLATION

Only one main bearing should be selectively fitted while all other main bearing caps are properly tightened. All bearing cap bolts removed during service

## REMOVAL AND INSTALLATION (Continued)

procedures are to be cleaned and oiled before installation.

When installing a new upper bearing shell, slightly chamfer the sharp edges from the plain side.

(1) Start bearing in place, and insert Crankshaft Main Bearing Remover/Installer Tool C-3059 into oil hole of crankshaft (Fig. 37).

(2) Slowly rotate crankshaft counterclockwise sliding the bearing into position. Remove Tool C-3059.

(3) Install the bearing caps. Clean and oil the bolts. Tighten the capbolts to 115 N·m (85 ft. lbs.) torque.

(4) Install the oil pump.

(5) Install the oil pan.

## DISTRIBUTOR DRIVE SHAFT BUSHING

## REMOVAL

(1) Remove distributor, refer to Group 8D, Ignition Systems for the proper procedure.

(2) Remove the intake manifold (refer to Group 11, Exhaust System and Intake Manifold).

(3) Insert Distributor Drive Shaft Bushing Puller Tool C-3052 into old bushing and thread down until a tight fit is obtained (Fig. 38).

(4) Hold puller screw and tighten puller nut until bushing is removed.

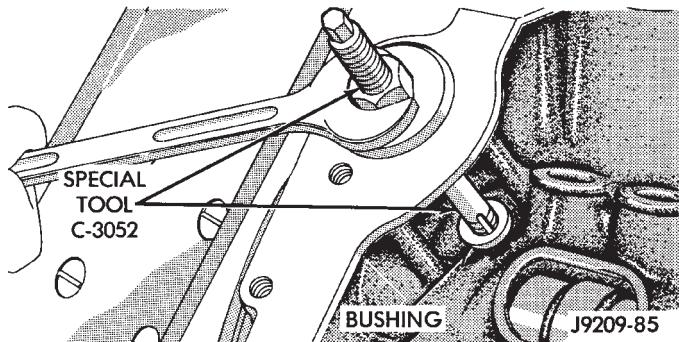



Fig. 38 Distributor Driveshaft Bushing Removal

## INSTALLATION

(1) Slide new bushing over burnishing end of Distributor Drive Shaft Bushing Driver/Burnisher Tool C-3053. Insert the tool and bushing into the bore.

(2) Drive bushing and tool into position, using a hammer (Fig. 39).

(3) As the burnisher is pulled through the bushing, the bushing is expanded tight in the block and burnished to correct size (Fig. 40). **DO NOT** ream this bushing.

**CAUTION:** This procedure **MUST** be followed when installing a new bushing or seizure to shaft may occur.

(4) Install the intake manifold (refer to Group 11, Exhaust System and Intake Manifold).

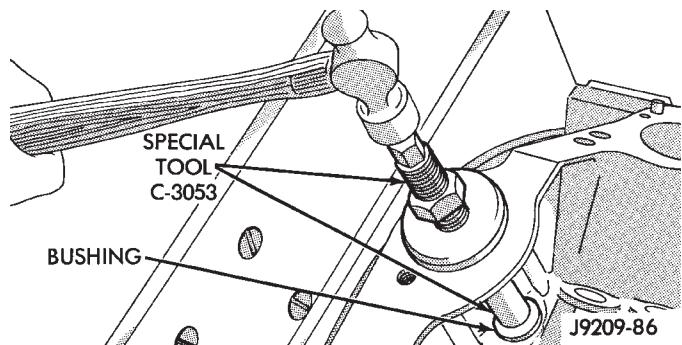



Fig. 39 Distributor Driveshaft Bushing Installation

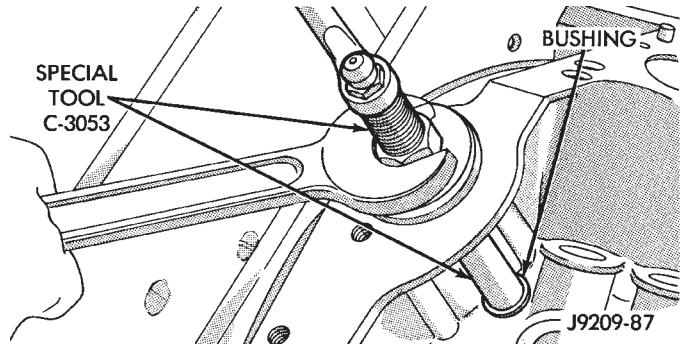



Fig. 40 Burnishing Distributor Driveshaft Bushing  
DISTRIBUTOR INSTALLATION

**NOTE:** Before installing the distributor, the oil pump drive shaft must be aligned to number one cylinder.

(1) Rotate crankshaft until No.1 cylinder is at top dead center on the firing stroke.

(2) When in this position, the timing mark of vibration damper should be under "0" on the timing indicator.

(3) Install the shaft so that after the gear spirals into place, it will index with the oil pump shaft. The slot on top of oil pump shaft should be aligned towards the left front intake manifold attaching bolt hole (Fig. 41).

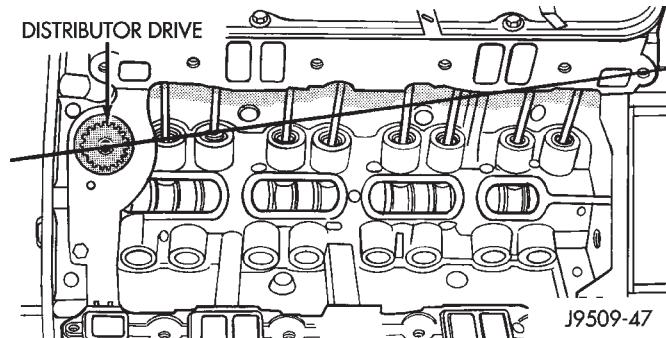



Fig. 41 Position of Oil Pump Shaft Slot

(4) Install distributor, refer to Group 8D, Ignition Systems for the proper procedure.

## REMOVAL AND INSTALLATION (Continued)

After the distributor has been installed, its rotational position must be set using the **SET SYNC** mode of the DRB scan tool. Refer to Checking Distributor Position following the Distributor Installation section in Group 8D, Ignition system.

**Do not attempt to adjust ignition timing by rotating the distributor. It has no effect on ignition timing. Adjusting distributor position will effect fuel synchronization only.**

## OIL PAN

## REMOVAL—2WD

- (1) Disconnect the negative cable from the battery.
- (2) Remove engine oil dipstick.
- (3) Disconnect distributor cap and position away from cowl.
- (4) Raise vehicle.
- (5) Drain engine oil.
- (6) Remove exhaust pipe.
- (7) Loosen side engine mount bolts.
- (8) Raise engine by way of oil pan using a block of wood between the jack and oil pan.
- (9) When engine is high enough, place bolts (similar in size to the engine mount bolts) in the engine mount attaching points on the frame brackets.
- (10) Lower engine so bottom of engine mounts rest on the replacement bolts placed in the engine mount frame brackets.
- (11) Remove oil pan and one-piece gasket.

## REMOVAL—4WD

- (1) Disconnect the negative cable from the battery.
- (2) Remove engine oil dipstick.
- (3) Raise vehicle.
- (4) Drain engine oil.
- (5) Remove front driving axle (refer to Group 3, Drive Axles and Group 2, Front Suspension for the proper procedures).
- (6) Remove exhaust pipe.
- (7) Remove transmission lower (dust) cover.
- (8) Remove oil pan and one-piece gasket.

## INSTALLATION—2WD

(1) Fabricate 4 alignment dowels from 1 1/2 x 5/16 inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 42).

(2) Install the dowels in the cylinder block (Fig. 43).

(3) Apply small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent in the corner of the cap and the cylinder block.

(4) Slide the one-piece gasket over the dowels and onto the block.

(5) Position the oil pan over the dowels and onto the gasket.

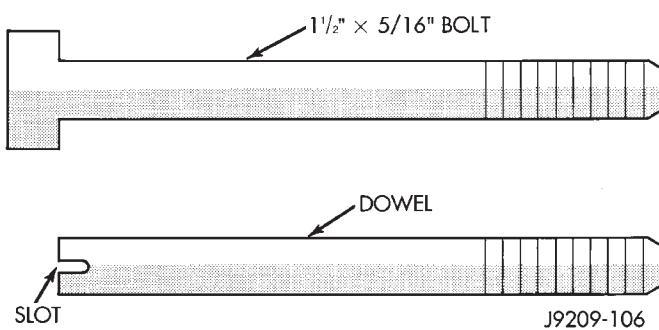



Fig. 42 Fabrication of Alignment Dowels

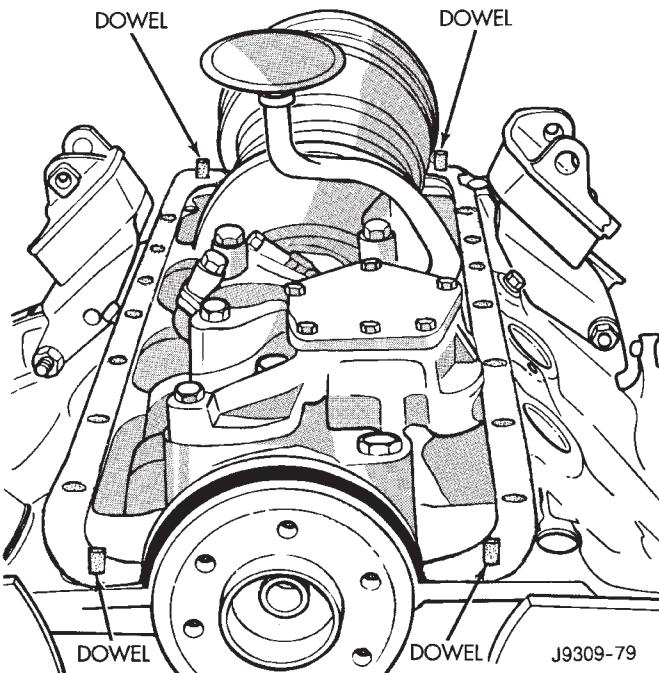



Fig. 43 Position of Dowels in Cylinder Block

- (6) Install the oil pan bolts. Tighten the bolts to 24 N·m (215 in. lbs.) torque.
- (7) Remove the dowels. Install the remaining oil pan bolts. Tighten these bolts to 24 N·m (215 in. lbs.) torque.
- (8) Install the drain plug. Tighten drain plug to 34 N·m (25 ft. lbs.) torque.
- (9) Raise engine by way of oil pan with a wood block placed between jack and oil pan.
- (10) Remove temporary bolts from frame brackets and lower engine. Tighten side engine mount bolts to specifications.
- (11) Install exhaust pipe.
- (12) Lower vehicle.
- (13) Connect the distributor cap.
- (14) Install dipstick.
- (15) Connect the negative cable to the battery.
- (16) Fill crankcase with oil to proper level.

## REMOVAL AND INSTALLATION (Continued)

## INSTALLATION—4WD

(1) Fabricate 4 alignment dowels from 1 1/2 x 5/16 inch bolts. Cut the head off the bolts and cut a slot into the top of the dowel. This will allow easier installation and removal with a screwdriver (Fig. 42).

(2) Install the dowels in the cylinder block (Fig. 43).

(3) Apply small amount of Mopar Silicone Rubber Adhesive Sealant, or equivalent in the corner of the cap and the cylinder block.

(4) Slide the one-piece gasket over the dowels and onto the block.

(5) Position the oil pan over the dowels and onto the gasket.

(6) Install the oil pan bolts. Tighten the bolts to 24 N·m (215 in. lbs.) torque.

(7) Remove the dowels. Install the remaining oil pan bolts. Tighten these bolts to 24 N·m (215 in. lbs.) torque.

(8) Install the drain plug. Tighten drain plug to 34 N·m (25 ft. lbs.) torque.

(9) Install front driving axle (refer to Group 3, Drive Axles and Group 2, Front Suspension for the proper procedures).

(10) Install exhaust pipe.

(11) Lower vehicle

(12) Connect the distributor cap.

(13) Install dipstick.

(14) Connect the negative cable to the battery.

(15) Fill crankcase with oil to proper level.

## PISTON AND CONNECTING ROD ASSEMBLY

## REMOVAL

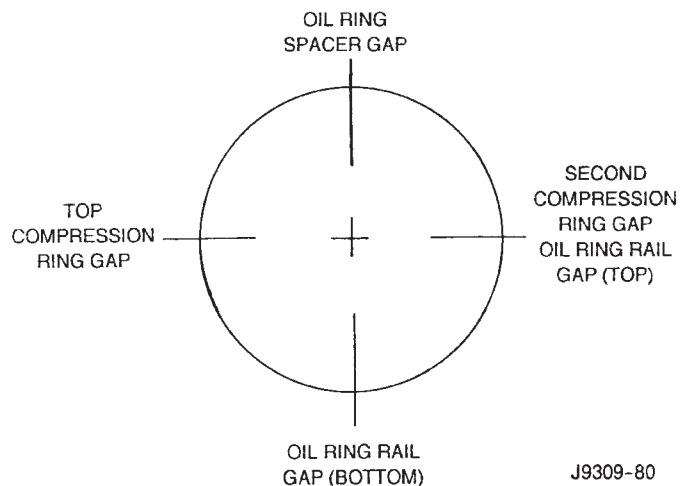
(1) Remove the engine from the vehicle.

(2) Remove the cylinder head.

(3) Remove the oil pan.

(4) Remove top ridge of cylinder bores with a reliable ridge reamer before removing pistons from cylinder block. Be sure to keep tops of pistons covered during this operation.

(5) Be sure the connecting rod and connecting rod cap are identified with the cylinder number. Remove connecting rod cap. Install connecting rod bolt guide set on connecting rod bolts.


(6) Pistons and connecting rods must be removed from top of cylinder block. When removing piston and connecting rod assemblies, rotate crankshaft to center the connecting rod in the cylinder bore and at BDC. **Be careful not to nick crankshaft journals.**

(7) After removal, install bearing cap on the mating rod.

## INSTALLATION

(1) Be sure that compression ring gaps are staggered so that neither is in-line with oil ring rail gap.

(2) Before installing the ring compressor, make sure the oil ring expander ends are butted and the rail gaps located properly (Fig. 44).



J9309-80

**Fig. 44 Proper Ring Installation**

(3) Immerse the piston head and rings in clean engine oil. Slide Piston Ring Compressor Tool C-385 over the piston and tighten with the special wrench (part of Tool C-385). **Be sure position of rings does not change during this operation.**

(4) Install connecting rod bolt protectors on rod bolts, the long protector should be installed on the numbered side of the connecting rod.

(5) Rotate crankshaft so that the connecting rod journal is on the center of the cylinder bore. Be sure connecting rod and cylinder bore number are the same. Insert rod and piston into cylinder bore and guide rod over the crankshaft journal.

(6) Tap the piston down in cylinder bore, using a hammer handle. At the same time, guide connecting rod into position on crankshaft journal.

(7) The notch or groove on top of piston must be pointing toward front of engine. The larger chamfer of the connecting rod bore must be installed toward crankshaft journal fillet.

(8) Install rod caps. Be sure connecting rod, connecting rod cap and cylinder bore number are the same. Install nuts on cleaned and oiled rod bolts and tighten nuts to 61 N·m (45 ft. lbs.) torque.

(9) Install the oil pan.

(10) Install the cylinder head.

(11) Install the engine into the vehicle.

## CRANKSHAFT

## REMOVAL

(1) Remove the oil pan.

(2) Remove the oil pump from the rear main bearing cap.

(3) Remove the vibration damper.

(4) Remove the timing chain cover.

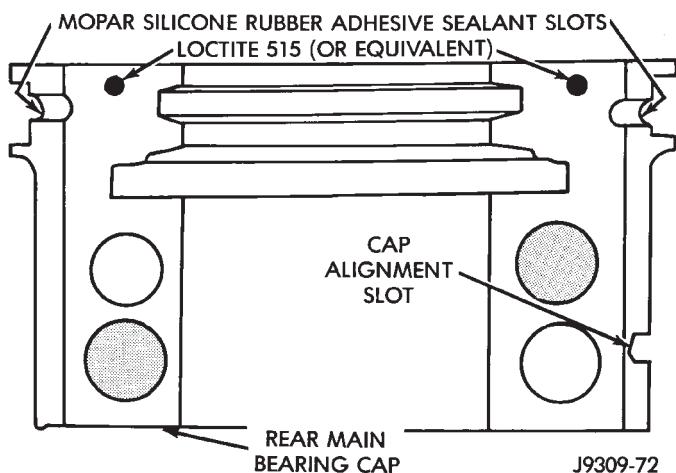
## REMOVAL AND INSTALLATION (Continued)

- (5) Identify bearing caps before removal. Remove bearing caps and bearings one at a time.
- (6) Lift the crankshaft out of the block.
- (7) Remove and discard the crankshaft rear oil seals.
- (8) Remove and discard the front crankshaft oil seal.

## INSTALLATION

(1) Clean Loctite 518 residue and sealant from the cylinder block and rear cap mating surface. Do this before applying the Loctite drop and the installation of rear cap.

(2) Lightly oil the new upper seal lips with engine oil.


(3) Install the new upper rear bearing oil seal with the white paint facing towards the rear of the engine.

(4) Position the crankshaft into the cylinder block.

(5) Lightly oil the new lower seal lips with engine oil.

(6) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing towards the rear of the engine.

(7) Apply 5 mm (0.20 in) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 45). DO NOT over apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.

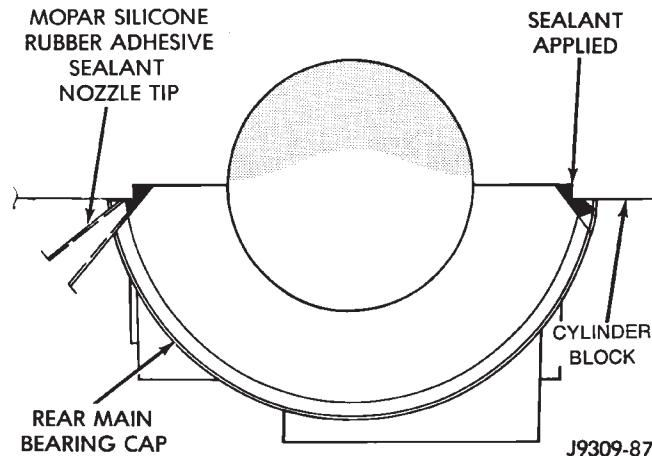


**Fig. 45 Sealant Application to Bearing Cap**

(8) To align the bearing cap, use cap slot, alignment dowel and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than 2 times for proper engagement.

(9) Clean and oil all cap bolts. Install all main bearing caps. Install all cap bolts and alternately tighten to 115 N·m (85 ft. lbs.) torque.

(10) Install oil pump.


(11) Install the timing chain cover.

(12) Install the vibration damper.

(13) Apply Mopar® Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap to block joint to provide cap to block and oil pan sealing (Fig. 46). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(14) Install new front crankshaft oil seal.

(15) Immediately install the oil pan.



**Fig. 46 Apply Sealant to Bearing Cap to Block Joint**  
**OIL PUMP**

## REMOVAL

(1) Remove the oil pan.

(2) Remove the oil pump from rear main bearing cap.

## INSTALLATION

(1) Install oil pump. During installation slowly rotate pump body to ensure driveshaft-to-pump rotor shaft engagement.

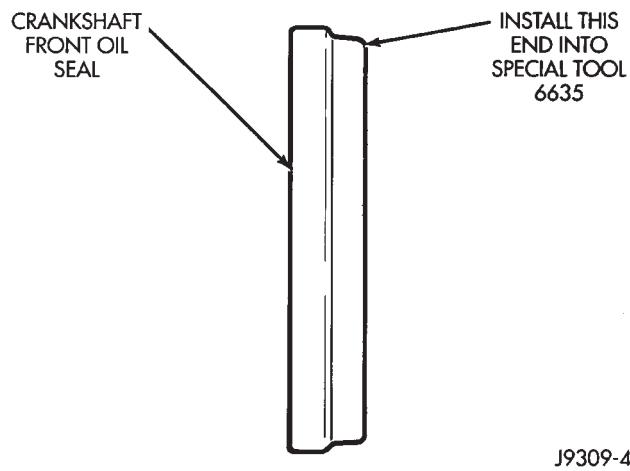
(2) Hold the oil pump base flush against mating surface on No.5 main bearing cap. Finger tighten pump attaching bolts. Tighten attaching bolts to 41 N·m (30 ft. lbs.) torque.

(3) Install the oil pan.

## FRONT CRANKSHAFT OIL SEAL

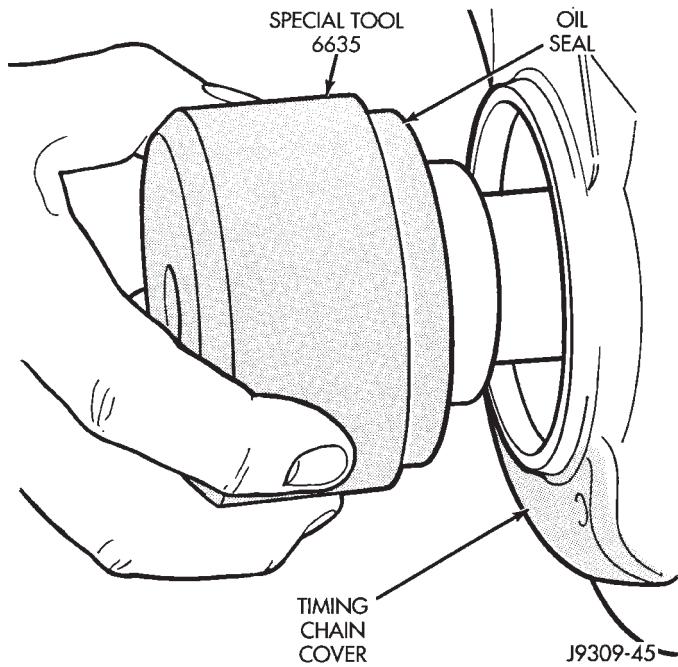
The oil seal can be replaced without removing the timing chain cover provided the cover is not misaligned.

(1) Disconnect the negative cable from the battery.


(2) Remove vibration damper.

(3) If front seal is suspected of leaking, check front oil seal alignment to crankshaft. The seal installation/alignment tool 6635, should fit with minimum interference. If tool does not fit, the cover must be removed and installed properly.

(4) Place a suitable tool behind the lips of the oil seal to pry the oil seal outward. Be careful not to damage the crankshaft seal bore of cover.


## REMOVAL AND INSTALLATION (Continued)

(5) Place the smaller diameter of the oil seal over Front Oil Seal Installation Tool 6635 (Fig. 47). Seat the oil seal in the groove of the tool.

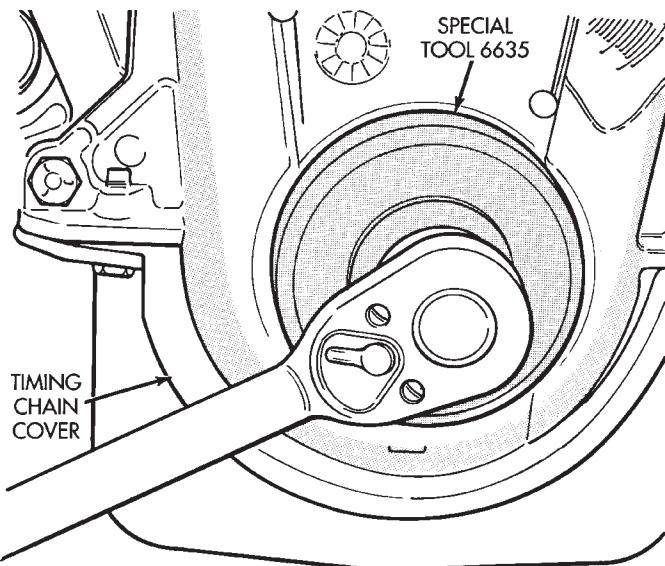


**Fig. 47 Placing Oil Seal on Installation Tool 6635**

(6) Position the seal and tool onto the crankshaft (Fig. 48).



**Fig. 48 Position Tool and Seal onto Crankshaft**


(7) Using the vibration damper bolt, tighten the bolt to draw the seal into position on the crankshaft (Fig. 49).

(8) Remove the vibration damper bolt and seal installation tool.

(9) Inspect the seal flange on the vibration damper.

(10) Install the vibration damper.

(11) Connect the negative cable to the battery.



**Fig. 49 Installing Oil Seal**

## CRANKSHAFT REAR OIL SEALS

The service seal is a 2 piece, viton seal. The upper seal half can be installed with crankshaft removed from engine or with crankshaft installed. When a new upper seal is installed, install a new lower seal. The lower seal half can only be installed with the rear main bearing cap removed.

## UPPER SEAL —CRANKSHAFT REMOVED

## REMOVAL

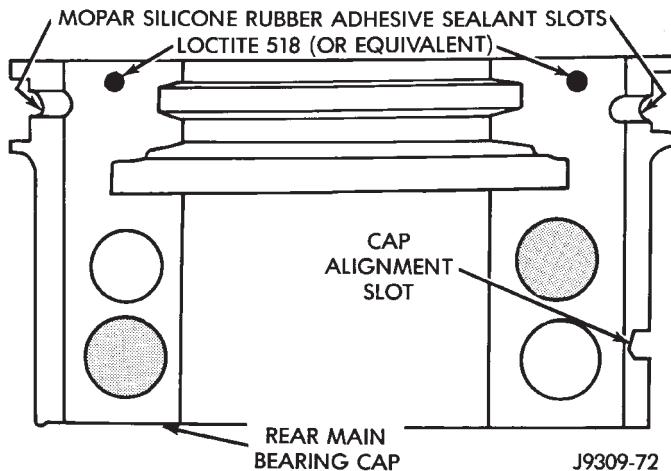
(1) Remove the crankshaft. Discard the old upper seal.

## INSTALLATION

(1) Clean the cylinder block rear cap mating surface. Make sure the seal groove is free of debris.

(2) Lightly oil the new upper seal lips with engine oil.

(3) Install the new upper rear bearing oil seal with the white paint facing towards the rear of the engine.


(4) Position the crankshaft into the cylinder block.

(5) Lightly oil the new lower seal lips with engine oil.

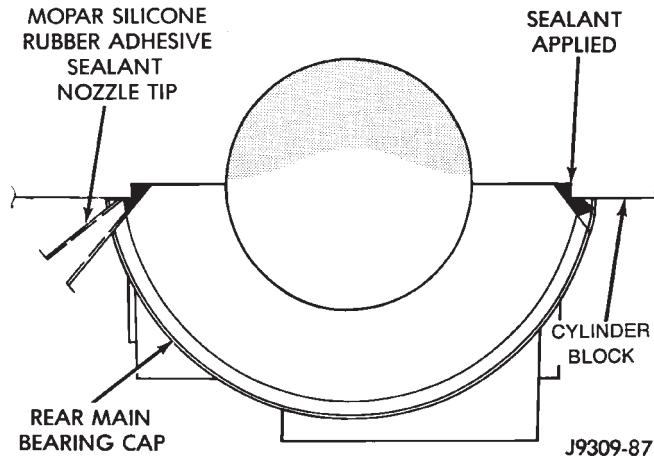
(6) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing towards the rear of the engine.

(7) Apply 5 mm (0.20 in) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 50). DO NOT over apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.

## REMOVAL AND INSTALLATION (Continued)

**Fig. 50 Sealant Application to Bearing Cap**

(8) To align the bearing cap, use cap slot, alignment dowel and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than 2 times for proper engagement.


(9) Clean and oil all cap bolts. Install all main bearing caps. Install all cap bolts and alternately tighten to 115 N·m (85 ft. lbs.) torque.

(10) Install oil pump.

(11) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap to block joint to provide cap to block and oil pan sealing (Fig. 51). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(12) Install new front crankshaft oil seal.

(13) Immediately install the oil pan.

**Fig. 51 Apply Sealant to Bearing Cap to Block Joint**

UPPER SEAL —CRANKSHAFT INSTALLED

## REMOVAL

- (1) Remove the oil pan.
- (2) Remove the oil pump from the rear main bearing cap.

(3) Remove the rear main bearing cap. Remove and discard the old lower oil seal.

(4) Carefully remove and discard the old upper oil seal.

## INSTALLATION

(1) Clean the cylinder block mating surfaces before oil seal installation. Check for burr at the oil hole on the cylinder block mating surface to rear cap.

(2) Lightly oil the new upper seal lips with engine oil. To allow ease of installation of the seal, loosen at least the 2 main bearing caps forward of the rear bearing cap.

(3) Rotate the new upper seal into the cylinder block being careful not to shave or cut the outer surface of the seal. To assure proper installation, use the installation tool provided with the kit. Install the new seal with the white paint facing towards the rear of the engine.

(4) Install the new lower rear bearing oil seal into the bearing cap with the white paint facing towards the rear of the engine.

(5) Apply 5 mm (0.20 in) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 50). DO NOT over apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application. Be sure the white paint faces toward the rear of the engine.

(6) To align the bearing cap, use cap slot, alignment dowel and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than 2 times for proper engagement.

(7) Install the rear main bearing cap with cleaned and oiled cap bolts. Alternately tighten ALL cap bolts to 115 N·m (85 ft. lbs.) torque.

(8) Install oil pump.

(9) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap to block joint to provide cap to block and oil pan sealing (Fig. 51). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(10) Immediately install the oil pan.

## LOWER SEAL

## REMOVAL

- (1) Remove the oil pan.
- (2) Remove the oil pump from the rear main bearing cap.

(3) Remove the rear main bearing cap and discard the old lower seal.

## INSTALLATION

(1) Clean the rear main cap mating surfaces including the oil pan gasket groove.

## REMOVAL AND INSTALLATION (Continued)

(2) Carefully install a new upper seal (refer to Upper Seal Replacement - Crankshaft Installed procedure above).

(3) Lightly oil the new lower seal lips with engine oil.

(4) Install a new lower seal in bearing cap with the white paint facing the rear of engine.

(5) Apply 5 mm (0.20 in) drop of Loctite 518, or equivalent, on each side of the rear main bearing cap (Fig. 50). DO NOT over apply sealant or allow the sealant to contact the rubber seal. Assemble bearing cap to cylinder block immediately after sealant application.

(6) To align the bearing cap, use cap slot, alignment dowel and cap bolts. DO NOT remove excess material after assembly. DO NOT strike rear cap more than 2 times for proper engagement.

(7) Install the rear main bearing cap with cleaned and oiled cap bolts. Alternately tighten the cap bolts to 115 N·m (85 ft. lbs.) torque.

(8) Install oil pump.

(9) Apply Mopar Silicone Rubber Adhesive Sealant, or equivalent, at bearing cap to block joint to provide cap to block and oil pan sealing (Fig. 51). Apply enough sealant until a small amount is squeezed out. Withdraw nozzle and wipe excess sealant off the oil pan seal groove.

(10) Immediately install the oil pan.

## ENGINE CORE OIL AND CAMSHAFT PLUGS

Engine core plugs have been pressed into the oil galleries behind the camshaft thrust plate (Fig. 52). This will reduce internal leakage and help maintain higher oil pressure at idle.

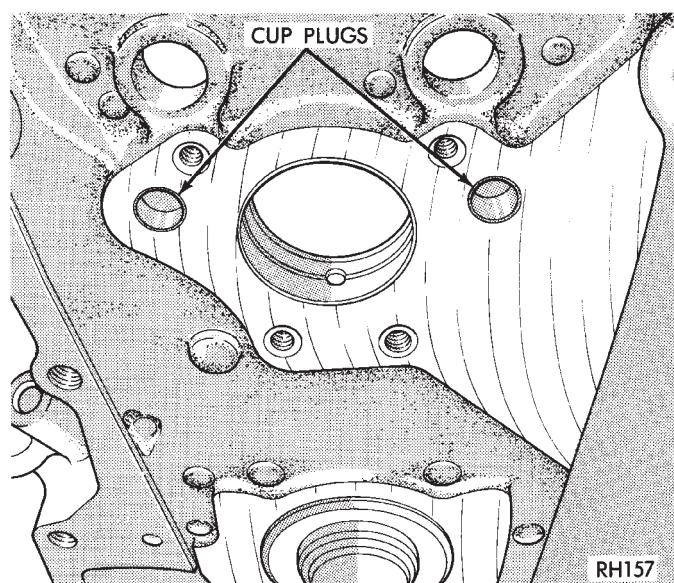



Fig. 52 Location of Cup Plugs in Oil Galleries

## REMOVAL

(1) Using a blunt tool such as a drift or a screwdriver and a hammer, strike the bottom edge of the cup plug (Fig. 53).

(2) With the cup plug rotated, grasp firmly with pliers or other suitable tool and remove plug (Fig. 53).

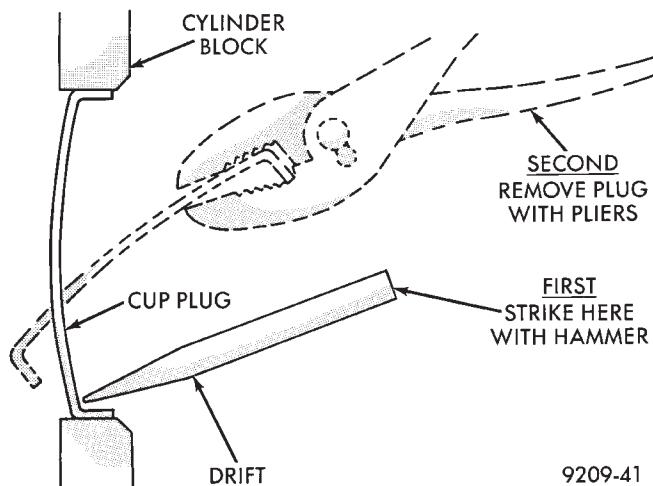



Fig. 53 Core Hole Plug Removal

## INSTALLATION

Thoroughly clean inside of cup plug hole in cylinder block or head. Be sure to remove old sealer.

Be certain the new plug is cleaned of all oil or grease.

(1) Coat edges of plug and core hole with Mopar Gasket Maker, or equivalent.

**CAUTION:** DO NOT drive cup plug into the casting, as restricted coolant flow can result and cause serious engine problems.

(2) Using proper plug drive, drive cup plug into hole. The sharp edge of the plug should be at least 0.50 mm (0.020 in.) inside the lead-in chamfer.

(3) It is not necessary to wait for curing of the sealant. The cooling system can be filled and the vehicle placed in service immediately.

## DISASSEMBLY AND ASSEMBLY

## HYDRAULIC TAPPETS

**CAUTION:** The plunger and tappet bodies are not interchangeable. The plunger and valve must always be fitted to the original body. It is advisable to work on one tappet at a time to avoid mixing of parts. Mixed parts are not compatible. DO NOT disassemble a tappet on a dirty work bench.

## DISASSEMBLY AND ASSEMBLY (Continued)

## DISASSEMBLE

- (1) Pry out plunger retainer spring clip (Fig. 54).
- (2) Clean varnish deposits from inside of tappet body above plunger cap.
- (3) Invert tappet body and remove plunger cap, plunger, check valve, check valve spring, check valve retainer and plunger spring (Fig. 54). Check valve could be flat or ball.

## ASSEMBLE

- (1) Clean all tappet parts in a solvent that will remove all varnish and carbon.
- (2) Replace tappets that are unfit for further service with new assemblies.
- (3) If plunger shows signs of scoring or wear, install a new tappet assembly. If valve is pitted, or valve seat on end of plunger is prevented from seating, install a new tappet assembly.
- (4) Assemble tappets (Fig. 54).

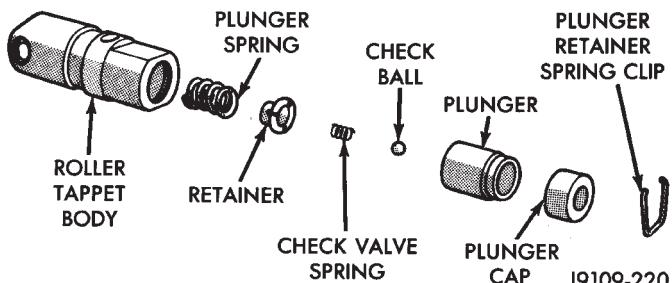



Fig. 54 Hydraulic Tappet Assembly

## VALVE SERVICE

## VALVE GUIDES

Measure valve stem guide clearance as follows:

- (1) Install Valve Guide Sleeve Tool C-3973 over valve stem and install valve (Fig. 55). The special sleeve places the valve at the correct height for checking with a dial indicator.

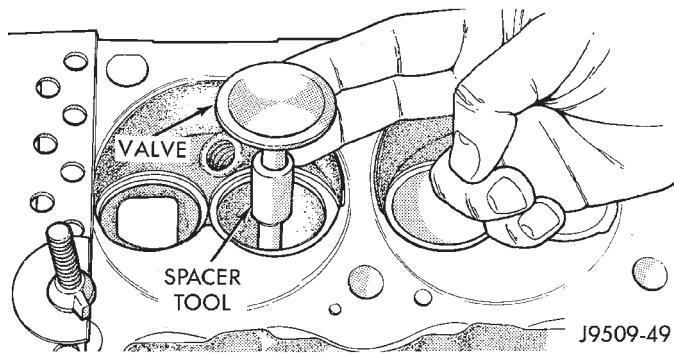



Fig. 55 Positioning Valve with Tool C-3973

- (2) Attach Dial Indicator Tool C-3339 to cylinder head and set it at right angle of valve stem being measured (Fig. 56).

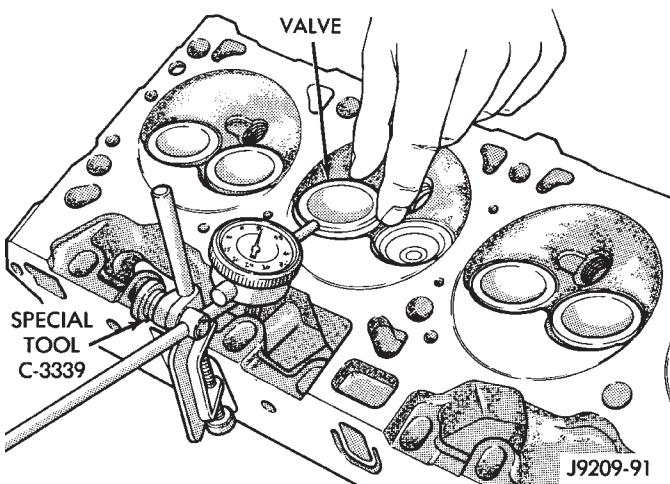



Fig. 56 Measuring Valve Guide Wear

- (3) Move valve to and from the indicator. The total dial indicator reading should not exceed 0.432 mm (0.017 inch). Ream the guides for valves with oversize stems if dial indicator reading is excessive or if the stems are scuffed or scored.

- (4) Service valves with oversize stems are available (Fig. 57).

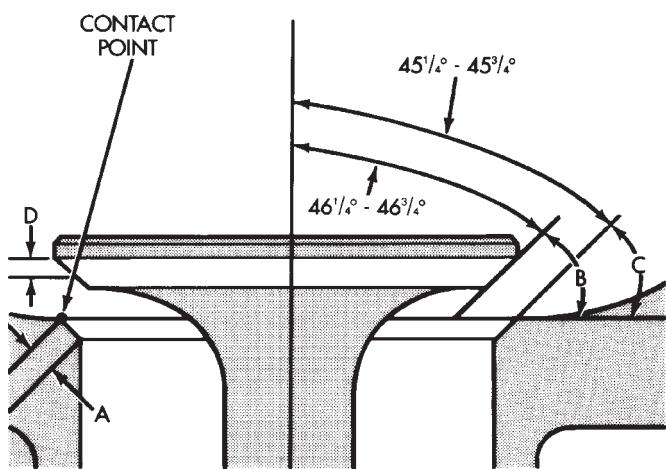
| Reamer O/S              | Valve Guide Size                        |
|-------------------------|-----------------------------------------|
| 0.076 mm<br>(0.003 in.) | 8.026 – 8.052 mm<br>(0.316 – 0.317 in.) |
| 0.381 mm<br>(0.015 in.) | 8.331 – 8.357 mm<br>(0.328 – 0.329 in.) |

J9309-30

Fig. 57 Reamer Sizes

- (5) Slowly turn reamer by hand and clean guide thoroughly before installing new valve. **Ream the valve guides from standard to 0.381 mm (0.015 inch). Use a 2 step procedure so the valve guides are reamed true in relation to the valve seat:**

- Step 1—Ream to 0.0763 mm (0.003 inch).
- Step 2—Ream to 0.381 mm (0.015 inch).


## REFACING VALVES AND VALVE SEATS

The intake and exhaust valves have a 43-1/4° to 43-3/4° face angle and a 44-1/4° to 44-3/4° seat angle (Fig. 58).

## VALVES

Inspect the remaining margin after the valves are refaced (Fig. 59). Valves with less than 1.190 mm (0.047 inch) margin should be discarded.

## DISASSEMBLY AND ASSEMBLY (Continued)



A - SEAT WIDTH - INTAKE 1.016 - 1.524 mm (0.040 - 0.060 in.)  
EXHAUST 1.524 - 2.032 mm (0.060 - 0.080 in.)  
B - FACE ANGLE (INTAKE & EXHAUST) 43 $\frac{1}{4}$  $^{\circ}$  - 43 $\frac{3}{4}$  $^{\circ}$   
C - SEAT ANGLE (INTAKE & EXHAUST) 44 $\frac{1}{4}$  $^{\circ}$  - 44 $\frac{3}{4}$  $^{\circ}$   
D - CONTACT SURFACE

J9309-95

Fig. 58 Valve Face and Seat Angles

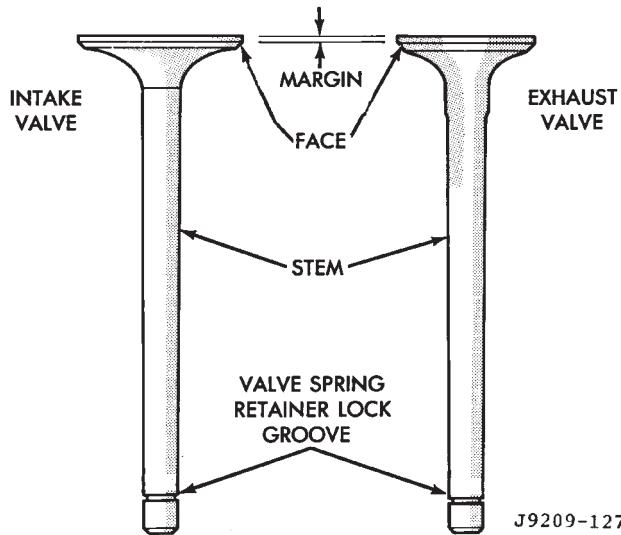



Fig. 59 Intake and Exhaust Valves

## VALVE SEATS

**CAUTION: DO NOT un-shroud valves during valve seat refacing (Fig. 60).**

(1) When refacing valve seats, it is important that the correct size valve guide pilot be used for reseating stones. A true and complete surface must be obtained.

(2) Measure the concentricity of valve seat using a dial indicator. Total runout should not exceed 0.051 mm (0.002 inch) total indicator reading.

(3) Inspect the valve seat with Prussian blue to determine where the valve contacts the seat. To do

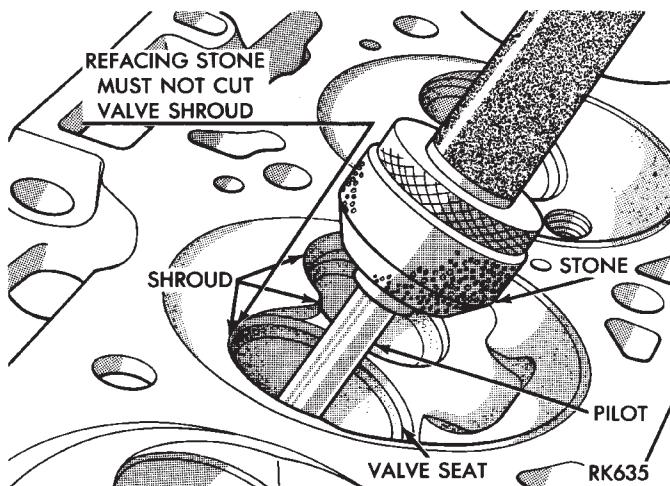



Fig. 60 Refacing Valve Seats

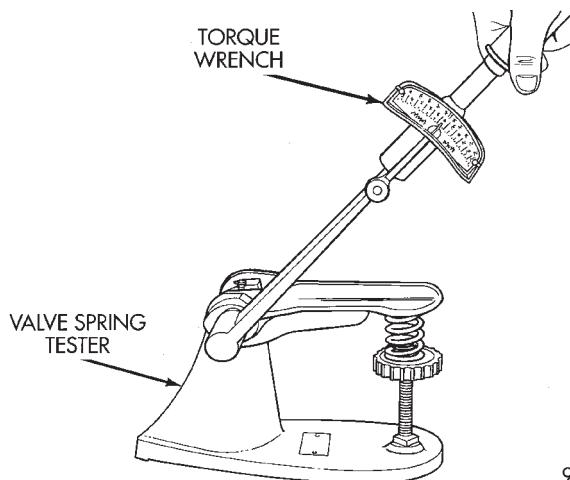
this, coat valve seat LIGHTLY with Prussian blue then set valve in place. Rotate the valve with light pressure. If the blue is transferred to the center of valve face, contact is satisfactory. If the blue is transferred to the top edge of valve face, lower valve seat with a 15° stone. If the blue is transferred to bottom edge of valve face raise valve seat with a 60° stone.

(4) When seat is properly positioned the width of intake seats should be 1.016-1.524 mm (0.040-0.060 inch). The width of the exhaust seats should be 1.524-2.032 mm (0.060-0.080 inch).

## VALVE SPRING INSPECTION

Whenever valves have been removed for inspection, reconditioning or replacement, valve springs should be tested. As an example the compression length of the spring to be tested is 1-5/16 inch. Turn table of Universals Valve Spring Tester Tool until surface is in line with the 1-5/16 inch mark on the threaded stud. Be sure the zero mark is to the front (Fig. 61). Place spring over stud on the table and lift compressing lever to set tone device. Pull on torque wrench until ping is heard. Take reading on torque wrench at this instant. Multiply this reading by 2. This will give the spring load at test length. Fractional measurements are indicated on the table for finer adjustments. Refer to specifications to obtain specified height and allowable tensions. Discard the springs that do not meet specifications.

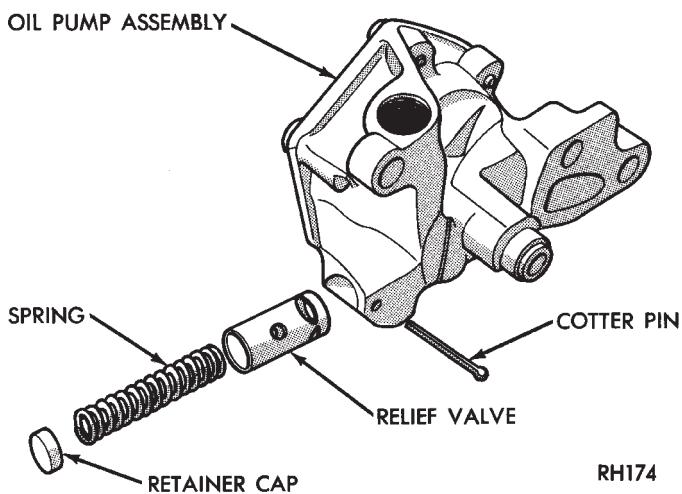
## OIL PUMP


## DISASSEMBLE

(1) Remove the relief valve as follows:

(a) Remove cotter pin. Drill a 3.175 mm (1/8 inch) hole into the relief valve retainer cap and insert a self-threading sheet metal screw.

(b) Clamp screw into a vise and while supporting oil pump, remove cap by tapping pump body


## DISASSEMBLY AND ASSEMBLY (Continued)

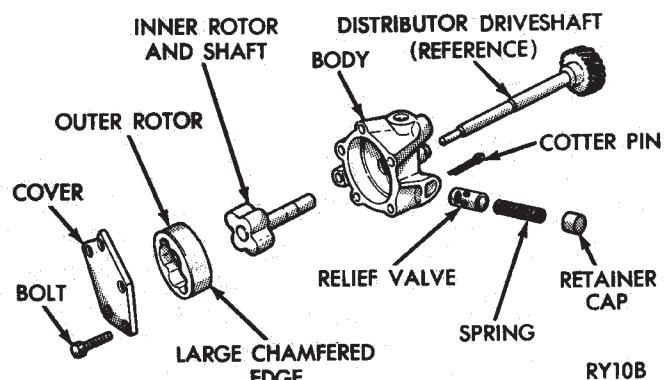


9509-79

**Fig. 61 Testing Valve Spring for Compressed Length**

using a soft hammer. Discard retainer cap and remove spring and relief valve (Fig. 62).




RH174

**Fig. 62 Oil Pressure Relief Valve**

- (2) Remove oil pump cover (Fig. 63).
- (3) Remove pump outer rotor and inner rotor with shaft (Fig. 63).
- (4) Wash all parts in a suitable solvent and inspect carefully for damage or wear.

**ASSEMBLE**

- (1) Install pump rotors and shaft, using new parts as required.
- (2) Position the oil pump cover onto the pump body. Tighten cover bolts to 11 N·m (95 in. lbs.) torque.
- (3) Install the relief valve and spring. Insert the cotter pin.
- (4) Tap on a new retainer cap.
- (5) Prime oil pump before installation by filling rotor cavity with engine oil.

**Fig. 63 Oil Pump****CYLINDER BLOCK****DISASSEMBLE**

Engine assembly removed from vehicle:

- (1) Remove the cylinder head.
- (2) Remove the oil pan.
- (3) Remove the piston and connecting rod assemblies.

**ASSEMBLE**

- (1) Install the piston and connecting rod assembly.
- (2) Install the oil pan.
- (3) Install the cylinder head.
- (4) Install the engine into the vehicle.

**CLEANING AND INSPECTION****CYLINDER HEAD COVER****CLEANING**

Clean cylinder head cover gasket surface. Clean head rail, if necessary.

**INSPECTION**

Inspect cover for distortion and straighten, if necessary.

Check the gasket for use in head cover installation. If damaged, use a new gasket.

**CYLINDER HEADS****CLEANING**

Clean all surfaces of cylinder block and cylinder heads.

Clean cylinder block front and rear gasket surfaces using a suitable solvent.

**INSPECTION**

Inspect all surfaces with a straightedge if there is any reason to suspect leakage. If out-of-flatness exceeds 0.00075 mm/mm (0.00075 inch/inch) times

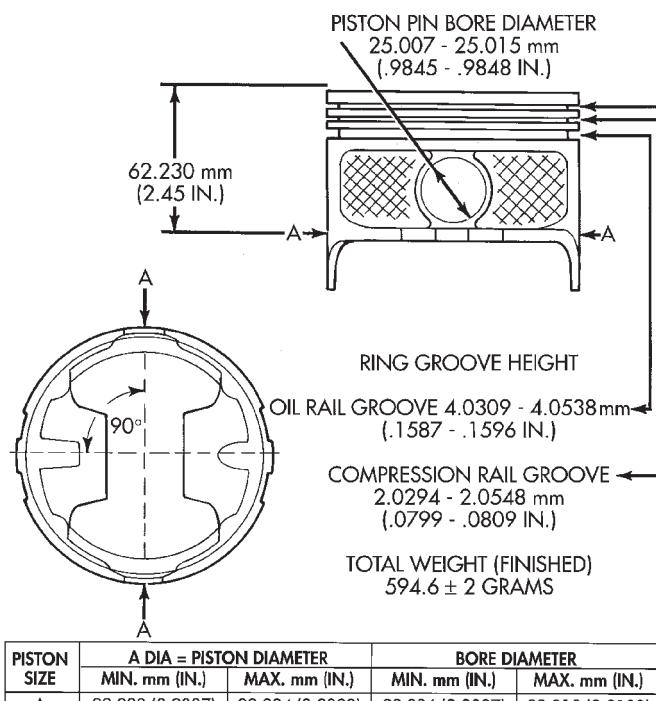
## CLEANING AND INSPECTION (Continued)

the span length in inches in any direction, either replace head or lightly machine the head surface.

**FOR EXAMPLE:** A 305 mm (12 inch) span is 0.102 mm (0.004 inch) out-of-flat. The allowable out-of-flat is  $305 \times 0.00075$  (12 x 0.00075) equals 0.23 mm (0.009 inch). This amount of out-of-flat is acceptable.

The cylinder head surface finish should be 1.78-3.00 microns (70-125 micro inches).

Inspect push rods. Replace worn or bent rods.


## PISTON AND CONNECTING ROD ASSEMBLY

## INSPECTION

Check the crankshaft connecting rod journal for excessive wear, taper and scoring.

Check the cylinder block bore for out-of-round, taper, scoring and scuffing.

Check the pistons for taper and elliptical shape before they are fitted into the cylinder bore (Fig. 64).



| PISTON SIZE | A DIA = PISTON DIAMETER |                 | BORE DIAMETER   |                 |
|-------------|-------------------------|-----------------|-----------------|-----------------|
|             | MIN. mm (IN.)           | MAX. mm (IN.)   | MIN. mm (IN.)   | MAX. mm (IN.)   |
| A           | 99.280 (3.9087)         | 99.294 (3.9092) | 99.306 (3.9097) | 99.319 (3.9102) |
| B           | 99.294 (3.9092)         | 99.306 (3.9097) | 99.319 (3.9102) | 99.332 (3.9107) |
| C           | 99.306 (3.9097)         | 99.319 (3.9102) | 99.332 (3.9107) | 99.344 (3.9112) |
| D           | 99.319 (3.9102)         | 99.332 (3.9107) | 99.344 (3.9112) | 99.357 (3.9117) |
| E           | 99.332 (3.9107)         | 99.344 (3.9112) | 99.357 (3.9117) | 99.370 (3.9122) |

J9509-80

**Fig. 64 Piston Measurements**

## CRANKSHAFT INSPECTION OF JOURNALS

The crankshaft connecting rod and main journals should be checked for excessive wear, taper or scoring. The maximum taper or out-of-round on any crankshaft journal is 0.025 mm (0.001 in.).

Journal grinding should not exceed 0.305 mm (0.012 in.) under the standard journal diameter. DO

NOT grind thrust faces of No. 2 main bearing. DO NOT nick crank pin or bearing fillets. After grinding, remove rough edges from crankshaft oil holes and clean out all oil passages.

**CAUTION:** After any journal grind, it is important that the final paper or cloth polish be in the same direction that the engine rotates.

## OIL PAN

## CLEANING

Clean the block and pan gasket surfaces.

Trim or remove excess sealant film in the rear main cap oil pan gasket groove. **DO NOT remove the sealant inside the rear main cap slots.**

If present, trim excess sealant from inside the engine.

Clean oil pan in solvent and wipe dry with a clean cloth.

Clean oil screen and pipe thoroughly in clean solvent. Inspect condition of screen.

## INSPECTION

Inspect oil drain plug and plug hole for stripped or damaged threads. Repair as necessary.

Inspect oil pan mounting flange for bends or distortion. Straighten flange, if necessary.

## OIL PUMP

## OIL PUMP PRESSURE

The MINIMUM oil pump pressure is 41.4 kPa (6 psi) at curb idle. The MAXIMUM oil pump pressure is 207-552 kPa (30-80 psi) at 3,000 RPM or more.

**CAUTION: If oil pressure is ZERO at curb idle, DO NOT run engine at 3,000 RPM.**

## INSPECTION

Mating surface of the oil pump cover should be smooth. Replace pump assembly if cover is scratched or grooved.

Lay a straightedge across the pump cover surface (Fig. 65). If a 0.038 mm (0.0015 in.) feeler gauge can be inserted between cover and straightedge, pump assembly should be replaced.

Measure thickness and diameter of outer rotor. If outer rotor thickness measures 20.9 mm (0.825 in.) or less, or if the diameter is 62.7 mm (2.469 in.) or less, replace outer rotor (Fig. 66).

If inner rotor measures 20.9 mm (0.825 in.) or less, replace inner rotor and shaft assembly (Fig. 67).

Slide outer rotor into pump body. Press rotor to the side with your fingers and measure clearance between rotor and pump body (Fig. 68). If clearance

## CLEANING AND INSPECTION (Continued)

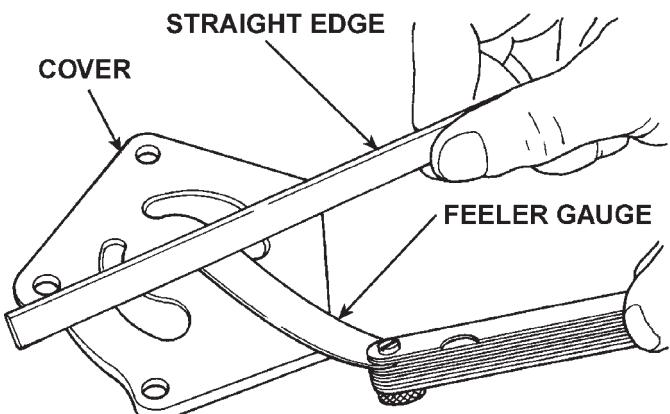



Fig. 65 Checking Oil Pump Cover Flatness

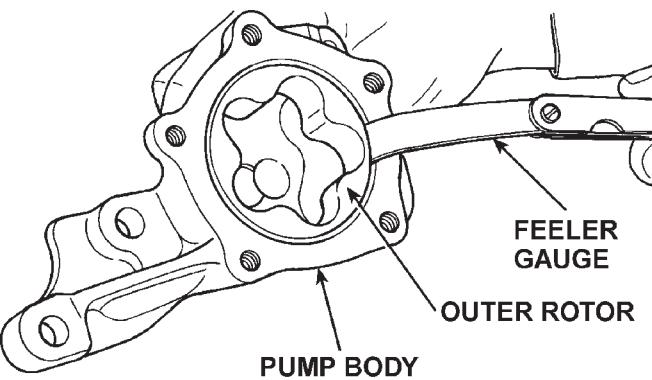



Fig. 68 Measuring Outer Rotor Clearance in Housing

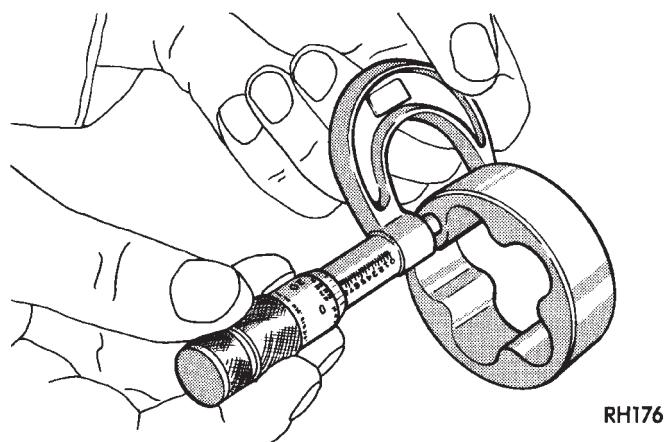



Fig. 66 Measuring Outer Rotor Thickness

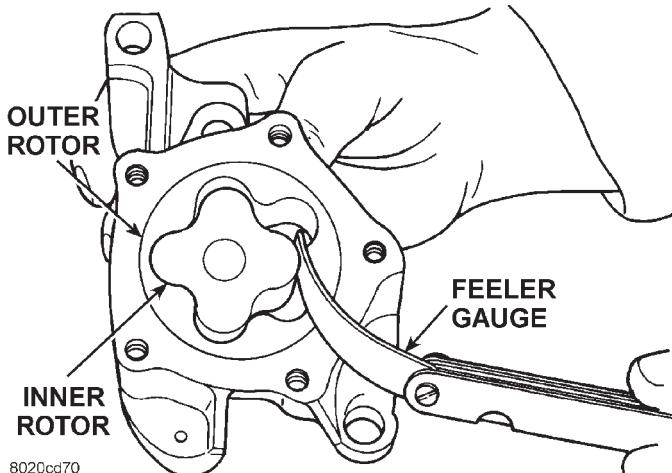



Fig. 69 Measuring Clearance Between Rotors

Place a straightedge across the face of the pump, between bolt holes. If a feeler gauge of 0.102 mm (0.004 in.) or more can be inserted between rotors and the straightedge, replace pump assembly (Fig. 70).

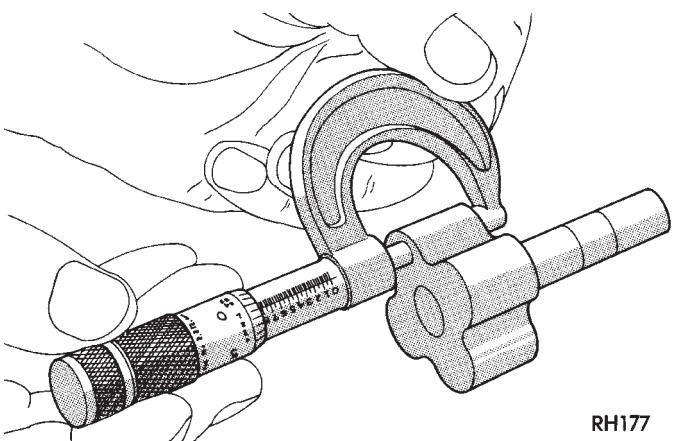
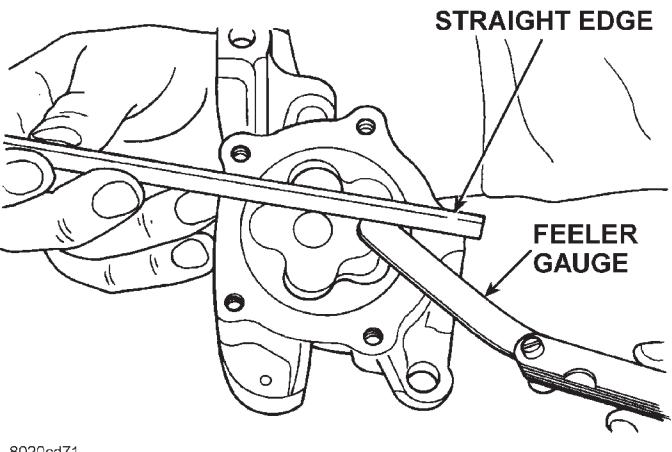
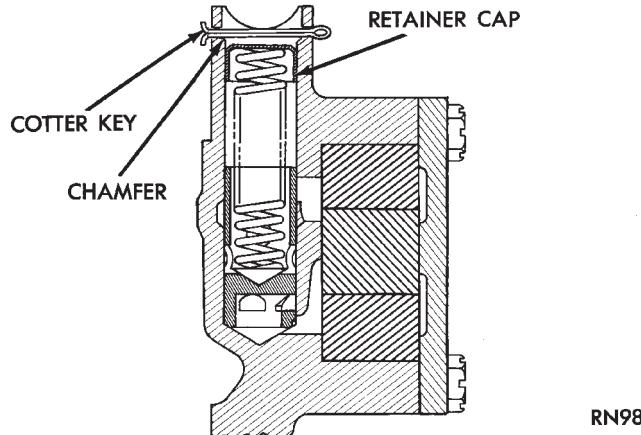



Fig. 67 Measuring Inner Rotor Thickness

is 0.356 mm (0.014 in.) or more, replace oil pump assembly.

Install inner rotor and shaft into pump body. If clearance between inner and outer rotors is 0.203 mm (0.008 in.) or more, replace shaft and both rotors (Fig. 69).





Fig. 70 Measuring Clearance Over Rotors

## CLEANING AND INSPECTION (Continued)

Inspect oil pressure relief valve plunger for scoring and free operation in its bore. Small marks may be removed with 400-grit wet or dry sandpaper.

The relief valve spring has a free length of approximately 49.5 mm (1.95 in.). The spring should test between 19.5 and 20.5 pounds when compressed to 34 mm (1-11/32 in.). Replace spring that fails to meet these specifications (Fig. 71).

If oil pressure was low and pump is within specifications, inspect for worn engine bearings or other reasons for oil pressure loss.



**Fig. 71 Proper Installation of Retainer Cap**

## CYLINDER BLOCK

## CLEANING

Clean cylinder block thoroughly and check all core hole plugs for evidence of leaking.

## INSPECTION

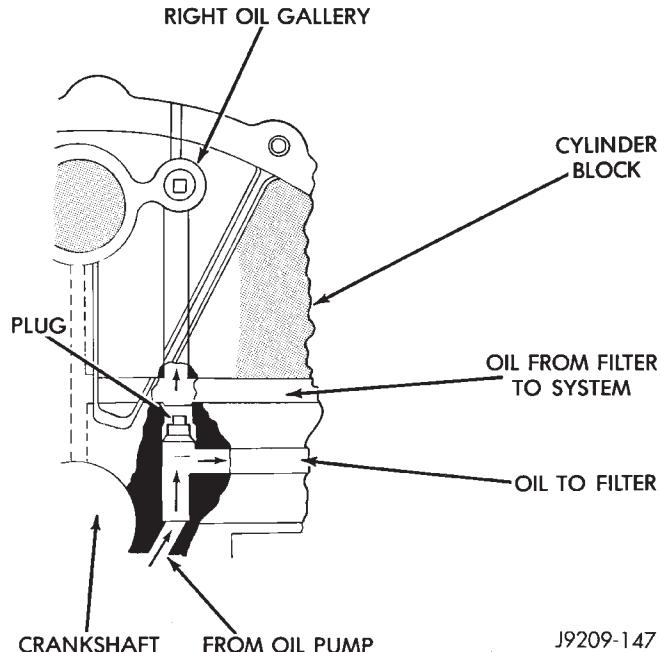
Examine block for cracks or fractures.

The cylinder walls should be checked for out-of-round and taper with Cylinder Bore Indicator Tool C-119. The cylinder block should be bored and honed with new pistons and rings fitted if:

- The cylinder bores show more than 0.127 mm (0.005 in.) out-of-round.
- The cylinder bores show a taper of more than 0.254 mm (0.010 in.).
- The cylinder walls are badly scuffed or scored.

Boring and honing operation should be closely coordinated with the fitting of pistons and rings, so that specified clearances can be maintained.

## OIL LINE PLUG


The oil line plug is located in the vertical passage at the rear of the block between the oil-to-filter and oil-from-filter passages (Fig. 72). Improper installation or plug missing could cause erratic, low, or no oil pressure.

The oil plug must come out the bottom. Use flat dowel, down the oil pressure sending unit hole from the top, to remove oil plug.

(1) Remove oil pressure sending unit from back of block.

(2) Insert a 3.175 mm (1/8 in.) finish wire, or equivalent, into passage.

(3) Plug should be 190.0 to 195.2 mm (7-1/2 to 7-11/16 in.) from machined surface of block (Fig. 72). If plug is too high, use a suitable flat dowel to position properly.



J9209-147

**Fig. 72 Oil Line Plug**

(4) If plug is too low, remove oil pan and No. 4 main bearing cap. Use suitable flat dowel to position properly. Coat outside diameter of plug with Mopar Stud and Bearing Mount Adhesive, or equivalent. Plug should be 54.0 to 57.7 mm (2-1/8 to 2-5/16 in.) from bottom of the block.

## SPECIFICATIONS

## 5.2L ENGINE SPECIFICATIONS

**Camshaft**

## Bearing Diameter

|             |                                        |
|-------------|----------------------------------------|
| No. 1 ..... | 50.800-50.825 mm<br>(2.000-2.001 in)   |
| No. 2 ..... | 50.394-50.419 mm<br>(1.984-1.985 in)   |
| No. 3 ..... | 50.013-50.038 mm<br>(1.969-1.970 in)   |
| No. 4 ..... | 49.606-49.632 mm<br>(1.953-1.954 in)   |
| No. 5 ..... | 39.688-39.713 mm<br>(1.5625-1.5635 in) |

|                             |                                      |
|-----------------------------|--------------------------------------|
| Diametrical Clearance ..... | 0.0254-0.0762 mm<br>(0.001-0.003 in) |
| Max. Allowable .....        | 0.127 mm<br>(0.005 in)               |
| End Play .....              | 0.051-0.254 mm<br>(0.002-0.010 in)   |

## Bearing Journal Diameter

|             |                                        |
|-------------|----------------------------------------|
| No. 1 ..... | 50.749-50.775 mm<br>(1.998-1.999 in)   |
| No. 2 ..... | 50.343-50.368 mm<br>(1.982-1.983 in)   |
| No. 3 ..... | 49.962-49.987 mm<br>(1.967-1.968 in)   |
| No. 4 ..... | 49.555-49.581 mm<br>(1.951-1.952 in)   |
| No. 5 ..... | 39.637-39.662 mm<br>(1.5605-1.5615 in) |

**Connecting Rods**

|                                   |                                        |
|-----------------------------------|----------------------------------------|
| Bearing Clearance .....           | 0.013-0.056 mm<br>(0.0005-0.0022 in)   |
| Max. Allowable .....              | 0.08 mm (0.003 in)                     |
| Piston Pin Bore Diameter .....    | 24.966-24.978 mm<br>(0.9829-0.9834 in) |
| Side Clearance (Two Rods) .....   | 0.152-0.356 mm<br>(0.006-0.014 in)     |
| Total Weight (Less Bearing) ..... | 726 grams<br>(25.61 oz)                |

**Crankshaft**

## Connect Rod Journal

|                           |                                      |
|---------------------------|--------------------------------------|
| Diameter .....            | 53.950-53.975 mm<br>(2.124-2.125 in) |
| Out-of-Round (Max.) ..... | 0.0254 mm<br>(0.001 in)              |
| Taper (Max.) .....        | 0.0254 mm<br>(0.001 in)              |

## Diametrical Clearance

|                                         |                                      |
|-----------------------------------------|--------------------------------------|
| No. 1 .....                             | 0.013-0.038 mm<br>(0.0005-0.0015 in) |
| Nos. 2, 3, 4 and 5 .....                | 0.013-0.051 mm<br>(0.005-0.0020 in)  |
| Max. Allowable (Nos. 2, 3, 4 & 5) ..... | 0.064 mm<br>(0.0025 in)              |

|                      |                                    |
|----------------------|------------------------------------|
| End Play .....       | 0.051-0.178 mm<br>(0.002-0.007 in) |
| Max. Allowable ..... | 0.254 mm<br>(0.010 in)             |

## Main Bearing Journals

|                           |                                        |
|---------------------------|----------------------------------------|
| Diameter .....            | 63.487-63.513 mm<br>(2.4995-2.5005 in) |
| Out-of-Round (Max.) ..... | 0.0254 mm<br>(0.001 in)                |
| Taper (Max.) .....        | 0.0254 mm<br>(0.001 in)                |

**Cylinder Block**

## Cylinder Bore

|                           |                                      |
|---------------------------|--------------------------------------|
| Diameter .....            | 99.314-99.365 mm<br>(3.910-3.912 in) |
| Out-of-Round (Max.) ..... | 0.127 mm<br>(0.005 in)               |
| Taper (Max.) .....        | 0.254 mm<br>(0.010 in)               |
| Oversize (Max.) .....     | 1.016 mm<br>(0.040 in)               |

## Distributor Lower Drive Shaft

|                                    |                                        |
|------------------------------------|----------------------------------------|
| Bushing (Press Fit in Block) ..... | 0.0127-0.3556 mm<br>(0.0005-0.0140 in) |
| Shaft-to-Bushing Clearance .....   | 0.0178-0.0686 mm<br>(0.0007-0.0027 in) |

|                            |                                      |
|----------------------------|--------------------------------------|
| Tappet Bore Diameter ..... | 22.99-23.01 mm<br>(0.9051-0.9059 in) |
|----------------------------|--------------------------------------|

**Cylinder Head**

|                            |                      |
|----------------------------|----------------------|
| Compression Pressure ..... | 689 kPa<br>(100 psi) |
|----------------------------|----------------------|

|                                     |                          |
|-------------------------------------|--------------------------|
| Gasket Thickness (Compressed) ..... | 1.2065 mm<br>(0.0475 in) |
|-------------------------------------|--------------------------|

## Valve Seat

|                                |                                    |
|--------------------------------|------------------------------------|
| Angle .....                    | 44.25° - 44.75°                    |
| Runout (Max.) .....            | 0.0762 mm<br>(0.003 in)            |
| Width (Finish) - Intake .....  | 1.016-1.524 mm<br>(0.040-0.060 in) |
| Width (Finish) - Exhaust ..... | 1.524-2.032 mm<br>(0.060-0.080 in) |

**Hydraulic Tappets**

|                     |                                        |
|---------------------|----------------------------------------|
| Body Diameter ..... | 22.949-22.962 mm<br>(0.9035-0.9040 in) |
|---------------------|----------------------------------------|

|                          |                                        |
|--------------------------|----------------------------------------|
| Clearance in Block ..... | 0.0279-0.0610 mm<br>(0.0011-0.0024 in) |
|--------------------------|----------------------------------------|

|                |                                    |
|----------------|------------------------------------|
| Dry Lash ..... | 1.524-5.334 mm<br>(0.060-0.210 in) |
|----------------|------------------------------------|

|                       |                                      |
|-----------------------|--------------------------------------|
| Push Rod Length ..... | 175.64-176.15 mm<br>(6.915-6.935 in) |
|-----------------------|--------------------------------------|

## SPECIFICATIONS (Continued)

**Oil Pump**

|                                     |                          |
|-------------------------------------|--------------------------|
| Clearance Over Rotors (Max.)        | 0.1016 mm<br>(0.004 in)  |
| Cover Out-of-Flat (Max.)            | 0.0381 mm<br>(0.0015 in) |
| Inner Rotor Thickness (Min.)        | 20.955 mm<br>(0.825 in)  |
| Outer Rotor                         |                          |
| Clearance (Max.)                    | 0.3556 mm<br>(0.014 in)  |
| Diameter (Min.)                     | 62.7126 mm<br>(2.469 in) |
| Thickness (Min.)                    | 20.955 mm<br>(0.825 in)  |
| Tip Clearance Between Rotors (Max.) | 0.2032 mm<br>(0.008 in)  |

**Oil Pressure**

|                               |                            |
|-------------------------------|----------------------------|
| At Curb Idle Speed (Minimum)* | 41.4 kPa<br>(6 psi)        |
| At 3000 rpm                   | 207-552 kPa<br>(30-80 psi) |
| Oil Pressure Switch           |                            |
| Actuating Pressure (Min.)     | 34.5-48.3 kPa<br>(5-7 psi) |

\*CAUTION: If pressure is ZERO at curb idle,  
DO NOT run engine.

**Oil Filter**

|                      |                          |
|----------------------|--------------------------|
| Bypass Valve Setting | 62-103 kPa<br>(9-15 psi) |
|----------------------|--------------------------|

**Pistons**

|                              |                                        |
|------------------------------|----------------------------------------|
| Clearance at Top of Skirt    | 0.0127-0.0381 mm<br>(0.0005-0.0015 in) |
| Land Clearance (Diametrical) | 0.635-1.016 mm<br>(0.025-0.040 in)     |
| Piston Length                | 86.360 mm<br>(3.40 in)                 |
| Piston Ring Groove Depth     |                                        |
| Nos. 1 and 2                 | 4.572-4.826 mm<br>(0.180-0.190 in)     |
| No. 3                        | 3.810-4.064 mm<br>(0.150-0.160 in)     |
| Weight                       | 592.6-596.6 grams<br>(20.90-21.04 oz)  |

**Piston Pins**

|                       |                                            |
|-----------------------|--------------------------------------------|
| Clearance             |                                            |
| In Piston             | 0.00635-0.01905 mm<br>(0.00025-0.00075 in) |
| In Rod (Interference) | 0.0178-0.0356 mm<br>(0.0007-0.0014 in)     |
| Diameter              | 24.996-25.001 mm<br>(0.9841-0.9843 in)     |
| End Play              | NONE                                       |
| Length                | 75.946-76.454 mm<br>(2.990-3.010 in)       |

**Piston Rings**

|                           |                                      |
|---------------------------|--------------------------------------|
| Ring Gap                  |                                      |
| Compression Rings         | 0.254-0.508 mm<br>(0.010-0.020 in)   |
| Oil Control (Steel Rails) | 0.254-1.270 mm<br>(0.010-0.050 in)   |
| Ring Side Clearance       |                                      |
| Compression Rings         | 0.038-0.076 mm<br>(0.0015-0.0030 in) |
| Oil Ring (Steel Rails)    | 0.06-0.21 mm<br>(0.002-0.008 in)     |
| Ring Width                |                                      |
| Compression Rings         | 1.971-1.989 mm<br>(0.0776-0.0783 in) |
| Oil Ring (Steel Rails)    | 3.848-3.975 mm<br>(0.1515-0.1565 in) |

**Valves**

|                                 |                                      |
|---------------------------------|--------------------------------------|
| Face Angle                      | 43.25°-43.75°                        |
| Head Diameter                   |                                      |
| Intake                          | 48.666 mm<br>(1.916 in)              |
| Exhaust                         | 41.250 mm<br>(1.624 in)              |
| Length (Overall)                |                                      |
| Intake                          | 124.28-125.92 mm<br>(4.893-4.918 in) |
| Exhaust                         | 124.64-125.27 mm<br>(4.907-4.932 in) |
| Lift (Zero Lash)                | 10.973 mm<br>(0.432 in)              |
| Stem Diameter                   | 7.899-7.925 mm<br>(0.311-0.312 in)   |
| Stem-to-Guide Clearance         | 0.0254-0.0762 mm<br>(0.001-0.003 in) |
| Max. Allowable (Rocking Method) | 0.4318 mm<br>(0.017 in)              |
| Guide Bore Diameter (Std)       | 7.950-7.976 mm<br>(0.313-0.314 in)   |

## SPECIFICATIONS (Continued)

**Valve Springs**

|                       |                                                              |
|-----------------------|--------------------------------------------------------------|
| Free Length (Approx.) | 49.962 mm<br>(1.967 in)                                      |
| Spring Tension        | @ 41.66 mm = 378 N<br>(Valve Closed)<br>(@ 1.64 in = 85 lbs) |
| Spring Tension        | @ 30.89 mm = 890 N<br>(Valve Open)<br>(@ 1.212 in = 200 lbs) |
| Number of Coils       | 6.8                                                          |
| Installed Height      | 41.66 mm<br>(Spring Seat to Retainer)<br>(1.64 in)           |
| Wire Diameter         | 4.50 mm<br>(0.177 in)                                        |

**Valve Timing**

|               |      |
|---------------|------|
| Exhaust Valve |      |
| Closes (ATC)  | 21°  |
| Opens (BBC)   | 60°  |
| Duration      | 264° |
| Intake Valve  |      |
| Closes (ABC)  | 61°  |
| Opens (BTC)   | 10°  |
| Duration      | 250° |
| Valve Overlap | 31°  |

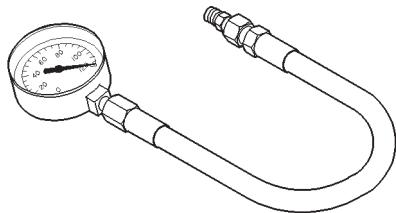
J9409-99

## OVERSIZE AND UNDERSIZE ENGINE COMPONENT MARKINGS

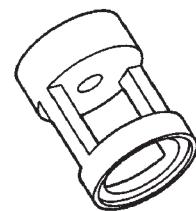
| CONDITION                                                   | IDENTIFICATION                                                                                                                             | LOCATION OF IDENTIFICATION                                                                                 |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| CRANKSHAFT JOURNALS<br>(UNDERSIZE)<br>0.0254 mm (0.001 in.) | R or M<br>M-2-3 etc. (indicating no. 2 and 3 main bearing journal)<br>and/or<br>R-1-4 etc. (indicating no. 1 and 4 connecting rod journal) | Milled flat on no. 8 crankshaft counterweight.                                                             |
| HYDRAULIC TAPPETS<br>(OVERSIZE)<br>0.2032 mm (0.008 in.)    | ♦                                                                                                                                          | Diamond-shaped stamp top pad – front of engine and flat ground on outside surface of each O/S tappet bore. |
| VALVE STEMS (OVERSIZE)<br>0.127 mm (0.005 in.)              | X                                                                                                                                          | Milled pad adjacent to two tapped holes (3/8 in.) on each end of cylinder head.                            |

J9309-82

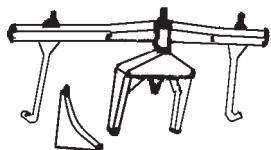
## SPECIFICATIONS (Continued)


## TORQUE SPECIFICATIONS

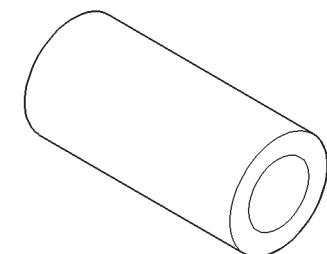
| DESCRIPTION                                                 | TORQUE                                   | DESCRIPTION                                                           | TORQUE                 |
|-------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|------------------------|
| Adjusting Strap Bolt .....                                  | 23 N•m (200 in. lbs.)                    | Rear Mount - Support Cushion-to-<br>Crossmember Nut .....             | 47 N•m (35 ft. lbs.)   |
| Camshaft Bolt .....                                         | 68 N•m (50 ft. lbs.)                     | Rear Mount - Support Cushion-to-<br>Trans. Support Bracket Nuts ..... | 47 N•m (35 ft. lbs.)   |
| Camshaft Thrust Plate Bolts .....                           | 24 N•m (210 in. lbs.)                    | Rear Mount - Transmission Support<br>Bracket Bolts .....              | 102 N•m (75 ft. lbs.)  |
| Chain Case Cover Bolts .....                                | 41 N•m (30 ft. lbs.)                     | Rear Support Plate-to-Transfer<br>Case Bolts .....                    | 41 N•m (30 ft. lbs.)   |
| Connecting Rod Cap Bolts .....                              | 61 N•m (45 ft. lbs.)                     | Rocker Arm Bolts .....                                                | 23 N•m (200 in. lbs.)  |
| Crankshaft Main Bearing Cap Bolts ....                      | 115 N•m (85 ft. lbs.)                    | Spark Plugs .....                                                     | 41 N•m (30 ft. lbs.)   |
| Cylinder Head Bolts<br>1st Step .....                       | 68 N•m (50 ft. lbs.)                     | Starter Mounting Bolts .....                                          | 68 N•m (50 ft. lbs.)   |
| 2nd Step .....                                              | 143 N•m (105 ft. lbs.)                   | Throttle Body Bolts .....                                             | 23 N•m (200 in. lbs.)  |
| Cylinder Head Cover Bolts .....                             | 11 N•m (95 in. lbs.)                     | Torque Converter Drive Plate<br>Bolts .....                           | 31 N•m (270 in. lbs.)  |
| Exhaust Manifold-to-Cylinder<br>Head Bolts/Nuts .....       | 34 N•m (25 ft. lbs.)                     | Transfer Case-to-Insulator<br>Mounting Plate Nuts .....               | 204 N•m (150 ft. lbs.) |
| Front Mount - Thru-Bolt Nut .....                           | 68 N•m (50 ft. lbs.)                     | Vibration Damper Retainer<br>Bolt .....                               | 183 N•m (135 ft. lbs.) |
| Front Mount - Engine Support<br>Bracket/Cushion Bolts ..... | 81 N•m (60 ft. lbs.)                     | Water Pump-to-Chain Case<br>Cover Bolt .....                          | 41 N•m (30 ft. lbs.)   |
| Generator Mounting Bolt .....                               | 41 N•m (30 ft. lbs.)                     |                                                                       |                        |
| Intake Manifold Bolts .....                                 | Refer to Procedure<br>in Service Manual. |                                                                       |                        |
| Oil Pan Bolts .....                                         | 23 N•m (200 in. lbs.)                    |                                                                       |                        |
| Oil Pan Drain Plug .....                                    | 34 N•m (25 ft. lbs.)                     |                                                                       |                        |
| Oil Pump Attaching Bolts .....                              | 41 N•m (30 ft. lbs.)                     |                                                                       |                        |
| Oil Pump Cover Bolts .....                                  | 11 N•m (95 in. lbs.)                     |                                                                       |                        |


J9509-140

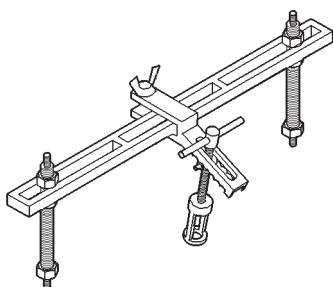
## SPECIAL TOOLS


### SPECIAL TOOLS

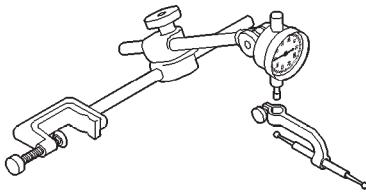



**Oil Pressure Gauge C-3292**

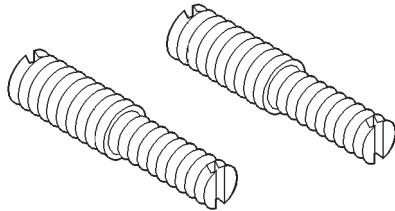



**Adapter 6716A**

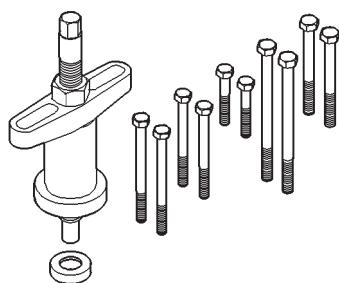



**Engine Support Fixture C-3487-A**



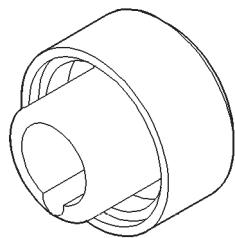
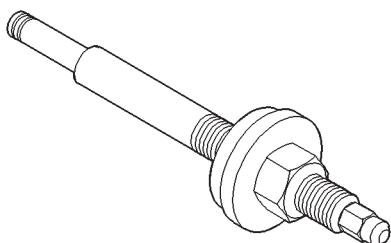
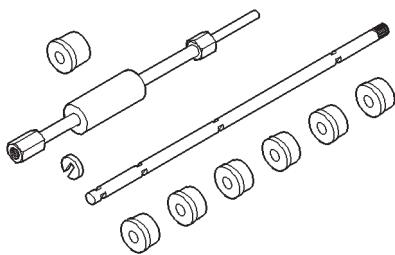
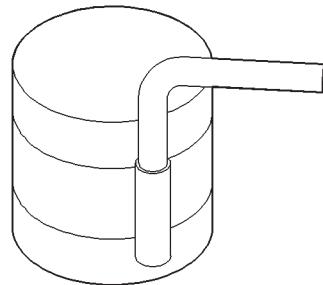
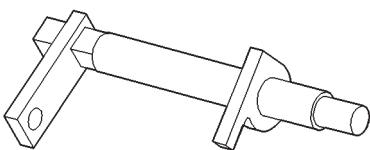
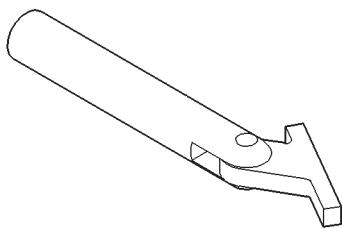
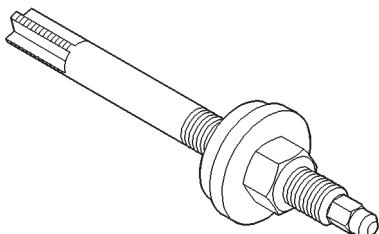
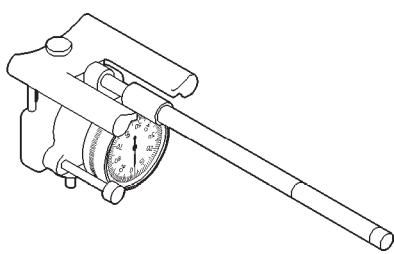

**Valve Guide Sleeve C-3973**




**Valve Spring Compressor MD-998772-A**



**Dial Indicator C-3339**


**Adapter 6633**



**Puller C-3688**

## SPECIAL TOOLS (Continued)

**Front Oil Seal Installer 6635****Distributor Bushing Driver/Burnisher C-3053****Cam Bearing Remover/Installer C-3132-A****Piston Ring Compressor C-385****Camshaft Holder C-3509****Crankshaft Main Bearing Remover C-3059****Distributor Bushing Puller C-3052****Cylinder Bore Gauge C-119**

c-3509-8011d343

8011c9fa